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Kurzfassung 
Im Rahmen dieser Arbeit wurde die Soft-/Firmwareentwicklung eines µC (Mikrocontroller) 
basierenden Debuggers beschrieben, die Funktionalität des entwickelten Debuggers 
ausführlich getestet und verglichen mit kommerziell verfügbaren Debugger. Der, für den 
Debugger, verwendete µC ist eine LPC1768 von NXP1 und basiert auf den ARM2 Cortex-M3 
Core. In dieser Arbeit wurden die grundlegenden Funktionalitäten des Cores erklärt. Es 
wurden ausschließlich open-source und freie Entwicklungswerkzeuge verwendet. Als 
Kommunikationsinterface zwischen dem Host und dem Debugger wurde USB3 (Universal 
Serial Bus) verwendet und zwischen dem Debugger und der TEP (Target Embedded 
Platform) wurde JTAG (Joint Test Action Group) verwendet. In dieser Arbeit wird, durch die 
Komplexität der verwendeten Interfaces, nur auf ausgewählte, projektrelevante Kapitel 
eingegangen. OpenOCD4 (Open On-Chip Debugger) wurde verwendet, um mit dem 
Debugger über USB zu kommunizieren. Der dafür notwendige Interfacedriver wurde 
implementiert und ausführlich dokumentiert. Die Firmware, welche die Funktionalität des 
Debuggers implementiert, und sowohl für die Kommunikation zum Host als auch zum TEP 
zuständig ist, wurde implementiert und ausführlich dokumentiert. Verschiedene Performance 
Tests wurden durchgeführt, um den entwickelten Debugger mit kommerziell verfügbaren 
Debugger zu vergleichen. Zum Leistungsvergleich wurde ein FTDI5-basierender Debugger 
der Firma Amontec6

                                                
 
1 http://www.nxp.com/ 
2 http://www.arm.com/ 
3 http://www.usb.org/home 
4 http://openocd.berlios.de/web/ 
5 http://www.ftdichip.com/ 
6 http://www.amontec.com/ 

 namens Amontec JTAGKey Tiny herangezogen. 
 

Schlagwörter: Debugger, Cortex-M3, USB, JTAG, FTDI-Chip 
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Abstract 
This thesis describes the Soft-/Firmware development of a µC-based debugger. The 
functionality of the debugger is tested and compared to commercial available debugger. The 
used µC is a LPC1768 from NXP and is based on the ARM Cortex-M3 core. This thesis 
highlights the fundamentals of the CM3 (Cortex-M3) core. In this project open-source and 
free available development tools were used. The communication interface between the host 
and the debugger is based on USB. To be able to communicate with the TEP, JTAG was 
used. Due to the complexity of the interfaces, only selected topics of the utilized interfaces 
were explained. OpenOCD was used to interact with debugger based on USB. OpenOCD 
can be used to transfer pre-compiled code to the TEP, to control the code execution and to 
examine the TEP state. To be able to communicate with the debugger an interface driver 
was developed. The configuration of this driver and its functionality is explained in this thesis. 
The firmware, running on the debugger, was implemented and is documented in this thesis. 
Various performance tests were executed to be able to validate the functionality of the 
debugger. The results of these tests are documented and compared to a commercial 
available debugger provided by Amontec. The Amontec JTAGKey is a FTDI-based debugger 
and is applied in many development processes. 
 

Keywords: Debugger, Cortex-M3, USB, JTAG, FTDI-Chip 
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1 Introduction 
This thesis focuses on the development of a JTAG Debugger, which can be used to debug 
state-of-the-art microcontrollers. These microcontrollers have to have a JTAG interface 
which gives the debugger the ability to communicate with the debug module of the 
microcontroller. 
Many debuggers are available with different features and abilities. Currently the Technikum 
Wien7

The on-board debuggers are often realized with an FTDI Chip

 uses different microcontrollers in their courses dedicated to embedded system 
engineering. Some of the µCs (microcontrollers) have a debugger on-board and some of 
them are programmed via external debuggers. 

8

The external debugger is the J-Link from Segger

 which implements the 
gateway between the USB interface and the JTAG interface. This device can not only be 
used for this purpose. It can also be used to redirect the hardware RS232 interface of the 
µC to the USB interface. The FTDI chip has the advantage that this device is especially 
designed for debugging and programming purposes of various microcontrollers. 
The disadvantage is that the FTDI chip is very expensive. It costs € 8.90 per unit. To get a 
working debugger based on the FTDI chip it is necessary to use an external EEPROM, 
which costs € 0.30, and some passive components. This means that a debugger costs 
about € 10.00 and it can only be used as a debugger. 

9 and the ULINK2 from ARM/Keil10

                                                
 
7 http://www.technikum-wien.at/ 
8 http://www.ftdichip.com/ 
9 http://www.segger.com/cms/ 
10 http://www.keil.com/ 

. The 
problem is that a limited amount of external debuggers are available on the Technikum 
Wien and e.g. the J-Link costs € 248.00 and the ULINK costs € 289.00. 
To gain sustainable knowledge the students of the Technikum Wien should be able to use 
the applied embedded system while they attend a course dedicated to embedded system 
engineering. This means that the development environment, the embedded board, and the 
debugger should be able to be used at home, easy to maintain, and able to be bought by 
the students. An inquiry with the students has shown that the students are be poised to 
pay between € 50.00 till € 60.00 for such a development equipment. 
The mentioned equipment will cost € ~400.00 if an external debugger is delivered within 
the package and cost € ~160.00 if the on-board or a debugger based on the FTDI chip is 
used. 
One of the first steps to lowering the costs of the development equipment can be to 
replace the debugger by a microcontroller which “simulates” a debugger. 
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The usage of a microcontroller used as debugger has the advantage that it is cheaper than 
the currently used debuggers and the microcontroller can be used for basic tasks in 
undergraduate courses dedicated to embedded system engineering. 
E.g. a Cortex-M3 microcontroller with a minimum of internal memory costs € 3.44. 
Additionally some passive external components are required which means that the 
debugger costs less than the FTDI chip itself. These arguments are the baseline for this 
thesis. 
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2 Project-Specification 
After the introduction it is necessary to specify the features and abilities of the debugger 
and which functionalities are not supported. To be able to specify the features and abilities 
it is necessary to analyse the project configuration. 
Figure 1 gives an overview over the basic project configuration. The Host illustrates the 
workstation where the development tools for the Target µC are installed. The interface 
between the Host and the CMARMJTAG is USB. This interface will be explained in 
chapter 4. The CMARMJTAG is a state-of-the-art microcontroller which is the gateway 
between the USB and JTAG interface. The JTAG interface is required to transfer the 
debug information from the CMARMJTAG to the Target µC. The JTAG* interface is not the 
standard JTAG interface of the CMARMJTAG. This interface is necessary to simulate a 
JTAG interface. In this thesis three possible methods to simulate a JTAG interface are 
explained. 
 

CMARMJTAG

Host

USB

USB

JTAG*

Target µC

JTAG

6

4

 
Figure 1: Basic project configuration 

The JTAG Debugger should have the name CMARMJTAG. This name is composed of 
three phrases. 

• CM  Cortex-M 
• ARM  ARM Architecture 
• JTAG  Interface which is used for the debug communication 

The applied microcontroller for this project is an ARM Cortex-M3 from NXP called 
LPC1768. The used architecture (ARM) and the type of the microcontroller (Cortex-M) can 
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be found in the abbreviation of the JTAG Debugger. Also the interface which is used 
between the CMARMJTAG and the target µC (JTAG) can be found in the abbreviation. 
The JTAG Debugger should: 

• be able to integrate into OpenOCD (Open On-Chip-Debugger); OpenOCD is 
explained in chapter 5 

• support ARM-JTAG interface communication 
• support variable JTAG speeds 
• support real-time debugging 
• support in-system programming 
• support boundary-scan testing 
• support all microcontrollers which are supported into OpenOCD 
• use a microcontroller which is: 

o available 
o low-cost 
o and a state-of-the-art microcontroller 

For this project the following features are no design goals: 
• displaying and storing of Embedded Trace information 
• Power Debugging founded by IAR Systems 
• a USB/Serial interface 
• a SWD interface communication 
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3 Examples of µC-based debugger 
There are projects which are dealing with the development of µC-based debugger. This 
chapter gives an overview of the related projects. 
The SEGGER J-Link [cmp. to p. 24, SEGUM] is a USB powered JTAG emulator which 
supports a large number of ARM cores. J-Link is based on a 32-bit RISC CPU and is used 
for development and production purposes. It connects via USB to a PC running Microsoft 
Windows 2000 or later. J-Link has a built-in 20-pin JTAG connector, which is compatible 
with the standard 20-pin connector defined by ARM. 
The RLink from Raisonance11

USBprog

 [cmp. to p. 3, RLINK09] is a microcontroller debugger and 
programmer which supports a range of target interfaces (JTAG, SWD, SWIM, ICC) and 
connects to 32-bit and 8-bit µCs to program the target device and debug application in 
real-time. The standard RLink consists of a ST7365xARxT1 µC. This chip is based on an 
ARM7 core and used in the STM32 Primer1/2 of Raisonance. On the STM Primer1, JTAG 
is used to program and debug the STM32 and on STM32 Primer2 SWD (Serial Wire 
Debug) is used. 

12

eStick-JTAG

 [cmp. to USBJTAG07] is a free programming adapter. The adapter is based on 
an ATmega32 and can be used for programming and debugging AVR and ARM cores, as 
USB to RS232 converter, as JTAG interface or as simple I/O interface. The adapter allows 
real-time debugging, setting breakpoints and single stepping. 

13

Name 

 [cmp. to ESJTAG08] is a USB to JTAG adapter to program ARM-based 
microcontrollers. This adapter allows real-time debugging, in-system programming and 
boundary-scan testing for embedded targets. This adapter is based on the AT91USB162 
of Atmel and was developed at the UAS Technikum Wien. 
Table 1 lists µC-based debuggers and FTDI-based debuggers, the prices of them, the 
theoretical download speed and whether they are supported by OpenOCD or not. 

Price[€] Download speed OpenOCD-Support 
Segger J-Link* 248.00 12 Mibit/s Yes 
USBJTAG* 44.00 960 kibit/s Yes 
USBprog* 34.00 4,8 kibit/s Yes 
JTAGKey-Tiny** 29.00 6 Mibit/s Yes 
eStick JTAG* 15.00 70,4 kibit/s Yes 

Table 1: JTAG Debugger 

                                                
 
11 http://www.raisonance.com/ 
12 http://www.embedded-projects.net/index.php?page_id=135 
13 http://code.google.com/p/estick-jtag/ 
* µC-based debugger 
** FTDI-based debugger 

http://code.google.com/p/estick-jtag/�
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USBJTAG is a Windows based EJTAG tool for all MIPS core CPUs. It is possible to read 
and write the memory and program the flash of these CPUs. The USBJTAG is supported 
by OpenOCD. [cmp. to EJTAG11] 
The Segger J-Link is the fastest debugger and offers many features and is supported in 
OpenOCD. The USBprog is cheaper than the USBJTAG but does not achieve the 
download rate. It is also supported by OpenOCD. The JTAGKey Tiny provided by Amontec 
is the most efficient debugger. This debugger is based on the FTDI-Chip and is much 
faster than the mentioned µC-based debugger at approximately the same price. The 
eStick-JTAG as already explained is a very low-cost µC-based debugger and achieves a 
considerable download speed. This debugger is not supported by OpenOCD by default. It 
is possible to patch OpenOCD with an available patch file to integrate this debugger into 
OpenOCD. The CMARMJTAG should gain the download speed of the JTAGKey Tiny but 
with some modifications. After the reset the ARM CPU operates at a core frequency of 4 
MHz provided by the internal oscillator. If the CPU runs with the internal oscillator the 
maximum achievable JTAG clock is 2 MHz. The theoretical download speed mentioned in 
table 1 is not possible at this configuration. Due to that fact the performance comparison is 
done with the mentioned configuration. 
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4 Selected Topics of the utilized interfaces 
After the analyses of the state-of-the-art debuggers it is necessary to focus on the most 
important interfaces which are used in this thesis. This chapter focuses on the utilized 
interfaces. On the one hand the USB interface is required to connect the CMARMJTAG to 
the Host and on the other hand JTAG is required to transfer data between the target 
microcontroller and the CMARMJTAG. 

USB in a nutshell 
USB is a handy solution if a computer is used to communicate with a device outside of a 
computer. The interface is suitable for mass-produced, standard peripheral types as well 
as small-volume designs, including one-of-a-kind projects. Additionally many 
microcontrollers based on ARM provide a USB controller. USB offers some benefits for 
both the users and the developers. 
Benefits for Users: 

• Ease of Use 
• Automatic configuration 

o The appropriate software driver is loaded automatically. Otherwise the OS 
asks for the driver and automatically installs it. 

• Easy to connect 
o Typical computers have USB ports built in where the external device can be 

connected easily. 
• Easy cables 

o USB connectors are small and compact in contrast to typical RS-232 and 
parallel connectors. 

• Hot pluggable 
o The USB device can be connected at any time without damaging the host 

system 
• No power-supply required (sometimes) 
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Benefits for Developers 
• Versatility 

o USB’s four transfer types and three speeds make the interface feasible for 
many types of peripherals. 

• Operating System Support 
o The OS (Operating System) automatically detects if a device is attached and 

removed from a system 
o The OS is able to communicate with newly attached devices to find out how 

to exchange data with them. 
o The OS provides a mechanism that enables software drivers to 

communicate with the computer’s USB hardware and the applications that 
want to access USB peripherals 

• Peripheral support 
o Every USB peripheral must have a (may be built-in) controller chip that 

manages the details of USB communications. Some of them are complete 
microcontrollers or the USB controller is connected externally. 

[cmp. p. 2-9, USBC] 

IEEE Std. 1149.1 in a nutshell 
The test logic, the Test Access Port (TAP) and the signals of JTAG are explained in 
chapter 4.2. The IEEE14

4.1 USB-Universal Serial Bus 

 Std. 1149.1 standard defines test logic that can be an integrated 
circuit to provide standardized approaches to test the interconnect between integrated 
circuits once they have been assembled onto a printed circuit board or other substrate, to 
test the integrated circuit itself, and to observe or modify circuit activity during the 
component’s normal operation. 
The test logic consists of a boundary-scan register and other building blocks and is 
accessed through a Test Access Port (TAP). [cmp. to p1, IEEE1149.1] 

As explained the CMARMJTAG uses two interfaces which are necessary to communicate 
on the one hand with OpenOCD and on the other hand with the target hardware. One of 
the interfaces is USB which is used to connect to OpenOCD. OpenOCD is used to emulate 
the states & functionalities of the debug module of the target hardware on the host 
machine. This software is described later. This chapter focuses on the descriptor types and 
does not explain basic transactions and functionalities of the USB interface. 
To be able to communicate via USB with the host machine it is necessary to configure the 
USB-Device. Therefore a device descriptor data structure is used. All USB devices 

                                                
 
14 http://www.ieee.org/index.html 
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respond to requests for the standard USB descriptors. The device must store the 
information in the descriptors and respond to requests for the descriptors. To be able to 
understand how the CMARMJTAG is configured and is registered on the host machine it is 
necessary to explain the required types of descriptors and the configuration possibilities. 
USB-Descriptors: 

• Device Descriptor 
• Configuration Descriptor 
• Interface Descriptor 
• Endpoint Descriptor 
• String Descriptor 

The descriptors types which are used in the main-file of the firmware are described in 
detail. 

Device Descriptor 
The device descriptor contains basic information about the device. The host first reads the 
device descriptor when the device is attached. This descriptor provides information which 
the host needs to retrieve additional information from the device. The device descriptor has 
14 fields. Table 1 lists the fields in the order they occur in the descriptor. The descriptor 
includes information about the descriptor, the device, its configuration and any classes the 
device belongs to. [cmp. to p.96, USBC] 
Offset 
(dec) 

Field Size 
(bytes) 

Description 

0 bLength 1 Descriptor size in bytes 
1 bDescriptorType 1 The constant device 
2 bcdUSB 2 USB Specification release number 
4 bDeviceClass 1 Class code 
5 bDeviceSubClass 1 Subclass code 
6 bDeviceProtocol 1 Protocol code 
7 bMaxPacketSize0 1 Max. packet size for endpoints 
8 idVendor 2 Vendor ID 
10 idProduct 2 Product ID 
12 bcdDevice 2 Device release number 
14 iManufacturer 1 Index of string descriptor for the manufacturer 
15 iProduct 1 Index of string descriptor for the manufacturer 
16 iSerialNumber 1 Index of string descriptor containing the serNum 
17 bNumConfiguration 1 Number of possible configurations 

Table 2: Device Descriptor [p.97, USBC] 
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The following descriptions group the information by function. 
Descriptor: 

• bLength: The length in bytes of the descriptor 
• bDescriptorType: The device descriptor type constant 

Device: 
• bcdUSB: The USB specification that the device and its descriptors comply with in 

BCD (binary-coded decimal) format.  
• idVendor: Vendor ID which could be used from the device driver to identify the 

device. 
• idProduct: The product ID identifies the device. Each product ID is specific to a 

vendor ID, so multiple vendors can use the same product ID without conflict. 
• iManufacturer: An index that points to a string describing the manufacturer. This 

value is zero if there is no manufacturer. 
• iProduct: An index that points to a string describing the product. This value is zero 

if there is no string descriptor. 
• iSerialNumber: An index that points to a string containing the device’s serial 

number. This value is zero if there is no serial number. Some device classes (such 
as mass storage) require serial numbers. Serial numbers are useful if users may 
have more than one identical device on the bus and the host needs to keep track of 
which is which even after rebooting. 

Configuration: 
• bNumConfiguration: The number of configurations the device supports. 
• bMaxPacketSize0: The maximum packet size for the standard endpoints. The host 

uses this information in the requests that follow. 
•  bDeviceClass: For devices whose function is defined at the device level, this field 

specifies the device’s class. Values from 0x01 to 0xFE are reserved for USB’s 
defined classes. The value 0x00 means that the interface descriptor names the 
class. 

• bDeviceSubclass: This field can specify a subclass within a class. If bDeviceClass 
is 0, the bDeviceSubClass must be 0. 

• bDeviceProtocol: This field can specify a protocol defined by the selected class or 
subclass. 

[cmp. p. 96-101, USBC] 
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Configuration Descriptor 
When the device descriptor, which is explained in the previous chapter, is retrieved, the 
host can load the device configuration, the parameters for the interface, and the endpoint 
descriptors. Each device has at least one configuration that specifies the device’s features 
and the abilities. For the CMARMJTAG one configuration is enough, but the declaration of 
multiple configurations for one device is also possible. Only one configuration is active at a 
time and every configuration requires a descriptor. The configuration descriptor contains 
information about the device’s use of power and the number of interfaces supported. Each 
configuration descriptor has subordinate descriptors, including one or more interface 
descriptors and optional endpoint descriptors. 
The configuration descriptor has eight fields. Table 2 lists the fields in the order they occur 
in the descriptor. The descriptor includes information about the descriptor, the device, its 
configuration and the device’s use of power in that configuration. [cmp. to p. 101, USBC] 
Offset 
(dec) 

Field Size 
(bytes) 

Description 

0 bLength 1 Descriptor size in bytes 
1 bDescriptorType 1 The constant configuration 
2 wTotalLength 2 The number of bytes in the configuration 

descriptor and all of its subordinate 
descriptors 

4 bNumInterfaces 1 Number of interfaces in the configuration 
5 bConfigurationValue 1 ID for requests 
6 iConfiguration 1 Index of string descriptor for the 

configurations 
7 bmAttributes 1 Self/bus power and remote wakeup settings 
8 bMaxPower 1 Bus power required, expressed as (maximum 

miliamperes/2) 

Table 3: Configuration Descriptor [p.101, USBC] 

The following descriptions group the information by function. 
Descriptor: 

• bLength: The length (in bytes) of the descriptor. 
• bDescriptorType: The configuration descriptor type constant 
• wTotalLength: The number of bytes in the configuration descriptor and all of its 

subordinate descriptors. 
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Configuration: 
• bConfigurationValue: Indentifies the configuration for the requests. Must be 1 or 

higher. A request with a value of zero causes the device to enter the not configured 
state. 

• iConfiguration: Index to a string that describes the configuration. This value is zero 
if there is no string descriptor. 

• bNumInterfaces: The number of interfaces in the configuration. The minimum is 1. 
• bmAttributes: Bit 0=1 if the device is self-powered or 0 if bus-powered. Bit 5=1 if 

the device supports the remote wakeup feature, which enables a suspended USB 
device to tell its host that the device wants to communicate. A USB device must 
enter the Suspend state if there has been no bus activity for 3 milliseconds. If an 
event at a suspended device requires action from the host, a device with remote 
wakeup enabled can request the host to resume communications. The other bits in 
the field are unused. Bits 0 through 4 must be 0. Bit 7 must be 1. 

• bMaxPower: Specifies how much bus current a device requires. The bMaxPower 
value equals one half the numbers of milliamperes required. If the device requires 
200 milliamperes, bMaxPower=100. The maximum current a device can request is 
500 milliamperes. 

[cmp. p. 101-103, USBC] 

Interface Descriptor 
After the configuration descriptor the interface descriptor has to be specified. The interface 
descriptor provides information about a function or feature that a device implements. The 
descriptor contains class, subclass, and protocol information and the number of endpoints 
the interface uses. 
In the configuration descriptor the number of interfaces is specified, which means that a 
configuration can have multiple interfaces that are active at the same time. That is a big 
difference between the configuration and interface descriptor. Only one configuration 
descriptor can be active at a time, but multiple interfaces can be active at a time. Each 
interface has its own interface descriptor and subordinate descriptor. Devices that uses 
isochronous transfers, the transfer type is specified in the next chapter, must have 
alternate interfaces because the default interface must request no isochronous transfer. 
Changing interfaces is simpler then changing configurations. 
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The interface descriptor has nine fields. Table 4 lists the field in the order they occur in the 
descriptor. [cmp. to p.108, USBC] 
Offset 
(dec) 

Field Size 
(bytes) 

Description 

0 bLength 1 Descriptor size in bytes 
1 bDescriptorType 1 The constant interface  
2 bInterfaceNumber 1 Number identifying this interface 
3 bAlternateSetting 1 Value used to select an alternate setting 
4 bNumEndpoints 1 Number of endpoints supported, not counting 

standard endpoint 
5 bInterfaceClass 1 Class code 
6 bInterfaceSubclass 1 Subclass code 
7 bInterfaceProtocol 1 Protocol code 
8 iInterface 1 Index of string descriptor for the interface 

Table 4: Interface Descriptor [p.108, USBC] 

The following descriptions group the information by function. 
Descriptor: 

• bLength: The number of bytes in the descriptor. 
• bDescriptorType: The interface descriptor type constant 

Interface: 
• iInterface: Index to a string that describes the interface. This value is zero if there is 

no string descriptor. 
• bInterfaceNumber: Identifies the interface. In a composite device, a configuration 

has multiple interfaces that are active at the same time. Each interface must have a 
descriptor with a unique value in this field. The default is zero. 

• bAlternateSetting: When a configuration supports multiple, mutually exclusive 
interfaces, each of the interfaces has a descriptor with the same value in 
bInterfaceNumber and a unique value in bAlternateSetting.  

• bNumEndpoints: The number of endpoints the interface supports in addition to the 
standard endpoints. For a device that supports only the standard endpoint, 
bNumEndpoints is zero. 

• bInterfaceClass: Similar to bDeviceClass in the device descriptor, but for devices 
with a class specified by the interface. 0xFF indicates a vendor-defined class. Zero 
is reserved. 

• bInterfaceSubClass: Similar to bDeviceSubClass in the device descriptor, but for 
devices with a class defined by the interface. For interfaces that belong to a class, 
this field may specify a subclass within the class. 

• bInterfaceProtocol: Similar to bDeviceProtocol in the device descriptor, but for 
devices whose class is defined by the interface. [cmp. p. 106-108, USBC] 
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Endpoint Descriptor 
Every endpoint that is specified in an interface descriptor has an endpoint descriptor. The 
standard endpoint never has a descriptor because every device must support the standard 
endpoint, the device descriptor contains the maximum packet size, and the USB 
specification defines everything else about the endpoint. Table 4 lists the endpoint 
descriptor’s six fields in the order they occur in the descriptor. [cmp. to p 110, USBC] 
Offset 
(dec) 

Field Size 
(bytes) 

Description 

0 bLength 1 Descriptor size in bytes 
1 bDescriptorType 1 The constant endpoint 
2 bEndpointAddress 1 Endpoint number and direction 
3 bmAttributes 1 Transfer type supported  
4 wMaxPacketSize 2 Maximum packet size supported  
5 bInterval 1 Maximum latency/polling interval/NAK rate 

Table 5: Endpoint Descriptor [p.110, USBC] 

The following descriptions group the information by function. 
Descriptor: 

• bLength: The number of bytes in the descriptor. 
• bDescriptorType: The endpoint descriptor type constant 

Endpoint: 
• bEndpointAddress: Contains the endpoint number and direction. Bits 0 through 3 

are the endpoint number. Low-speed devices can have a maximum of 3 endpoints, 
while full- and high-speed devices can have 16. Bit 7 is the direction: Out=0, In=1. 
Bits 4, 5, and 6 are unused and must be zero. 

• bmAttributes: Bits 0 and 1 specify the type of transfer the endpoint support. 
00=Control, 01=Isochronous; 10=Bulk, 11=Interrupt. For the standard endpoint, 
control is assumed. 

• wMaxPacketSize: The maximum number of data bytes the endpoint can transfer in 
a transaction. The allowed values vary with the device speed and type of transfer. 
Bits 10 through 0 are the maximum packet size, from 0 to 1024 (0 to 1023 in 
USB1.x). In USB 2.0, bits 12 and 11 indicate how many additional transactions per 
microframe a high-speed endpoint supports: 00=no additional transactions, 
01=additional, 10=2 additional, 11=reserved. In USB 1.x, these bits were reserved 
and set to zero. Bits 13 through 15 are reserved and must be zero. 

• bInterval: Can indicate the maximum latency for polling interrupt endpoints, the 
interval for polling isochronous endpoints, or the maximum NAK rate for high-speed 
bulk OUT or control endpoints. The allowed range and how the value is used varies 
with the device speed, the transfer type, and whether or not the device complies 
with USB 2.0. 
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For low-speed interrupt endpoints, the maximum latency equals bInterval in 
milliseconds. The value may range from 10 to 255. 
For all full-speed interrupt endpoints and for full-speed isochronous endpoints on 
1.x devices, the interval equals bInterval in milliseconds. For interrupt endpoints, 
the value may range from 1 to 255. For isochronous endpoints in 1.x devices, the 
value must be 1. For isochronous endpoints in full-speed 2.0 devices, values from 1 
to 16 are allowed, and the interval is calculated as 2bInterval-1, allowing a range from 1 
milliseconds to 32768 seconds. 
For full-speed bulk and control transfers, the value is ignored. 
For high-speed endpoints, the value is in units of 125 microseconds, which is the 
width of a microframe. The value for interrupt and isochronous endpoints may 
range from 1 to 16, and the interval is calculated as 2bInterval-1 to allow a range from 
125 microseconds to 4096 seconds. 
For high-speed bulk OUT and control endpoints, the value indicates the endpoint’s 
maximum NAK rate. This value is relevant when the device has received data and 
returned ACK, and the host has more data to send in the transfer. By returning 
ACK, the device is saying that it expects to be able to accept the next transaction’s 
data. If the next data packet arrives and for some reason the device can’t accept 
the packet, the endpoint returns NAK. The bInterval value says that the endpoint 
will return NAK no more than once in each period specified by bInterval. The value 
can range from 0 to 255 microframes. A value of zero means that the endpoint will 
never NAK. The host isn’t required to use the maximum-NAK-rate information. 

[cmp. p. 108-112, USBC] 

String Descriptor 
The string descriptor contains descriptive text which is not necessarily required. The 
descriptive strings can be used to describe the manufacturer, the product, the serial 
number, the configuration and the interface. Class- and vendor-specific descriptors can 
contain indexes to additional string descriptors. The string descriptor defines indexes to 
various strings. Table 5 shows the descriptor’s fields and their purposes. 
[cmp. to p.112, USBC] 
Offset 
(dec) 

Field Size 
(bytes) 

Description 

0 bLength 1 Descriptor size in bytes 
1 bDescriptorType 1 The constant string 
2 bString or wLangID Varies For string descriptor 0, an array of 1 or more 

Language Identifier codes. For other string 
descriptors, a Unicode string. 

Table 6: String Descriptor [p.113, USBC] 
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Descriptor: 
• bLength: The number of bytes in the descriptor. 
• bDescriptorType: The string descriptor type constant 

String: 
When the host requires a String descriptor, the low-byte of the wValue field is an 
index value. An index value of zero has the special function of requesting language 
Ids, while other index values request strings that may contain any text. 

• wLangID[0...n]: Used in string descriptor 0 only. String descriptor 0 contains one or 
more 16-bit language ID codes that indicate the languages that the string are 
available in. The code for English is 0009h, and the subcode for U.S. English is 
0004h. These are likely to be the only codes supported by an operating system. 
The wLangID value must be valid for any of the other strings to be valid. Devices 
that return no string descriptors must not return an array of language IDs. The USB-
IF’s web site has a list of defined USB language IDs. 

• bString: For values 1 or higher, the String field contains a Unicode string. Unicode 
uses 16 bits to represent each character. With a few exceptions, ANSI character 
codes 00h through 7Fh correspond to Unicode values 0000h through 007Fh. The 
strings are not null-terminated. [cmp. p. 112-113, USBC] 

4.2 JTAG-Joint Test Action Group 
The previous chapter described the connection between the debugger and the host. This 
chapter is intended to provide enough information of the IEEE Std. 1149.1 standard which 
is necessary to understand the operations of a debugger based on JTAG. Therefore, the 
test logic architecture, the signals provided by the TAP and the interconnection possibilities 
are necessary to explain. 

4.2.1 Test Logic Architecture 
This chapter should give an overview over the test logic architecture. The following 
elements should be included in the test logic architecture: 

• a TAP (Test Access Port) described in the next chapter 
• a TAP controller 
• a instruction register 
• and a group of data registers 
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In figure 2 a conceptual view of the test logic architecture is shown. This figure can be a 
possible embodiment of the IEEE Std. 1149.1 standard. 

Test data register

Instruction register

Test Access Port (TAP) controller

Output 
stage

TDI TDO

TCK TMS TRST*  
Figure 2: Test logic architecture [cmp. p.18, IEEE1149.1] 

The TAP receives TCK (Test Clock) and interprets the signals on TMS (Test Mode Select). 
The TAP controller generates clock or control signals or both as required for the instruction 
and test data registers and for other parts of the architecture. The signals for the TAP 
controller are described in the following chapter. The assembled TAP controller signals are 
Test Access Port. 
The instruction register allows the instruction to be shifted into the design. The instruction 
is used to select the test to be performed or the test data register to be accessed or both. 
The group of test data registers include a bypass and a boundary-scan register. It 
optionally can include a device identification register and further test data registers. 
The optionally included output stage is necessary to choose which register content is 
shifted out at the TDO and to retime the signal passing through it to occur at the falling 
edge of TCK. 
[cmp. p. 17-18, IEEE1149.1] 



 

22 

TAP controller 
The TAP controller is a synchronous FSM (Finite State Machine) that responds to changes 
at the TMS and TCK signal of the TAP. It controls the sequence of operations of the 
circuitry. The mentioned state machine is shown in the figure below. 

 
Figure 3: TAP controller state diagram [cmp. to p.19, IEEE1149.1] 

The state transitions of the TAP controller state machine occurs based on the value of 
TMS at the time of the rising edge of TCK. Actions on the test data registers or the 
instruction register occurs either the rising or falling edge of TCK in each controller state. 
The behaviour of the TAP controller is based on the active state. In this thesis the initial 
states of the synchronous FSM are explained in detail. On [p.20-24, IEEE1149.1], 
additional or more detailed information of the states is available. 

Test-Logic-Reset 
In this state the test logic is disabled and the on-chip logic can operate unhindered. This is 
achieved by initializing the instruction register to contain the IDCODE instruction or the 
BYPASS instruction. If TMS is held high for at least five rising edges of TCK it is possible 
to enter the Test-Logic-Reset state from any state in the state machine (shown in figure 3). 
It is also possible to enter this state, if 0 is applied to TRST*. If the Test-Logic-State is left 
the Run-Test/Idle state is reached. 
[cmp. p.20, IEEE1149.1] 

Run-Test/Idle 
In this state, activity in selected test logic occurs only when certain instructions are present. 
For example the RUNBIST instruction causes a self-test of the on-chip system logic to 
execute in this state. The instruction does not change while he TAP controller is in this 
state. The controller will remain in this state as long as TMS is kept low. If TMS is logic 1 
and a rising edge is applied to TCK the controller will change either in the Select-DR-Scan 
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state if one rising edge occurs or in the Select-IR-Scan state if two rising edges on TCK 
occur. [cmp. p. 20, IEEE1149.1] 

4.2.2 Test Access Port (TAP) 
The Test Access Port is a general-purpose port that can provide access to many test 
support functions built into a component. The TAP provides a minimum of three input 
connections and one output connection. An optional fourth input connection provides for 
asynchronous initialization of the test logic. This chapter focuses on the mentioned I/O 
signals and their functionality. [cmp. p. 9, IEEE1149.1] 
The TAP includes the following signals: 

• TCK-Test Clock Input 
• TMS-Test Mode Select Input 
• TDI-Test Data Input 
• TDO-Test Data Output 
• TRST*-Test Reset Input (optional) 

o If the TAP controller is not reset at power-up automatically, a TRST* input 
should be provided 

The following paragraphs should explain the signals in detail. 

TCK-Test Clock Input 
This input is required to be able to use the serial test data path between the components 
independently of the component-specific system clocks. It also permits shifting of test data 
concurrently with normal system operation of the component. An independent clock 
ensures that test data can be moved to or from a chip without changing the state of the on-
chip system logic. The independent clock is also important if the boundary-scan registers 
should be usable for board interconnect testing. 
The test clock should be a free-running clock with a 50% duty-cycle which can be stopped 
in some situations for a period. The JTAG standard requires that the TCK can be stopped 
at 0 indefinitely without causing any change to the state of the test logic. Due to the 
stopped clock it is necessary that the connected devices retain their state so that the test 
logic may continue when the clock operation restarts. 
The test logic performs their operations at the rising or falling edge of the test clock. This 
operations have to be completed within a fixed (frequency independent) delay after the 
occurrence of the relevant change of the TCK. This delay has o be specified by the 
component supplier. 
[cmp p.10-11, IEEE1149.1] 

TMS-Test Mode Select Input 
The signal received at TMS is decoded by the TAP controller to control operations. The 
signal at the TMS is sampled at the rising edge of the test clock. The load at TMS should 
be as small as possible. 



 

24 

The TAP controller should be forced into the Test-Logic-Reset controller state if the TMS 
pin is undriven. This ensures that normal operation of the complete design can continue 
without interference from the test logic. If TTL-compatible designs are used, this implies 
that a pull-up resistor is connected to the TMS line. 
It is expected that the bus master - in this project this is the CMARMJTAG - will change the 
signal driven to the TMS inputs of connected components on the falling edge of TCK. 
[cmp p. 11, IEEE1149.1] 

TDI-Test Data Input 
Serial test instructions and data are received by the test logic at TDI. The signal at TDI 
should be sampled on the rising edge of TCK. Data which is propagated from TDI to TDO 
without inversion is necessary to simplify the operations of a compatible component. The 
values which are received at the TDI are clocked into the selected registers (instruction or 
test data) on the rising edge of TCK. For TTL-compatible designs it is necessary to connect 
a pull-up resistor on the components TDI pin. 
[cmp. p. 12, IEEE1149.1] 

TDO-Test Data Output 
TDO is the serial output for test instructions and data from the test logic. A change of the 
signal at TDO should only occur at the falling edge of TCK. To ensure race-free operation, 
changes on the TAP inputs (TMS & TDI) are clocked into the test logic at the rising edge of 
TCK while changes at the TAP output (TDO) occur on the falling edge of TCK. The ability 
to switch between active and inactive drive is required to allow parallel, rather than serial, 
connection of board-level test data paths in cases where this is required. In TTL or CMOS 
technologies this requirement can be met through use of a 3-state output buffer. 
[cmp. p. 12, IEEE1149.1] 

TRST*-Test Reset Input 
The optional TRST* provides the ability to asynchronous initialize or reset the TAP 
controller. If a TRST* is supported by the TAP, the TAP controller should be able to enter 
the Test-Logic-Reset controller state asynchronously, when a logic 0 is applied to TRST*. 
To ensure deterministic operation of the test logic, TMS should be held at 1 while the 
signal applied at TRST* changes from 0 to 1 to ensure that the test logic responds 
predictably. If rising edges occur simultaneously at TRST* and TCK when a logic 0 is 
applied to TMS, a race will occur, and the TAP controller may either remain in the Test-
Logic-Reset controller state or enter the Run-Test/Idle controller state. 
For TTL-compatible designs it is necessary to connect a pull-up resistor to TRST* to 
ensure that in case of a non-terminated TRST* input, test logic operation can proceed 
under control of signals applied at the TMS and TCK inputs. It is also possible to disable 
the test logic by hard-wiring TRST* to logic 0. 
[cmp. p. 13, IEEE1149.1] 
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4.2.3 Interconnection of components 
The previous chapter gave an overview of the signals and defined their requirements and 
rules according to the IEEE Std. 1149.1 standard. This chapter specifies on the 
possibilities to interconnect the components compatible to this standard. 
Figure 4, figure 5 and figure 6 illustrate three alternative board level interconnections of 
components. In each example, the test bus can be controlled by a component that 
provides an interface to a test bus at the next level of assembly. In this project the device 
that controls the board-level test bus is referred to as the bus master (CMARMJTAG). 
Figure 4 contains the minimum required signals which are necessary to assemble a serial 
path formed by a daisy-chain connection of the serial test data pins (TDI & TDO). 
[cmp. p. 14, IEEE1149.1] 

 
Figure 4: Serial connection using one TMS signal [p. 14, IEEE1149.1] 

Figure 4 shows four JTAG-compatible devices which are serial connected. In this project 
the bus slave can be any controller which is supported by OpenOCD. The JTAG signals 
(TDI, TMS, TCK, TDO) are provided by the CMARMJTAG which acts as a bus master. 
Additionally the bus master optionally offers a TRST*, as described in the previous chapter, 
which is not shown in figure 4. 
The hybrid serial/parallel connection, shown in figure 5, uses a pair of coordinated TMS 
signals (TMS1 & TMS2) to ensure that only one serial path is scanning data at a given 
time. 
[cmp. p. 14, IEEE1149.1] 

 
Figure 5: Connection in two paralleled serial chains [p. 14, IEEE1149.1] 
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The 3-state output buffer of TDO is used to ensure that only the components that are 
scanning data have TDO in the active drive state. 
Figure 5 shows how to interconnect four bus slaves using multiple independent paths with 
common TMS and TCK signals. 

 
Figure 6: Multiple independent paths with common TMS & TCK sig. [p. 15, IEEE1149.1] 

These paths have separate TDI and TDO signals but can be controlled from common TCK 
and TMS signals. When choosing a configuration for the board-level interconnection of 
components conforming to the IEEE Std. 1149.1 standard, it is necessary to consider the 
capability of test equipment and test pattern generators. It is fully expected that any test 
equipment and/or test pattern generators that intends to support a test methodology based 
on the boundary-scan architecture would be able to test the board-level configuration of 
figure 4, since the degenerated form of this configuration is a single conformant 
component. Furthermore, some test equipment and/or test pattern generators may not be 
able to test the board-level configurations of figure 5 and figure 6. 
[cmp. p. 14, IEEE1149.1] 
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5 OpenOCD-Open On-Chip-Debugger in a nutshell 
The previous chapters described the interfaces which are used in this project. This chapter 
explains the program running on the host, shown in figure 1, which uses the USB interface. 
This chapter gives a basic overview on OpenOCD and is not intended to explain the 
details. In [3] OpenOCD is explained in detail. Figure 7 shows the host configuration which 
is used in this project. 

Host USBOpenOCD

 
Figure 7: Host configuration 

OpenOCD runs as a daemon process on the host workstation, making use of a JTAG 
compliant hardware interface that connects to the target system.[cmp. p.32, OOCD05] 
This process provides two USB endpoints. One endpoint is configured for input 
communication and the other endpoint controls the output communication. The endpoints 
are connected to the USB peripheral of the CMARMJTAG which converts the USB 
commands provided by OpenOCD into commands which are transferred to the JTAG 
interface of the target system. The CMARMJTAG also converts the JTAG responds of the 
target system into USB commands readable for OpenOCD. 
OpenOCD is able to load the code in the target memory, to control code execution on the 
target and examine the target state. [cmp. p. 32, OOCD05] 
If there is no code on the target it is necessary to perform initial steps to be able to load the 
code in the target memory. OpenOCD provides commands to set up the configuration of 
the target to be able to transfer the compiled code. OpenOCD supports many different 
flash devices and enables the user to add devices. 
Supported Flash devices: 

• AT91SAMxxxx from ATMEL 
• i.MXxx from Freescale 
• LM3Sxxxx from LuminaryMicro 
• LPCxxxx from NXP 
• OMAPxxxx from Texas Instruments 
• S3Cxxxx from Samsung 
• STxxxx from STMicroelectronics 

OpenOCD offers a possibility to integrate additional JTAG hardware interfaces like the 
CMARMJTAG and it is possible to change the amount of the debug information during 
runtime to allow a developer to examine the debugger’s behaviour during selected 
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operations. A configuration file and command line arguments are used to configure the 
debugger. It is possible to select configuration files via command line arguments, to give 
the developer the ability to debug multiple targets or multiple configurations, without 
change or replace the configuration file every time. 
[cmp. p.32, OOCD05] 
The command line interface uses a telnet server embedded in the debugger. The 
developer can connect to the server process using a telnet client. This allows a single 
debug system to be used by different users at remote locations. Via the configuration file it 
is possible to configure the telnet port. If no telnet port is specified, port number 4444 is 
used. 
It is also possible to determine a GDB (GNU Debugger) port for OpenOCD. The standard 
GDB port number is 3333. Due to this port OpenOCD offers an interface to the GDB. It is 
possible to use standard GDB commands to configure the target. 
Supported GDB commands: 

• Poll target state 
o retrieves information about the current target states. 

• Architecture state 
o retrieves architecture specific information about the current target state 

• Halt 
o forces the target into debug state; after halting the target it is possible to 

examine and modify the target state 
• Resume 

o makes the target leaving the debug state; target starts executing at the point 
where it was halted 

• Step 
o target executes exactly one instruction 

• Reset 
o this resets all system functionality, but leaves the debugger in control of the 

target; it is possible to halt the target after coming out of reset; if no halt 
occurs the target starts executing from the reset vector 

• Set/Get GDB registers 
o it is possible to set and get the content of the core registers 

• Read/Write memory 
o it is possible to perform 8-, 16-, or 32-bit accesses to the internal memory of 

the target; e.g. monitor mwb 0xXXXXXXXX 0x00  this command means 
Memory Write Byte [Target Address] [Value] 

• Add/Remove breakpoints 
• Add/Remove watchpoints 

[cmp. p.34-35, OOCD05] 
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OpenOCD supports four different levels of debug information. 
• Error messages which are fatal for the program’s further execution. Code in 

OpenOCD  LOG_ERROR 
• Warnings that indicate a problem, but allow the program to continue execution. 

Code in OpenOCD  LOG_WARNING 
• Informational messages that are generated during normal program execution. 

These messages give the user additional information about the debuggers 
operation. Code in OpenOCD  LOG_INFO 

• Debug messages, which may occur at a high rate. These messages are used to 
identify problems during further development of the debugger. Code in OpenOCD 
 LOG_DEBUG 

[cmp. p. 38, OOCD05] 
In the following chapters there are many topics dealing with OpenOCD. Therefore, this 
chapter highlighted basic functionalities and features. 
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6 Cortex-M3 core - an overview 
The previous chapter focused on the features and functionalities of OpenOCD which runs 
on the host workstation. To be able to connect the target hardware to the PC the 
CMARMJTAG is used. As explained, this device consists of an ARM Cortex-M3. This 
chapter explains the most important functionalities and features of the Cortex-M3 core. The 
document [4] provides more detailed information about the core functionality and is used 
as basis of this chapter. 
The Cortex-M3 core is a 32-bit microprocessor which has a 32-bit data-path, a 32-bit 
register bank and a 32-bit memory interface. This microprocessor is a Harvard 
architecture, which means it has a separate instruction bus and data bus. The instruction 
and data buses share the same memory space. The Cortex-M3 core supports both little 
endian and big endian memory systems. Figure 8 shows a conceptual overview of the 
core. 
[cmp. p. 13, GCM307] 

 
Figure 8: A conceptual view of the Cortex-M3 core [p. 14, GCM307] 

The functionality of the built-in components of the CM3 (Cortex-M3) core are explained 
step by step in the following chapters. 
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Core Registers 
The CM3 processor has the core registers R0-R15. R0-R12 are general purpose registers 
for data-operations. The CM3 core contains two stack pointers, R13. These two pointers 
are banked which implies that only one is visible at a time. The MSP (main Stack Pointer) 
is the default stack pointer and is used by the OS kernel and the exception handlers. The 
PSP (Process Stack Pointer) is used for user application code. If a subroutine is called the 
return address is stored in the link register R14. The program counter is stored in R15. 
Some special registers are also available in the CM3 core. The xPSR register contains the 
ALU flags, e.g. zero flag, carry flag, execution status etc. The PRIMASK register enables 
the developer to disable all interrupts expect the NMI (non-maskable interrupt) and 
HardFault. The FAULTMASK register is used to disable all interrupts expect NMI. The 
BASEPRI register is used to disable all interrupts of specific priority level or lower priority 
level. The CONTROL register defines the privileged status and stack pointer selection. 
[cmp. p. 15-16, GCM307] 

Operation Modes 
The CM3 core has two operation modes and two privilege level. If the processor comes out 
of reset it is in Thread Mode, with privileged access rights. In the privileged state a program 
has access to all memory ranges. If the CM3 core runs at privileged access level it is 
possible to write to the control register to switch the mode. If an exception is thrown the 
processor switches into privileged access level and returns back to the previous access 
level after execution of the exception. To be able to adjust the control register it is 
necessary for a user program to go through an exception to program this register. This 
separation of the access levels is necessary to improve systems reliability and to prevent 
system configuration registers from being accessed or changed by some untrusted 
programs. 
[cmp. p. 16-17, GCM307] 

NVIC-Nested Vectored Interrupt Controller 
The NVIC is closely coupled to the CM3 core and provides a number of features which are 
explained in this section. 
[cmp. p.17, GCM307] 

Nested Interrupt Support 
It is possible to define different interrupt priority levels to the external interrupts and to most 
internal system exceptions. The NVIC compares the priority of the occurred interrupt to the 
currently running priority level. If the occurred interrupt has a higher priority than the 
currently running interrupt the processor will override the current running task. 
[cmp. p.17, GCM307] 
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Vectored Interrupt Support 
The starting addresses of the interrupt service routines (ISR) are located in the vector table 
in the memory. There is no need to use software to determine and branch to the starting 
address of the ISR which means that it takes less time to process an interrupt request. 
[cmp. p.17, GCM307] 

Dynamic Priority Changes Support 
The priority levels of interrupts can be changed by software during execution. Interrupts 
which are defined are blocked from activation until the ISR is completed. There is no risk of 
accidental re-entry. 
[cmp. p.17, GCM307] 

Reduction of Interrupt Latency 
The CM3 core includes a number of features to lower the interrupt latency. These features 
are including automatic saving and restoring some register contents, reducing delay from 
switching from one ISR to another and handling late arrival interrupts.  
[cmp. p.17, GCM307] 

Interrupt Masking 
It is possible to mask interrupts and system exceptions based on their priority level or using 
the interrupt mask registers BASEPRI, PRIMASK, and FAULTMASK. This ensures that 
time-critical tasks can be finished on time without being interrupted. 
[cmp. p.17, GCM307] 

The Memory Map 
The CM3 has a predefined memory map which means that the built-in peripherals can be 
accessed via simple memory access instructions. The memory map gives the CM3 the 
ability to be optimized for speed and it is easier to integrate the core in system-on-a-chip 
(SoC) designs. Figure 9 shows the 4GB memory space of the CM3 core. 
[cmp. p.19, GCM307] 
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Figure 9: The CM3 Memory Map [p.19, GCM307] 

The System Level memory space includes the private peripherals like the NVIC, the 
Memory Protection Unit (MPU) registers and the debug components. The External Device 
section includes the external peripherals and the External RAM section is used for external 
memory. The SRAM section is used for internal static RAM and the Code section includes 
the user program code and the exception vector after power-up. The System Level 
memory region makes it easy to port applications between different CM3 products. 
[cmp. p. 19, GCM307] 

The Bus Interface 
As shown in figure 8 the CM3 provides a code memory bus, which physically consists of 
two buses. One bus is called I-Code (Instruction Bus) and the other is called D-Code (Data 
Bus). This bus is optimized for best instruction execution speed. The system bus is used to 
access memory and peripherals which provides access to the SRAM peripherals, external 
RAM, external devices and a part of the System Level memory region. For example the 
debugging components and the NVIC are accessed through the private peripheral bus. 
[cmp. p. 20, GCM307] 

The Memory Protection Unit-MPU 
The MPU enables the developer to set up rules for privileged access and user program 
access. If a rule is violated, a fault exception is generated and it is possible to analyze the 
problem in the fault exception handler. 
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Commonly the MPU is used and set up by an operating system, which can define the rule 
that the OS kernel is able to access privileged data and registers. The MPU can also be 
used to make memory regions read-only, to prevent accidental erasing of data. 
The MPU feature is optional and is determined during the implementation stage of the 
microcontroller or SoC design. 
[cmp. p. 20, GCM307] 

Debugging Support 
The debugging hardware of the CM3 is based on the CoreSight architecture. Instead of the 
built-in JTAG interface the CM3 includes a decoupled debug interface module and a bus 
interface called Debug Access Port (DAP) on core level. The DAP enables external 
debuggers to access control registers as well as system memory. The bus interface is 
controlled by the Debug Port (DP) device. There are three integrable DP modules: 

• SWJ-DP 
o Supports the JTAG protocol as well as the Serial Wire protocol 

• SW-DP 
o Supports the Serial Wire protocol 

• JTAG-DP 
o Supports the JTAG protocol 

The manufacturer can also include an Embedded Trace Macrocell (ETM) which allows 
instruction trace. This information is output via the Trace Port Interface Unit (TPIU) and the 
host workstation can collect the executed instructions via an external trace-capturing 
hardware. 
[cmp p.24, GCM307] 
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7 Specific project setup 
The previous chapters focused on the theoretical basics of the essential parts of the basic 
project configuration, shown in figure 1. The interfaces JTAG and USB where explained 
and an overview of the CM3 core operations were given. 
This chapter gives an overview of the specific project configuration. Figure 10 shows the 
specific project configuration which is used in this project. 

CMARMJTAG

JTAG-IO

OpenOCD
0.4.0

USB

Host

USB

ARM7TDMI-S

ARM-JTAG

TEP

6

4

A

B

C

 
Figure 10: Specific Project Configuration 

Part A of figure 10 illustrates the host workstation, the OpenOCD and the USB interface. 
The workstation (Host) is equipped with Ubuntu15 10.4 LTS, a state-of-the-art Integrated 
Development Environment (IDE) and OpenOCD 0.4.0 adapted and compiled for the 
CMARMJTAG. As IDE, Eclipse16

Part B of figure 10 shows the prototype of the CMARMJTAG which consists of an ARM 
Cortex-M3 from NXP called LPC1768. This evaluation board initially was designed to fit 
onto the baseboard from EmbeddedArtists

 Galileo with the GNU ARM and Zylin Embedded CDT 
plug-ins is used. 

17

                                                
 
15 http://ubuntuusers.de/ 
16 http://www.eclipse.org/ 
17 http://www.embeddedartists.com/ 

 which provides many external peripherals for 
microcontrollers based on ARM cores. Additionally the JTAG pins of the LPC1768 are 
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connected to an external debugger based on the FTDI chip. The external debugger is used 
to load and debug the firmware for the CMARMJTAG to the LPC1768. This debugging 
feature enables the developer to precisely design the code for this project. 
The LPC1768 is able to provide a CPU clock up to 100MHz and provides 512kB internal 
Flash memory and 64kB internal SRAM. This µC also has a built-in USB peripheral which 
is used to communicate with the host workstation. The JTAG-IO interface is not the built-in 
JTAG interface of the µC. This interface consists of general purpose I/O pins (GPIOs) 
which are “simulating” a JTAG interface. 
Part C of figure 10 shows the Target Embedded Platform (TEP) from EmbeddedArtists. 
The TEP consists of an ARM7TDMI-S from NXP called LPC2478. This Embedded 
Platform provides many external peripherals like a Touch Screen Display, a SD-Card Slot, 
an Ethernet connector, a USB Host/OTG/Device interface, etc. The JTAG interface, called 
ARM-JTAG in figure 10, is also available on the TEP. This interface is connected to the 
JTAG-IO interface of the CMARMJTAG. 
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8 Implementation 
The previous chapter has given an overview of the specific project configuration. This 
chapter explains the details of the implementation, describes how to integrate a new 
interface into OpenOCD, explains the driver which handles the JTAG commands and 
configures the USB device. Finally the USB firmware library is explained. 

8.1 Integration of a new interface into OpenOCD 
To be able to compile OpenOCD for the CMARMJTAG it is necessary to modify some files 
in the standard OpenOCD source tree. This chapter describes how to integrate a new 
interface into OpenOCD. The following files have to be edited to enable the interface for 
compilation. The root (.) directory is openocd-0.4.0/. 

a) ./configure.in 
b) ./configure 
c) ./config.h 
d) ./README 
e) ./doc/openocd.texi 
f) ./src/Makefile.in 
g) ./src/Makefile.am 
h) ./src/jtag/interfaces.c 
i) ./src/jtag/drivers/Makefile.in 
j) ./src/jtag/drivers/Makefile.am 
k) ./src/jtag/drivers/Makefile 

Additionally it is necessary to add a driver file to implement the interface specific routines 
and to add a basic configuration file for the interface. The interface driver has to be added 
to ./src/jtag/drivers/. Currently the CMARMJTAG driver is included and named 
cmarmjtag.c. The structure of the driver and the functionalities of the included routines 
are explained in chapter 8.2. The interface configuration file has to be added to 
./tcl/interface/. In this project there already exists a configuration file named 
cmarmjtag.cfg. To ease the integration process of a new interface a patch file is used to 
auto-integrate the new contents. This patch file is also available in the thesis folder. 
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8.2 OpenOCD driver description 
The previous chapter described how to register a new interface into the standard 
OpenOCD source tree. To be able to access the USB port on the host workstation where 
the CMARMJTAG is connected and to execute and set up the proper JTAG commands 
based on the JTAG state machine, it is necessary to develop a driver which provides these 
functionalities. This chapter describes the structure of the CMARMJTAG driver and 
explains the most important C-routines of it. 
If the JTAG-Debugger is attached to the host, an initial registering procedure is performed. 
During this procedure the host reads out the required information to locate and enable the 
new USB device. The device descriptor on the CMARMJTAG provides this information. To 
check whether the USB device is registered correctly it is necessary to execute the 
lsusb –v | -less in the command shell. The following lines show the output for the 
CMARMJTAG. 
Bus 005 Device 008: ID ffff:0005 

Device Descriptor: 

  bLength                18 

  bDescriptorType         1 

  bcdUSB               2.00 

  bDeviceClass          255 Vendor Specific Class 

  bDeviceSubClass         0  

  bDeviceProtocol         0  

  bMaxPacketSize0        64 

  idVendor           0xffff  

  idProduct          0x0005  

  bcdDevice            1.00 

  iManufacturer           1 FHTW 

  iProduct                2 CMARMJTAG 

  iSerial                 3 0000:00:1 

  bNumConfigurations      1 

Listing 1: Device Descriptor (console output) 
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Listing 1 shows the retrieved device descriptor. The vendor identification (VID) and product 
identification (PID) is configured to 0xffff and 0x0005. These two parameters are necessary 
to identify the USB device in the CMARMJTAG driver. The manufacturer string, the product 
string and the serial string are configured via the descriptor in the CMARMJTAG firmware. 
This device descriptor supports one configuration. 
  Configuration Descriptor: 

    bLength                 9 

    bDescriptorType         2 

    wTotalLength           60 

    bNumInterfaces          1 

    bConfigurationValue     1 

    iConfiguration          0  

    bmAttributes         0x80 

    MaxPower              100mA 

Listing 2: Configuration Descriptor (console output) 

Listing 2 shows the configuration descriptor of the USB device on the external debugger. 
The descriptor type field enables the host to identify this descriptor as the configuration 
descriptor. This configuration descriptor supports one interface and the configuration index 
is configured to 0. The attributes value indicates that the device is bus powered which 
means that the host acts as the power supply for the USB device on the CMARMJTAG. 
The configuration descriptor in the CMARMJTAG firmware configures the power field to 
0x32 which means 100mA. For the current project configuration the provided current is 
adequate. The maximum value for this field is 0xFA: This value is 250dec and configures 
the USB device to 500mA. 
    Interface Descriptor: 

      bLength                 9 

      bDescriptorType         4 

      bInterfaceNumber        0 

      bAlternateSetting       0 

      bNumEndpoints           2 

      bInterfaceClass       255 Vendor Specific Class 

      bInterfaceSubClass      0  

      bInterfaceProtocol      0  

      iInterface              0 

Listing 3: Interface Descriptor (console output) 

Listing 3 shows the interface descriptor of the CMARMJTAG USB device. This interface 
supports no alternate setting and provides two endpoints which are configured in the 
endpoint descriptor (Listing 4). The interface index is configured to 0. 
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      Endpoint Descriptor: 

        bLength                 7 

        bDescriptorType         5 

        bEndpointAddress     0x05  EP 5 OUT 

        bmAttributes            2 

          Transfer Type            Bulk 

          Synch Type               None 

          Usage Type               Data 

        wMaxPacketSize     0x0168  1x 360 bytes 

        bInterval               0 

      Endpoint Descriptor: 

        bLength                 7 

        bDescriptorType         5 

        bEndpointAddress     0x82  EP 2 IN 

        bmAttributes            2 

          Transfer Type            Bulk 

          Synch Type               None 

          Usage Type               Data 

        wMaxPacketSize     0x0168  1x 360 bytes 

        bInterval               0 

Listing 4: Input / Output Endpoint Descriptor (console output) 

The endpoint descriptor, shown in Listing 4, is necessary to configure the required 
endpoints of the USB device. The first endpoint is an out endpoint. 
The communication direction is configured from the host point of view. This means via the 
out endpoint on the host, data can be written to the CMARMJTAG. The out endpoint of the 
USB device of the external debugger is configured to address 0x05. But the CMARMJTAG 
receives data via this endpoint. 
The read endpoint of the host receives data from the external debugger. But the read 
endpoint of the CMARMJTAG sends data to the host. The out endpoint address is 
configured to 0x05 and the transfer type is configured to bulk transfers. The out endpoint is 
used to transfer data and has a maximum packet size of 360 bytes because during a 
debugging session no more than 360 bytes are transmitted via the TDO pin. 
The second endpoint is an in endpoint or read endpoint. This endpoint has the address 
0x82. The read endpoint transfer type is configured to bulk transfer and is able to transfer a 
maximum of 360 bytes in a packet. The packet length is the same length as the buffer size 
of the external debugger. 
Device Status:     0x0000 

  (Bus Powered) 

Listing 5: Device Status (console output) 
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Listing 5 shows the device status. After attachment of the USB device and successful 
registration the device status should be 0x0000. In the CMARMJTAG driver there are 
some #defines which are necessary to provide parameters for the USB device on the 
host and to determine the speed limits of the JTAG clock. The interface mapping between 
the standard OpenOCD low-level functions is done via the interface structure shown in 
Listing 6. 
struct jtag_interface cmarmjtag_interface =  

{ 

 .name = "cmarmjtag", 

 .commands = cmarmjtag_command_handlers, 

 .execute_queue = cmarmjtag_execute_queue, 

 .speed = cmarmjtag_speed, 

 .speed_div = cmarmjtag_speed_div, 

 .khz = cmarmjtag_khz, 

 .init = cmarmjtag_init, 

 .quit = cmarmjtag_quit, 

}; 

Listing 6: CMARMJTAG interface structure (code snippet) 

This interface structure enables the developer to implement interface specific functions 
accessible via OpenOCD. Figure 11 gives an overview of the CMARMJTAG driver 
structure. The routines speed() and speed_div(), shown in Listing 6, are present in the 
driver but not used. Thus these routines do not appear in figure 11. 

struct jtag_interface cmarmjtag_interface = 
{

.name = "cmarmjtag",

.commands = cmarmjtag_command_handlers,

.execute_queue = cmarmjtag_execute_queue,

.khz = cmarmjtag_khz,

.init = cmarmjtag_init,

.quit = cmarmjtag_quit,
};

struct jtag_interface jlink_interface = 
{

...
};

struct jtag_interface other_interface = 
{

...
};

struct jtag_interface USBprog_interface = 
{

...
};

USBprog driver

JLink driver

Other driver

CMARMJTAG driver

OpenOCD High-Level routines

struct jtag_interface
{

char *name;
const struct command_registration *commands;
int (*execute_queue) (void);
int (*khz) (int khz);
int (*init) (void);
int (*quit) (void);

};

OpenOCD init()

OpenOCD main()

OpenOCD close()

.

.

.

JTAG init()

OpenOCD Low-Level 
routines

USB_Open()

USB_Close()

USB_Bulk_Read()

USB_Bulk_Write()

.

.

.

 
Figure 11: CMARMJTAG Driver Overview 
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The principle structure of the driver is determined by the external interface routines shown 
in Listing 6. The init routine opens the attached USB device. This routine initializes the 
USB device of the host, loads the busses and the devices and locates the USB device due 
to the VID and PID parameter, which are defined in the driver. The usb_open() routine 
returns a structure which holds the configuration of the attached USB device. Via this 
structure it is possible to communicate with the external debugger (USB device). After the 
USB device configuration is set up a reset message is sent to the CMARMJTAG. 
The cmarmjtag_reset() routine induces the CMARMJTAG to perform a reset 
sequence via the TRST_N pin and the SRST_N pin. The reset function calls the 
cmarmjtag_simple_command() routine which is used to send messages and receive 
the reply with a command header. The low-level routines cmarmjtag_usb_write() and 
cmarmjtag_usb_read() are necessary to send the data provided by the 
usb_out_buffer[] and usb_in_buffer[] array. Figure 12 shows the configuration of 
one USB frame. 

Sync PID CRC16 EOP

DLH DLL JTC Payload

USB Data Packet

USB Frame
 

Figure 12: USB Frame configuration 

The USB frame provides information about the payload length and the JTAG command 
which has to be performed and the payload itself. The payload length is divided into two 
bytes. The payload length can vary between 0 and 357 bytes. The first byte of the USB 
frame, shown in figure 12, provides the high-byte of the payload length (DLH). The second 
byte of this frame illustrates the low-byte of the USB frame. The third byte contains the 
JTAG command which has to be performed. The following JTAG commands are possible: 

• JTAG_CMD_TAP_OUTPUT  0x1 
o The payload contains the values which are set & reset the TDI, TMS pins 

and the value for the single pin is extracted on the CMARMJTAG. 
• JTAG_CMD_SET_TRST  0x2 

o Disable TAP Reset. Enable TAP. 
• JTAG_CMD_SET_SRST  0x3 

o Disable software reset. 
• JTAG_CMD_READ_INPUT  0x4 

o Read the data on the TDO pin. 
• JTAG_CMD_TAP_OUTPUT_EMU 0x5 

o This command is not supported on the CMARMJTAG in this project. 
• JTAG_CMD_SET_DELAY  0x6 

o Adjust the JTAG speed in kHz. 
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• JTAG_CMD_SET_SRST_TRST 0x7 
o Disable TAP Reset, enable TAP and disable software reset simultaneously 

The amount of transmitted & received bytes are stored in a variable which is used to check 
whether the transmission was successful or not. After the reset is performed the TAP is 
initialized. 
In the cmarmjtag_execute_queue() routine proper subroutines are provided to 
implement different commands. 
The cmarmjtag_runtest() routine performs a given amount of JTAG state steps, if the 
JTAG state machine is not already in the idle state. Within this routine the TAP Buffer 
routine cmarmjtag_tap_append_step() is called to perform the determined steps. The 
cmarmjtag_end_state() function checks whether the JTAG state machine of the target 
µC is in an valid end state or not. 
The cmarmjtag_state_move() routine moves the JTAG state machine of the debugged 
hardware to the next state that valid. 
The cmarmjtag_path_move() routine performs a number of steps in a defined path of 
the JTAG state machine. 
The cmarmjtag_scan() routine scans the connected JTAG chain and performs the 
required state transitions to complete the task. 
The reset command during the execution of the queue controls the attached JTAG chain 
and performs a reset afterwards. 
The cmarmjtag_tap_execute() function prepares the values for the USB buffer. The 
JTAG command JTAG_CMD_TAP_OUTPUT is signalling that the payload contains a new 
TAP sequence. The answer on this payload is transmitted via USB to the host workstation 
and is stored in the usb_in_buffer[]. At the end of the sequence the content of the 
usb_in_buffer[] is copied to the tdo_buffer[] which stores the information for 
further operations. 
The jtag_sleep() routine is a member of the core routines, which means that this 
function calls a core routine located in core.c. 
The cmarmjtag_khz() routine is one of the members of the external interface routines. 
This function checks whether the desired speed value is between the borders of the speed 
limit and checks whether the value can be divided by 100 without a remainder. The 
CMARMJTAG supports speeds from 100 kHz till 2000 kHz. These limits are defined at the 
top of the driver file and shown in Listing 7. 
#define CMARM_MAX_SPEED     2000 

#define CMARM_MIN_SPEED    100 

Listing 7: CMARMJTAG supported speed limits (code snippet) 

The step size of the speed should be 100 kHz. If the speed is above the upper limit of the 
speed, this routine sets the speed to the upper limit. If the speed is below the lower limit of 
the supported speed, this routine sets the speed to the lower limit. If the desired speed is 
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not dividable by 100 the cmarmjtag_khz() routine sets the speed to next slower speed. 
For example, if the desired speed is 1425 kHz, the driver sets the speed to 1400 kHz. 

8.3 CMARMJTAG firmware description 
The previous chapter focused on the implementation of the driver on the host workstation. 
As described in chapter 8.2 the USB device peripheral on the CMARMJTAG has to be 
configured correctly, that the host can retrieve the required information and set up a USB 
communication. This chapter describes the firmware which is used in this project and runs 
on the LPC1768. Additionally this chapter gives an overview of the firmware structure, lists 
the used development tools and add-ons and explains important configuration parameters 
and functions. 
The FTDI-based debugger which is connected to the LPC1768 enables the developer to 
download and debug the written firmware. Figure 13 shows a prototype of the 
CMARMJATG used in this project. 

 
Figure 13: Prototype of the CMARMJTAG 

The red rectangle of figure 13 shows the FTDI-based debugger. This debugger provides a 
(Mini-) USB interface to the host workstation. This debugger consists of a FT2232D, an 
external EEPROM (M93C46) and passive components. The FT2232D provides a JTAG 
interface and a RS232 interface for the µC. The FT2232D can be supplied via USB or via 
the supply voltage of the target µC. In this project the USB supply voltage is used. To be 
compatible to the voltage range of the µC pins it is necessary to supply the FT2232D with 
the corresponding voltage. Therefore, if the USB supply voltage is used, an external 
voltage regulator is used. 
The blue rectangle shows the µC (in this project an ARM Cortex-M3 LPC1768 from NXP), 
the external oscillator (12MHz) and the µC pins which are connected to external pin 
connectors. 
This debugger is connected via USB to the host workstation. If the USB connection is 
established it is possible to access the µC via USB. At the host workstation the USB port 
appears as a device named FHTW JTAGKey. This enables the developer to connect to the 
µC via OpenOCD and start firmware developing. 
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To be able to communicate with the USB peripheral of the CM3 it is necessary to connect it 
properly. Figure 14 shows the schematic which is used to connect the USB connector to 
the USB peripheral of the CM3. 

P0.29/U1D+
P0.30/U1D-

GND

P1.30/VBUS/AD0.4

black

red

green

3V3

10k

USB
white

LPC1768 – CM3

 
Figure 14: USB connection schematic 

The standard USB connector provides four wires. Table 7 gives an overview of the USB 
signals their pin number on the USB connector and a short description. 

Pin Name Colour Description 
1 VCC red +5V 
2 D- white Data - 
3 D+ green Data + 
4 GND black signal ground 

Table 7: USB signals and description 

The CMARMJTAG firmware is stored in an Eclipse project named “ARMJTAGDebugger”. 
The structure of the project is shown in figure 15. 
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Figure 15: CMARMJTAG Firmware Overview 

The “Libraries” folder contains subfolders which are providing *.c and *.h files for the 
corresponding peripherals and for the core itself. Every subfolder has the same internal 
structure. This structure is also shown in figure 15 (Subfolder-Structure). It contains a inc 
(include) folder and a src (source) folder. In the next chapters the content of the subfolder 
is explained. 

8.3.1 CM3SYS subfolder description 
The CM3SYS subfolder contains the routines which are necessary to initialize the µC-core, 
to configure the Vectored Interrupt Controller (VIC), to set up the Phase Locked Loop 
(PLL) and to configure the peripheral clock (PCLK). Five source files are located in 
CM3SYS\src to provide the routines for these purposes: 

a) startup_LPC17xx.s 
b) core_cm3.c 
c) system_LPC17xx.c 
d) lpc17xx_nvic.c 
e) NVICInit.c 

The file startup_LPC17xx.s 
This file defines the interrupt vector table for the core exceptions and interrupts and for the 
external interrupts. The external interrupt sources are the peripherals of the CM3, e.g. 
Timer, UART, SPI, etc. The core exception handlers are implemented as endless loops. 
The default handler is called if an interrupt on the Nested Vectored Interrupt Controller 
(NVIC) is raised. To be able to branch to the registered interrupt handler of the 
corresponding peripheral it is necessary to identify the interrupt source and the according 
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interrupt handler (IRQHandler). Additionally during the execution of the startup code 
various routines are called to initialize the system. Listing 8 shows a sample branch 
sequence in the startup code. 
    LDR     R0, =SystemInit 

    BLX     R0 

Listing 8: Branch sequence in the startup code (code snippet) 

These assembler lines are necessary to branch (call) the SystemInit routine. The 
content and functionality of this routine are explained in c). The startup code branches to 
three different routines. As shown in Listing 8 to the SystemInit routine, additionally to 
the NVICInit routine, described in e) and finally to the main routine. 

The file core_cm3.c 
This file defines compiler specific symbols shown in Listing 9, and defines compiler specific 
intrinsics. 
#if defined ( __CC_ARM   ) 

  #define __ASM   __asm  /*!< asm keyword for ARM Compiler */ 

  #define __INLINE  __inline /*!<inline keyword for ARM Compiler */ 

Listing 9: Compiler specific symbols (code snippet) 

None of these compilers are used in the current project configuration which means that 
most parts of this file are not included in the compile process. 

The file system_LPC17xx.c 
This file is necessary to provide the routines for the initialization of the system, including 
the calculation of the core clock (CCLK), the configuration of the PLL and the configuration 
for the PCLK. The SystemInit routine is called within the startup code execution. In this 
file the c-code for this routine is implemented. This function has no parameters because all 
configurations are done via defines located in this file. 
After reset, if nothing else is configured via the configuration script of OpenOCD, the core 
operates on a frequency of 4MHz provided by the internal oscillator. If the macro 
CLOCK_SETUP is enabled and an external oscillator is connected to the XTAL pins of the 
µC the value of the System Control and Status (SCS) register redirects the clock source to 
the external oscillator. The values for the Peripheral Clock Selection registers 0/1 
(PCLKSEL0/1) are provided via macros (PCLKSEL0_Val, PCLKSEL1_Val). This 
registers are used to divide the core clock (CCLK). In the current project configuration the 
PCLK is set to CCLK/4. 
Additionally the SystemInit routine sets up the Phased Locked Loop (PLL) and turns on 
various peripherals. Via the Power Control for Peripherals register (PCONP) it is possible 
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to turn on or off all available peripherals. This feature enables the developer to save 
energy if required. 
The second routine which is provided in this file helps the developer to check on which 
frequency the core is operating. This routine is called SystemCoreClockUpdate. The 
value of CCLK is stored in the variable SystemCoreClock. 

The file lpc17xx_nvic.c 
This file provides the necessary routines to configure the NVIC, to configure the System 
Control Block (SCB) and to set the vector table offset value. According to these three tasks 
three routines are implemented. 
The first routine disables the NVIC and is called NVIC_DeInit. This function disables the 
32 interrupt sources of the CM3, clears all pending interrupts and clears all interrupt 
priorities. 
The second routine disables the SCB and is called NVIC_SCBDeInit. The following SCB 
NVIC peripheral registers are de-initialized: 

• Interrupt Control State register 
• Interrupt Vector Table Offset register 
• Application Interrupt/Reset Control register 
• System Control register 
• Configuration Control register 
• System Handlers Priority Registers 
• System Handler Control and State Register 
• Configurable Fault Status Register 
• Hard Fault Status Register 
• Debug Fault Status Register 

The third routine sets the vector table offset and is called NVIC_SetVTOR. The CM3 
provides a register where the offset value is stored. Listing 10 shows the corresponding 
code snippet. 
void NVIC_SetVTOR(uint32_t offset) 

{ 

 SCB->VTOR  = offset; 

} 

Listing 10: Vector table offset value register (code snippet) 

The mentioned routines are called within the NVICInit function explained in e). 

The file NVICInit.c 
This file provides one routine called NVICInit which calls the routines mentioned in d). 
Additionally this file declares all the necessary interrupt handlers which are called if an 
interrupt of the corresponding sources occurs. 
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8.3.2 CMARM subfolder description 
The CMARM subfolder provides routines to delete the USB message buffers, to write to or 
read from the USB interface and to parse the nop counts, which are used to implement 
busy-waiting mechanism for the JTAG clock, for the JTAG functions. Additionally the 
already declared interrupt handler is implemented and calls another routine located in the 
USB subfolder. 
The abBulkInBuf[], declared in cmarm_libraries.h, stores the information of the 
outgoing bulk transfer and the abBulkOutBuf[] stores the information of the incoming 
bulk transfers. 
As mentioned the cmarm_libraries.c file provides the routines to handle the USB 
transfers respectively fill the corresponding buffers, delete the buffers and parse the 
chosen JTAG frequency to nop counts. 
If the USB peripheral raises an interrupt the already declared USB_IRQHandler is called. 
This interrupt service routine calls a function which determines which USB action has to be 
performed. This routine is located in the USB library placed in the USB subfolder. 
According to the bulk transfer direction two routines are required. The BulkIn function 
handles the outgoing bulk data and calls a USB library function, if there is any data to be 
transmitted. Listing 11 shows the corresponding code snippet. 
void BulkIn(U8 bEP, U8 bEPStatus) 

{ 

 if(BulkInSize > 0) 

 { 

  USBHwEPWrite(bEP, abBulkInBuf, BulkInSize); 

  deleteBulkInBuf(); 

 } 

} 

Listing 11: BulkIn routine (code snippet) 
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The second routine which handles the incoming bulk transfer data is called BulkOut. This 
routine also calls a USB library function and extracts the payload length out of the first two 
bytes of the transmitted data. Listing 12 shows the corresponding code snippet. 
void BulkOut(U8 bEP, U8 bEPStatus) 

{ 

 int i; 

 disable_USB_interrupts(); 

 for(i=0;i<=CMARMJTAG_BUFFER_SIZE-1;i++) 

 { 

  abBulkOutBuf[i] = 0; 

 } 

 USBHwEPRead(bEP, abBulkOutBuf, sizeof(abBulkOutBuf)); 

 

 BulkOutSize = abBulkOutBuf[0]<<8 | abBulkOutBuf[1]; 

 BulkOutSize = BulkOutSize - 1; 

} 

Listing 12: BulkOut routine (code snippet) 

To guarantee that the read process is not interrupted it is necessary to disable the USB 
interrupts. After disabling the interrupts it is necessary to delete the buffer to be sure that 
only the newest data is provided after reading from the USB device. As explained in 
chapter 8.2 (figure 12) the first two bytes are illustrating the payload length. The 
BulkOutSize contains the payload length and is used in the main application as 
parameter for the JTAG library functions. The transmitted payload size is stored with the 
sizeof function which implies that decimal 1 has to be subtracted from the read payload 
length. 
The last routine which is provided by this file is the nop_parser. This function returns a 
value which is used in the JTAG library to implement busy waiting sequences between the 
toggle cycles of the JTAG clock pin. 

8.3.3 JTAG subfolder description 
The JTAG subfolder contains the necessary routines to toggle the pins according to the 
received USB message. Additionally the routines are responsible to read the JTAG data of 
the target µC and store it in an USB message which is transmitted to OpenOCD 
respectively to the host. 
The file jtag_functions.h contains the declarations for the implemented routines. The 
routines are responsible to initialize the pins, which are used for the JTAG transmissions, 
to output the TAP data at different transfer (clock) rates, to set the TRST and the SRST 
separately and to set the TRST and the SRST simultaneously. 
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The second header-file, called jtag_defines.h, is also necessary for the JTAG port 
implementation and defines all necessary pins, commands and masks via macros 
(#defines). Table 8 describes the mapping between the used µC pins, the corresponding 
JTAG signals and the pins on the pin-headers of the CMARMJTAG prototype.  

JTAG signal JTAG macro µC port.bit pin-header/bit 
Test Data Input JTAG_PIN_TDI P2.0 J  7 / 52 
Test Mode Select JTAG_PIN_TMS P2.1 J12 / 16 
Test Reset Input JTAG_PIN_TRST P2.2 J12 / 17 
Soft Reset Input18 JTAG_PIN_SRST  P2.3 J12 / 18 
Test Clock Input JTAG_PIN_TCK P2.4 J  6 / 13 
Test Data Output JTAG_PIN_TDO P2.5 J  6 / 12 

Table 8: JTAG signal / Port.Bit / Pin-Header-Bit mapping 

The implementation of the routines is done in jtag_functions.c. To optimize the 
execution speed and the size of the application the compiler optimization for the 
implemented routines is enabled. 

CMARMJTAG firmware optimization 
To be able to achieve the maximum JTAG speed of 2 MHz four methods for TAP 
implementation are possible. 

• Bitbang 
o The TAP sequences are implemented via general purpose I/O pins. The 

clock is generated via busy-waiting statements. This means that the JTAG 
clock pin is set, than the CPU waits - executes nop statements - and then 
the CPU resets the clock pin. 

o Advantages: 
 easy to implement 
 The maximum achievable JTAG clock frequency can’t be reached. 

o Disadvantages: 
 wasting CPU time 
 a deterministic timing can’t be guaranteed 

• Bitbang Optimized 
o This method is a similar implementation of the Bitbang method, but the 

compiler optimization options are enabled. 
o Advantages: 

 easy to implement 
 The maximum achievable JTAG clock frequency after reset can be 

implemented 
                                                
 
18 is not a JTAG signal but required for the JTAG transmission on ARM microcontrollers 
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 smaller code size and decreased execution time 
o Disadvantage: 

 wasting CPU time 
• Interrupt driven 

o The TAP sequences are also implemented via general purpose I/O pins. But 
the clock signal (TCK) is generated via timer interrupts where the dedicated 
clock pins are set and reset. 

o Advantage: 
 CPU time is not wasted 
 deterministic timing is guaranteed 

o Disadvantage 
 The maximum achievable JTAG clock frequency can’t be reached. It 

takes to much machine commands to enter the ISR, process the ISR 
and to exit the ISR. 

• Interrupt driven Optimized 
o This method is a similar implementation of the Interrupt driven method, but 

the compiler optimization options are enabled. 
o Advantages & Disadvantages are the same as at the Interrupt driven 

method. 
The four mentioned methods where evaluated during the design process of the 
CMARMJTAG. Finally for the implementation of the prototype the method Bitbang 
Optimized is used. Currently in jtag_functions.c the compiler optimization option –O2 
[GCC11] is enabled. Listing 13 shows the corresponding code snippet. 
#pragma GCC push_options 

#pragma GCC optimize ("O2") 

.......... 

#pragma GCC pop_options 

Listing 13: Compiler optimization level (code snippet) 
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The routine jtag_init initializes the corresponding port and bits for the JTAG port and 
sets the reset pins high to a passive state. 
The jtag_tap_output routines are responsible to send the received USB message to 
the JTAG TAP of the target µC. To be able to adjust the JTAG clock different routines are 
implemented. 
TAP output routines: 

• jtag_tap_output_max_speed 
o JTAG clock = 2MHz 

• jtag_tap_output_with_delay_slow 
o JTAG clock = 100kHz - 1MHz 

• jtag_tap_output_with_delay_xMx 
o e.g. jtag_tap_output_with_delay_1M1  JTAG clock is 1.1MHz 
o JTAG clock = 1.1MHz - 1.9MHz 

As described the JTAG clock can range from 100kHz to 2.0MHz. The granularity is 
100kHz. Figure 16 gives an overview of the internal structure of these routines. 

Variable declaration & initialization

read one byte of the transmitbuffer

reset or set TMS & TDI pin

set JTAG clock pin high 

set JTAG clock pin low

nop

nop

read data of the TDO pin

TMS/TDI/TDO Sequence 
executed 4 times

extract TMS & TDI bits

No

return amount of read bytes
Yes

All 
bytes 
are 

read ?

START

END

 
Figure 16: Execution flow of a JTAG TAP Output routine 

At the beginning of the routine all necessary variables are declared and initialized. As 
execution steps forward four TMS/TDI/TDO sequences are executed within an endless 
loop. This endless loop contains an exit condition which checks whether all bytes are read 
out of the transmit-buffer. The transmit-buffer contains the bytes of the payload of the 
received USB message. If all bytes are read the routine returns the amount of bytes 
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received of the JTAG TAP of the target µC. One TMS/TDI/TDO sequence extracts the 
corresponding TMS and TDI bits, resets or sets the TMS and TDI pin, toggles the JTAG 
clock pin with the desired clock rate and reads the data on the TDO pin, sent by the JTAG 
TAP of the target µC. This sequence is executed four times because one byte of the 
transmit-buffer contains four different TMS/TDI pairs. 
The difference between the jtag_tap_output routines is that the JTAG clock toggle-
sequence within one TMS/TDI/TDO sequence can be different. In the routine 
jtag_tap_output_max_speed the busy wait mechanism is implemented via nop 
instructions. In the routine jtag_tap_output_with_delay_slow this sequence is 
implemented via a while-loop which executes nop instructions till a count variable reaches 
0. The value of this count variable is the return value of the nop_parser routine explained 
in chapter 10.3.2. Listing 14 shows the corresponding code snippet. 
    while(nop_cnt1) 

    { 

        __asm__ __volatile__("nop"); 

        nop_cnt1--; 

        if(nop_cnt1==0) 

        { 

         break; 

        } 

    } 

Listing 14: Busy wait sequence in a jtag_tap_output routine (code snippet) 

The jtag_tap_output_with_delay_slow routine implements the JTAG clocks 
ranging from 100kHz to 1MHz. The routines jtag_tap_output_with_delay_xMx are 
responsible to implement the JTAG clocks ranging from 1.1MHz to 1.9MHz. These routines 
realize the clock via a busy-wait mechanism based on unrolled nop instructions. The 
currently achievable maximum clock rate is 2.0MHz. The routine 
jtag_tap_output_max_speed provides this clock rate also based on the busy-wait 
mechanism used in the jtag_tap_output_with_delay_xMx. 
The jtag_functions.c file not only provides the TAP output routines, it also provides 
routines to read the input (read TDO pin) implemented in jtag_read_input, to set the 
TRST and the SRST pin separately implemented in jtag_set_trst and 
jtag_set_srst and to set the TRST & SRST pins simultaneously implemented in 
jtag_set_trst_srst. The routines in this folder are called from the main application 
which is described in chapter 8.3.7. 
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8.3.4 SPI subfolder description 
This subfolder contains one header-file and one c-file which are dedicated to implement 
the JTAG TAP via Serial Peripheral Interface (SPI). Currently the JTAG TAP is 
implemented via independent µC-pins. Chapter 11 describes the advantages and 
disadvantages of this implementation method. 

8.3.5 TIMER0 subfolder description 
This subfolder contains routines to initialize, start and stop a timer. The timer unit of the 
CM3 can be used to precisely determine the clock of the JTAG. During the performance 
test phase, described in chapter 10, this implementation method showed that it decreases 
the achievable clock rate. 

8.3.6 USB subfolder description 
The USB subfolder contains all the necessary routines to enable the USB interrupts, to 
configure the USB peripheral of the CM3, to configure the endpoints according to the given 
USB descriptor and to transmit and receive an USB message. This project specific USB 
stack is based on the LPC USB stack [10] provided by NXP. Five source files are located 
in USB/src to provide the routines for these purposes: 

a) intenable.c 
b) usbcontrol.c 
c) usbhw_lpc.c 
d) usbinit.c 
e) usbstdreq.c 

The file intenable.c 
This file provides routines to enable and disable the USB interrupts. In the main application 
it should be possible to access LPC/CM3 specific via library routines. Therefore stub-
routines are implemented. Two of these routines are intend to enable and disable the USB 
interrupts. These routines are called enable_USB_interrupts and 
disable_USB_interrupts. 

The file usbcontrol.c 
This file provides routines to handle control transfers. These control transfer handlers are 
normally installed on endpoint 0. Four different types of control transfers are supported: 

• Standard 
• Class 
• Vendor 
• Reserved 

It is possible to install a callback for each of these control transfers with 
USBRegisterRequestHandler routine located and explained in c). The default endpoint 
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addresses 0x00 and 0x80 are used to handle the control transfers. These two endpoint 0 
configurations are registered within the USBInit routine which is described in d).  

The file usbhw_lpc.c 
This file illustrates the USB hardware layer. This means that LPC/CM3 specific registers 
are accessed. This file provides routines to configure and enable an endpoint, to register 
an endpoint event callback, to register an device status callback, to register a frame 
callback, to set the USB address, to connect or disconnect from the USB bus, to get the 
status from a specific endpoint, to write to the endpoint buffer, to read from the endpoint 
buffer and to initialize the USB hardware. Additionally this file provides the routine which is 
called within the USB interrupt request handler which was described in chapter 8.3.2. 
The routines provided in this file, registers the BulkIn & BulkOut handler if an endpoint 
interrupt occurs. Figure 17 describes how an USB interrupt is processed. 

USB interrupt occurs

USB_IRQHandler() routine in [F1]

USBHwISR() routine in [F2]

Device Interrupt

Status Interrupt

Endpoint Interrupt

BulkIn()

BulkOut()

[F1] CMARM/src/cmarm_libraries.c
[F2] USB/src/usbhw_lpc.c

routine in [F1]

routine in [F1]

determine interrupt type

if registered, call the handler for 
the specific endpoint

USBHwISR()

USB_IRQHandler()

normal execution

normal execution

 
Figure 17: Execution flow if an USB interrupt occurs 

During the normal program execution it is possible that an interrupt is raised by the USB 
peripheral. If such an USB interrupt occurs the already declared USB interrupt handler is 
called. The USB interrupt handler is provided by the file 
CMARM/src/cmarm_libraries.c. Within this routine the function USBHwISR is called. 
This routine determines, based on if-conditions, which type of interrupt occurred. In the 
initialize phase of the program, processed by the main application described in chapter 
8.3.7, two endpoints, one in-endpoint and one out-endpoint, are registered. A handler for 
each endpoint is also registered in the main application. The USBHwISR determines which 
interrupt type occurred and calls the corresponding, already registered, handler. This 
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routine is provided by the file usbhw_lpc.c. Table 9 shows the endpoint address to 
endpoint handler mapping which is currently used. 
Endpoint name Endpoint address Endpoint handler Description 
BULK_OUT_EP 0x05 BulkOut Handles the outgoing bulk 

transfers 
BULK_IN_EP 0x82 BulkIn Handles the incoming bulk 

transfers 

Table 9: Endpoint address to endpoint handler mapping 

The implementation of the BulkIn and BulkOut handler is shown in Listing 11 & 12 in 
chapter 8.3.2. After the handler is processed the application continues with normal 
program execution. 

The file usbinit.c 
This file provides a routine which uses the USB hardware layer routines described in the 
previous chapter. The USBInit function initializes the USB hardware, installs a reset 
handler for the USB peripheral, registers and configures an endpoint for the control 
transfers and registers a handler for USB standard requests. 

The file usbstdreq.c 
This file provides routines to handle USB standard requests and to configure the USB 
peripheral according to the given USB descriptor specified in cmarm_definitions.h. 
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8.3.7 Main Application 
The main-application updates the core clock of the CM3, initializes the USB peripheral and 
registers and configures the endpoints for the bulk transfers. Figure 18 shows how the 
main-application is executed. 

CCLK Update

switch/case JTAG commands

initialize USB interface

initialize JTAG pins

case TAP output

case read input (TDO)

case set SRST

case set TRST

case set delay

case set SRST & TRST

end of switch/case

START

 
Figure 18: main-application execution flow 

After the execution of the commands located in the startup-code the main routine is called. 
At the beginning of the main application the core clock is updated. This enables the 
developer to check whether the configured core clock is correct or not. After this update 
routine, the required routines - described in the previous chapters - are called to initialize 
and configure the USB peripheral. Additionally the interrupt line for the USB is enabled. If 
the USB is initialized and configured successfully, the JTAG pins described in 
chapter 8.3.3 are initialized. Within the endless loop, if a USB message was received, a 
switch/case routine determines which JTAG command has to be executed. Seven possible 
JTAG commands are available. 
The case TAP output transmits and receives the data to and from the target µC. According 
to the configured JTAG delay (JTAG clock frequency) the corresponding routine is called. 
The case TAP output EMU is implemented but not used in the current used project 
configuration. 
In the case read input (TDO) the current status of the TDO pin and the EMU pin is 
returned. This case can be used for further development. 
The case set SRST pulls the SRST pin of the CMARMJTAG high. This means that a 
software reset is enabled. 
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In the case set TRST the JTAG state machine of the target debug module is enabled. 
These two routines are necessary to set the SRST and TRST independent of each other. 
The last case set SRST & TRST is implemented to be able to simultaneously set the 
according pins. 
The case set delay stores the required JTAG clock frequency in Hertz [Hz] in a variable. 
This routine is required to guarantee that the JTAG module of the target µC is clocked with 
the correct clock frequency. If the clock frequency is smaller than 1kHz, the nop_parser 
is called to provide the nop count for further communication. As described the clock 
frequency can be set via the configuration script of OpenOCD or, if the host is connected to 
the target µC via telnet, it can be set with the command jtag_khz xxxx. 
At the end of every case the USB buffer is deleted, to guarantee that only the newest USB 
message payload is processed within the switch/case statement. 
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9 Test environment 
This chapter describes the test environment (TE). The TE contains the components 
described in figure 10. Additionally an Agilent MSO6104A oscilloscope is used to monitor 
the JTAG communication between the CMARMJTAG and the target µC. On the host 
workstation Eclipse Galileo is installed. This IDE is used as graphical user interface to edit 
c-code. In the IDE two makefile projects implementing OpenOCD compiled for the 
CMARMJTAG and FTDI-based devices are included. The IDE is used to debug OpenOCD. 
Additionally a virtual machine is running on the host workstation to be able to develop and 
debug the firmware for the CMARMJTAG. This development concept (Eclipse IDE with 
OpenOCD as a makefile-project and virtual machine with Eclipse IDE for ARM firmware 
cross-development) is necessary to simultaneously implement the required routines. 
Figure 19 shows the assembled test environment and its configuration. 
 

Host workstation

Eclipse Galileo
VMWare Player

Eclipse Ganymede

CMARMJTAG
Firmware (~23kB)

OpenOCD
compiled for 
CMARMJTAG

LPC2478 
Firmware 

(10kB)

CMARMJTAG

4

LPC2478 Development Board

6

USB

JTAG
USB + 
Power 
Supply

USB + 
Power 
Supply

4

6
JTAG

Agilent MSO6104A

IDEs

Virtual Machine

Components

Caption:

Soft-/Firmware

 
Figure 19: Test environment 
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The host workstation provides a locally installed Eclipse Galileo with a small test project 
with a size of 10kBytes. This project is compiled with the compiler suite CodeSourcery G++ 
Lite19

                                                
 
19 http://www.codesourcery.com/ 

. 
The firmware initializes the LPC2478, sets up the PLL and all other system components 
and implements a blinking LED on the development board. The project also contains a 
simple OpenOCD configuration script which opens different ports for the GDB, for telnet 
and TCL, configures the JTAG TAP and adjusts the JTAG clock frequency. 
Also a pre-configured makefile project is included in the IDE. OpenOCD can be pre-
configured via the command line. If the adjustments described in chapter 10.1 are 
successfully completed it is possible to configure OpenOCD for the CMARMJTAG. The 
following command has to be executed to configure OpenOCD. 
./configure –-enable-cmarmjtag –-enable-libftdi 

First the interface which is used to connect to the target hardware is enabled and the 
building support for libftdi compatible devices is also enabled. If OpenOCD is pre-
configured it can be built by executing make. It is also possible to create a makefile project 
in Eclipse Galileo and execute the make process automatically. 
The VMWare Player provides a virtual machine based on Debian 5 Lenny. In the virtual 
machine Eclipse Ganymede is used to develop the firmware for the CMARMJTAG. 
Currently the firmware has a size of approximately 23kBytes. 
This firmware is flashed via USB and a FTDI-based debugger on the CMARMJTAG 
prototype. OpenOCD connects itself via the provided USB peripheral of the CMARMJTAG 
to the LPC2478 Development Board. As described the JTAG pins of the LPC2478 are 
connected to the CMARMJTAG and simultaneously monitored via the logic analyzer of the 
oscilloscope. The Development Board is USB powered and connected to the host 
workstation. 
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10 Performance analyses 
The project configuration shown in figure 19 builds the basis for the performance analyses. 
This chapter describes how the performance test where performed and how the output is 
interpreted. 

10.1 Performance test configuration 
To be able to measure the single step time, the download time and the download speed it 
is necessary to display timestamps on the console to verify the elapsed time. It is possible 
to enable the timestamps via a macro in the CMARMJTAG interface driver of OpenOCD. 
Listing 15 shows the mentioned c-code lines. 
 
#include <sys/timeb.h> 

#include <time.h> 

 

//#define _DEBUG_USB_COMMS_ 

#define _PERFORMANCE_TEST_ 

 

#define VID 0xFFFF 

#define PID 0x0005 

Listing 15: CMARMJTAG interface driver “Performance Test” (code snippet) 

The _PERFORMANCE_TEST_ macro is dedicated to enable the timestamps functionality. 
During the download process timestamps are displayed. This enables the developer to 
calculate the time between the beginning of the download process and end. With this 
ability it is also possible to calculate the elapsed time between the beginning of the single 
step and the end of the single step. These two parameters are used to test the debugger 
(CMARMJTAG). Two different types of tests were executed. One test scenario was that 
the compiled LPC2478 firmware was loaded via the GNU Debugger (GDB) to the 
Development Board. In the second test scenario the telnet connection, provided by 
OpenOCD, was used to erase the flash memory and to write the pre-compiled image to the 
flash memory of the LPC2478. The results of these two test scenarios are described in the 
chapter 10.2. 
To utilize the performance test results, described in chapter 10.3, it is necessary to 
calculate the download speed. OpenOCD provides a routine which calculates the 
download speed automatically. As mentioned the second test scenario uses a telnet 
connection to connect to OpenOCD respectively to the target µC. Within this test scenario 
the download speed is calculated. To be able to understand the output of the performance 
test it is necessary to know how OpenOCD calculates the download speed. Listing 16 
shows the corresponding code snippet of the OpenOCD source tree. 
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float duration_kbps(struct duration *duration, size_t count) 

{ 

 return count / (1024.0 * duration_elapsed(duration)); 

} 

Listing 16: OpenOCD download speed calculation (code snippet) 

The variable count is the downloaded amount of bytes and with the routine 
duration_elapsed(duration) the elapsed download time is measured. Due to this 
calculation method the calculated download speed increases with the downloaded amount 
of bytes. 

10.2 Performance test results 
The previous chapter described which options have to be configured to enable the 
performance test and what types of test scenarios were applied. This chapter describes the 
results of these test scenarios. The CMARMJTAG firmware was not optimized. The 
download process includes different GDB commands. Listing 17 shows the executed 
commands. 
target remote localhost:3333 

file "/path/to/the/*.elf-file" 

monitor reset 

monitor halt 

monitor poll 

set $pc=0x0 

thbreak main 

load 

Listing 17: Eclipse Debug configurations for LPC2478 (GDB commands) 

The first command in Listing 17 opens a connection to the specified GDB port. The second 
command loads the symbols of the *.elf file which is loaded to the LPC2478. After loading 
the symbols it is necessary to perform a reset sequence and to halt the core. The 
command monitor poll is not necessary, but helps the developer to verify the state of 
the core. After polling the core state the program counter (pc) is set to 0x0 and a hardware 
assisted breakpoint is set at the beginning of the main routine with thbreak main. The 
hardware assisted breakpoint is only enabled for one stop. The breakpoint is automatically 
deleted after the first time the program stops at this breakpoint. This breakpoint requires 
hardware support and some target hardware may not have this support. 
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GDB breakpoint commands on embedded targets 
The GDB offers four different commands to insert a breakpoint into an application. This 
digression describes the following commands and how they are implemented on 
embedded targets: 

• break function 
• tbreak function 
• hbreak function 
• thbreak function 

The break function command inserts a breakpoint at the entry point of a given function 
(routine). The tbreak function command inserts a breakpoint at the entry point of a given 
function enabled for only one stop. The t in this command stands for temporary. If the 
program stops at this breakpoint it is automatically deleted. The hbreak function command 
inserts a hardware-assisted breakpoint at the entry point of the given function. The 
hardware-assisted breakpoint is explained at the thbreak main command explanation. 
The thbreak function command inserts a temporary hardware-assisted breakpoint at the 
given function entry point. 
On embedded targets there is no difference between hardware-assisted breakpoints 
(hbreak function) and breakpoints (break function). There is only a difference between 
hardware breakpoints (hardware-assisted breakpoints) and software breakpoints. 
The watchpoint unit of the ARM7TDMI-S offers the insertion of two hardware breakpoints. 
If a breakpoint is inserted with the corresponding GDB command the address of this 
breakpoint is stored in the watchpoint unit. During program execution the watchpoint unit 
compares the current value of the program counter and the breakpoint address. If these 
two values are equal, an exception is thrown and the GDB and the program execution 
stops. 
To insert software breakpoints no watchpoint unit is required. This means that the GDB 
modifies the code at the positions of the software breakpoint. The problem is that adding 
software breakpoints is only possible if the flash banks are not write protected, which 
implies that software breakpoints are only available, if the application is debugged in the 
RAM memory of the microcontroller. 
At the ARM7TDMI-S microcontroller, as mentioned, two breakpoints are possible to insert. 
This implies that if two breakpoints already existing in the current running application, 
single stepping is not possible because this feature also requires breakpoints. Therefore, 
the command thbreak main is a good alternative enable the developer to set two 
breakpoints in the current running application because debugging with only two 
breakpoints is very tough. 
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After this digression about GDB breakpoints the last command which is executed is the 
load command. This command completes the download process. 
At the first performance test, with non-optimized code, it took 3.42 seconds to execute the 
download process via the GDB. Additionally the time between the beginning of a single 
step and the completion of the single step is measured. It takes 118ms to step over (single 
step) the following instruction FIO2SET |= (1<<10);. 
The second performance test, with partial optimized code, took 3.32 seconds to execute 
the download process via the GDB. The single step took 84ms to complete it. 
In the second test scenario the host workstation opens a telnet connection, erases the 
memory and writes the pre-compiled image to the on-chip memory (Listing 18). Two 
performance test of this scenario where executed. 
The first performance test was executed with the following commands. 
telnet localhost 4444 

reset halt 

poll 

flash erase_sector 0 0 26 

flash write_image “/path/to/the/*.elf-file” 0x0 elf 

Listing 18: OpenOCD commands via telnet (OpenOCD commands) 

Two parameters can be extracted of this test. The first parameter is the elapsed time the 
erase process takes. The second parameter illustrates the elapsed time of the write 
process. 
At the first performance test, with non-optimized code, it took 0.18 seconds to erase the 
memory and it took 0.33 seconds to write the *.elf file to the memory of the LPC2478. The 
download speed [KiB/s] at this performance test is 4.8 KiB/s. 
The second performance test, with partial optimized code, took 0.17 seconds to erase the 
memory and it took 0.3 seconds to write the *.elf file to the memory of the LPC2478. The 
download speed [KiB/s] at this performance test is 5.3 KiB/s. 
To be able to utilize the output of these performance tests it is necessary to compare the 
results with another OpenOCD compatible debugger. The following chapter compares the 
CMARMJTAG with an FTDI-based debugger of Amontec called Amontec JTAGKey. 
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10.3 Performance test utilization 
This chapter compares the performance test output of the previous chapter with the 
performance test output of the Amontec JTAGKey debugger. The JTAG clock in all the 
following test comparisons is configured to 2000 kHz and the program size is 10 Kbytes. 
Figure 20 shows the elapsed time of the GDB download process described in the previous 
chapter. 

 
Figure 20: GDB download performance test 

The download process based on the Amontec JTAGKey takes 3933 ms to be completed. 
The same test with the non-optimized firmware on the CMARMJTAG takes 3416 ms and 
after the partial code optimization it takes 3319 ms to download a compiled firmware to the 
LPC2478. This test shows that the download process with the partial optimized firmware 
on the CMARMJTAG can be completed faster than the same sequence based on the 
Amontec JTAGKey. Compared to the Amontec JTAGKey the non-optimized version of the 
CMARMJTAG is 13.1% faster and the optimized version of the debugger is 15.6% faster. 
 
Figure 21 shows the single step time to write a value to a 32-bit register. There is also a 
comparison between the Amontec JTAGKey, the non-optimized firmware on the 
CMARMJTAG and the optimized firmware on the CMARMJTAG. 
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Figure 21: GDB single step performance test 

It takes 91 ms to step over a single instruction in C, if the Amontec JTAGKey is used. The 
CMARMJTAG, with the non-optimized firmware, requires 118 ms to step over a single C 
instruction. The CMARMJTAG with the optimized firmware requires only 84 ms to step 
over a single instruction. This comparison shows that the CMARMJTAG with the optimized 
firmware is faster than the Amontec JTAGKey, if a single step in C is performed. In this 
example the non-optimzed version of the CMARMJTAG is 29.7% slower and the partial 
optimzed version of the debugger is 7.7% faster than the Amontec JTAGKey. Figure 20 
and 21 are illustrating the performance test output of the first test scenario described in the 
previous chapter. 
Figure 22, 23 and 24 are illustrating the perfromance test output of the second test 
scenario which was described in the previous chapter. Figure 22 shows the elpased time of 
eraseing the flash memory (512 KiB) of the LPC2478 using a telnet connection and 
OpenOCD based on various debuggers. 
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Figure 22: Telnet-OpenOCD erase flash performance test 

The Amontec JTAGKey requires 175 ms to erase the flash memory of the LPC2478. The 
CMARMJTAG with the non-optimized firmware requires 184 ms and the optimized version 
requires 174.6 ms to erase the flash memory. This means that the non-optimized version 
is 5.14% slower and the optimized version is 0.21% faster than the Amontec JTAGKey. 
Figure 23 shows the time it takes to download an image file via telnet and OpenOCD 
based on three different debugger versions. The elapsed time is automatically measured 
by OpenOCD. 

 
Figure 23: Telnet-OpenOCD write image to flash performance test 
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The download process via telnet and OpenOCD takes 290 ms via the Amontec JTAGKey, 
the non-optimized version of the CMARMJTAG requires 326 ms to download the image file 
and the optimzed version of the debugger takes 295 ms for the download process. This 
means that the non-optimzed version of the CMARMJTAG is 12.42% slower and the 
optimized version of the debugger is 1.73% slower than the Amontec JTAGKey. Figure 24 
illustrates the last part of the second performance test scenario. OpenOCD automatically 
prints the download speed in kB/s out on the console, if a telnet connection is used to load 
the image to a target µC. 

 
Figure 24: OpenOCD download speed [KiB/s] 

The download speed of the Amontec JTAGKey is 5.2 KiB/s. The speed of the non-
optimized version of the CMARMJTAG is 4.8 KiB/s and the download speed of the 
optimized version of the debugger is 5.3 KiB/s. This means that the developed debugger 
is 8.6% slower in the non-optimized version and 1.01% faster, if the optimized version is 
used, compared to the Amontec JTAGKey. 

Table 10: Debugger comparison 

Table 10 summarizes the results of the performance tests. The red background cell colour 
illustrates results which are worse compared to the JTAGKey and the green background 
cell colour illustrates results which are better than the JTAGKey. 
The optimized version of the CMARMJTAG shows better results in almost all categories 
and is a good alternative to the commercial available Amontec JTAGKey. 

  
GDB Download 
[ms] 

GDB Single 
Step [ms] 

Flash Erase 
[ms] 

Flash Write 
[ms] 

Download Speed 
[KiB/s] 

JTAGKey 3933,0 91,0 175,0 290,0 5,2 
CMARMJTAG * 3416,0 118,0 184,0 326,0 4,8 
CMARMJTAG ** 3319,0 84,0 174,6 295,0 5,3 
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11 Conclusion & Add-Ons 
µC-based debuggers have a wide spread application area and are used very often. These 
debuggers are offering many features which are handy to design µC firmware and to verify 
them. The open source and free available development tools, used in this project, are very 
comfortable and easy to fit into a prototyping process in education. This chapter 
summarizes the important points mentioned in this thesis and should highlight ideas for 
further development of the CMARMJTAG. 
This thesis described the development process of a µC-based debugger. This thesis also 
describes selected topics of the interfaces (JTAG & USB) used in this project. A state-of-
the-art µC, ARM CM3, is used to meet the requirements of the debugger. OpenOCD, an 
open source project, is used to connect to the target µC (JTAG compliant hardware). 
OpenOCD already supports a high amount of interfaces respectively debuggers. The 
integration of such a new interface into OpenOCD and the development of the according 
driver are also explained in this thesis. To be able to connect to the host workstation via 
USB and to communicate with the target µC via JTAG it is necessary to implement proper 
drivers and integrate these drivers into a firmware framework of the CM3. The firmware 
structure and the usage of the drivers as well as the framework are explained in this thesis. 
The primary goal was to achieve the same performance and features like a commercial 
available debugger. The performance tests results are compared to the Amontec 
JTAGKey. The test scenarios and the execution of these performance tests are 
documented in this thesis. Finally it was necessary to utilize the performance output. The 
corresponding figures are described and documented in chapter 10. The performance test 
results showed that it is possible to achieve almost the same performance as a commercial 
available debugger. 
Finally the CMARMJTAG is a device which can be used on the one hand as a tiny µC 
platform for educational purposes and on the other hand as a debugger for more 
sophisticated µC platforms. The used development tools are open-source or free available. 
Currently at the Institute of Embedded Systems20 a R&D Project called “Embedded 
Platforms”21

                                                
 
20 http://embsys.technikum-wien.at/index.php 
21 http://embsys.technikum-wien.at/projects/EmbPlat/index.php 

 sponsored by the MA27 under grant 10-07 focuses on the development of a 
µC platform which can be used in courses dedicated to embedded systems engineering. 
The CMARMJTAG and its development environment will be the key components for this 
µC platform. 
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Further improvements 
The CMARMJTAG offers many opportunities for further development. The core features 
are already implemented but there are some improvements which could be developed and 
useful in embedded software development and education. 

Virtual COM port 
To be able to use printf() “debugging” or to be able to use the same interface (USB) for 
debugging and serial data transmission an implementation of a virtual COM port can be an 
improvement for the debugger. The RS232 interface is a simple interface and there are 
many applications which are possible to implement based on the RS232 interface which 
means that this additional feature makes the CMARMJTAG attractive for education. 

JTAG via SPI interface 
After reset the ARM CPU operates at a core clock frequency of 4 MHz which is provided by 
the internal oscillator. To be able to communicate with the debug module of the CPU it is 
necessary to configure the JTAG clock to 2 MHz. This restriction limits the maximum 
achievable download speed. But OpenOCD offers command line options to configure core 
and peripheral registers before the program is loaded to the target µC. This means that it is 
possible to configure the core to use the external oscillator and to configure the PLL before 
the program is loaded to the µC. The maximum achievable clock frequency using software 
bitbang is 2 MHz. But if the SPI interface of the CMARMJTAG is used to download the 
firmware it is possible to achieve JTAG speeds of 10 MHz. Due to this fact using SPI as a 
TAP enables the developer to download and debug the firmware much faster than for 
example the Amontec JTAGKey Tiny. 

eStick v2 
The last improvement is to develop a successor to the eStick22

• a powerful µC platform is used 

. The eStick is a small µC-
Platform which consists of a AT90USB162 µC from Atmel. This platform is currently used 
in basic courses dedicated to embedded systems engineering. The advantages of such a 
successor are: 

• debugging is available 
• the eStick v2 can be used to debug other target µCs 

To overcome the need of on-board debugger respectively programmer to program the 
eStick v2 it is necessary to implement a self-flashing feature. This means that the eStick v2 
registers itself as a mass storage on the host workstation and the pre-compiled machine 
code can be copied to the mass storage. If a power cycle is performed the eStick v2 loads 
the file into its internal memory and starts executing the program. 

                                                
 
22 http://embsys.technikum-wien.at/staff/horauer/estick/estick.php 
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Appendix 
The following documents, data sheets, user manuals, etc. are stored on the DVD 
dedicated to this thesis: 

• Documents: 
o The master thesis in *.doc and *.pdf 
o The LPC17xx User Manual 
o The Definitive Guide to ARM Cortex-M3 
o The diploma thesis “Open On-Chip Debugger” 
o The OpenOCD User’s Guide 
o The IEEE Std. 1149.1-2001 (R2008) - JTAG Specification 

• Software 
o Sample programs for the LPC1768 
o LPC17xx CMSIS library 
o OpenOCD 0.4.0 
o Backups 

 OpenOCD compiled for the CMARMJTAG 
 OpenOCD compiled for FTDI-based debugger 
 CMARMJTAG firmware “ARMJTAGDebugger” 

• Performance Test 
o Results of the performance tests in *.txt files 

• Pictures 
o Pictures of the CMARMJTAG JTAG communication startup sequence 
o All pictures used in this thesis 
o Screen dumps used in this thesis 
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