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Abstract. This paper deals with different approaches and solutions for enabling 
network connectivity in the embedded systems domain. Furthermore an RTOS-
based open software architecture is introduced in order to realize flexible 
applications with functional and non functional requirements on network and 
internet connectivity. 
The main advantage of this “open solution” in comparison to plug & play solutions 
is that the desired network functionality can be customized, even if it is necessary 
to extend or violate some network protocol standards, which is not unusual in 
embedded system applications due to specific constraints and limitations. 

 
 

1 Introduction 
Today, Internet accessibility in one form or another, if not an a priori requirement, is at least a 
highly desirable option in many embedded applications. Internet connectivity – or in more 
general words – network connectivity for embedded systems can be seen as an enabling 
technology for both current and future applications. Even today’s low cost microcontrollers 
are strong enough to handle a LAN controller (on-chip, off-chip), a communication stack and 
usually multithreaded applications. 
 

2 Types of applications 
Actually there are two types of network applications distinguished by their requirements for 
network capability. The first category of applications requires network connectivity as a core 
feature (functional requirement) to establish the desired functionality, e.g. all kinds of mobile 
computing, health care applications (patient monitoring), home automation and home 
security, as well as several environment monitoring tasks. 
Additional features, e.g. system maintenance, remote configuration, remote system control 
and monitoring, and software upload, are the motivations for the second class of 
applications. These so called non-functional requirements are primarily not required for the 
device’s main tasks, but lead to increasing system flexibility. 
 

3 Out of the box solutions 
In the following a few out of the box hardware-/software-solutions are introduced: 

3.1 LANTRONIX XPort 
The XPort is connected to a serial interface of a microcontroller and enables web- and other 
network-access by means of a fully developed TCP/IP network stack and OS running on a 
high performance microprocessor with a 10/100Mbit Ethernet interface. Mechanically the 
XPort is integrated in a 33,9x16,25x13,5 mm3 RJ45-Package. The microcontroller software 
application communicates via high level commands (e.g. AT-commands) to the XPort. 



 

 

3.2 Beck IPC@CHIP 
The IPC@CHIP is an embedded controller designed to WEB- or LAN-enable products 
implemented in a 32 pin 600mil package. The hardware consists of a 16 bit 186 CPU, RAM, 
Flash, Ethernet, Watchdog and power-fail detection. The preinstalled software consists of a 
Real Time Operating System (RTOS) with file system, TCP/IP stack, web server, FTP 
server, Telnet server and Hardware interface layer, providing a high level API to the 
application programmer. The goal is to put the whole application into this chip. 

3.3 High end Microcontroller systems 
An embedded system based upon a high end 32-Bit Microcontroller – usually equipped with 
an on-chip LAN-unit –, such as the Coldfire (Freescale Semiconductors), has enough power 
to run an operating system like µCLinux together with inet-demon supporting full internet 
connectivity. The software API for network applications is the BSD Socket Interface [3]. 

3.4 High end Microprocessor systems 
An embedded system based upon a high end 32-Bit Microprocessor, such as a PowerPC, 
has enough power to run an operating system like a full Linux or RT-Linux. The design 
environment for networking applications is quite the same as for platforms, e.g. Unix-
Workstations and PCs. 

3.5 Low cost Microcontroller systems 
Widespread used 8- and 16-Bit Microcontrollers are generally not equipped with dedicated 
LAN interfaces but with a variety of serial and parallel IO units. To obtain network and 
internet connectivity additional hardware (and software, of course) has to be added. 
 

4 Principle approaches 
Basically there are three suitable approaches embedded systems engineers can apply in 
order to achieve internet connectivity for the embedded device: 

4.1 Internet connectivity via a modem facility 
By means of a standard serial interface (e.g. RS-232) a communication path to a modem-
chip or modem-device (fig. 1) is established. The other side of the modem is connected 
either to a POT-, ISDN-, or xDSL-line. A TCP/IP-stack with a serial network layer (SLIP, 
PPP) has to be implemented into the systems software or firmware of the embedded device. 
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Fig 1: Internet connectivity via Modem 



 

 

4.2 Using a Gateway-Computer 
By means of a standard serial interface (e.g. RS-232) a communication to a gateway 
computer is established. The gateway computer itself is equipped with a standard 
LAN/Internet interface; the entire internet related software (TCP/IP-stack, Web server with 
CGI-functionality [2]) runs on this gateway computer. There’s no need for any standard 
protocol between the embedded system and the gateway. 
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Fig 2: Internet connectivity via a gateway computer 

 

4.3 Direct LAN access 
The embedded system hardware is equipped with a LAN controller to access a network 
directly. The entire networking and internet related software (LAN-driver, TCP/IP-stack 
including all application modules like web-, ftp-, and telnet-server), as well as the application 
software run on the embedded system. 
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Fig 3: Direct network / internet connectivity via LAN interface 

 



 

 

5 Open software architecture for embedded networking applications 
In our case study we use an embedded system equipped with Infineon’s C167 low cost 
microcontroller together with the Cirrus Logic CS8900 Ethernet controller chip (see fig. 4) in 
conjunction with the µC/OS-II real time operating system kernel [1] as an open design 
platform for multithreaded applications with network and internet connectivity. 
 

 
Fig 4: Keil MCBnet-167 evaluation board 

 
The main advantage of this solution in comparison to plug & play solutions like the 
LANTRONIX XPort and the BECK IPC@CHIP is that the desired network functionality can 
be customized, even if it is necessary to extend or violate some network protocol standards, 
which is not unusual in embedded system applications due to specific constraints and 
limitations. 
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Fig 5: Basic software architecture 

 
From the application’s point of view there are several abstraction levels as shown in figure 5. 
A typical network based application doesn’t access directly the LAN-chip hardware or the 
functions at driver level. Usually a communication stack (e.g. TCP/IP, UDP/IP) provides an 



 

 

appropriate application programming interface (API) to the network tasks of the application. 
Furthermore, both the application and the communication stack make use of the features of 
the underlying multitasking- or real time operating system. 
 

5.1  RTOS-based software architecture 
The goal of our approach is a transparent integration of the network functionality by means of 
inter-process communication (IPC) objects offered by almost all multitasking- or real time 
kernels used in the embedded systems domain. Figure 6 shows the software architecture in 
detail. The basic hardware abstraction is done by a set of driver functions located in layer A. 
Layer B realizes an event oriented interface at network frame level to the application (with or 
without a dedicated communication stack) in layer C. Both layers B and C need operating 
system (OS) support. 
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Fig 6: RTOS-based networking software architecture 

 

5.2 The communication paths 
After a successful startup of the networking hardware and the objects of layer B a frame 
based communication can take place. Let’s first consider the receive path. After the LAN-



 

 

controller has received a complete MAC frame the receiver part (Rx) of the Event Handler is 
invoked by the Interrupt Service Routine which is triggered by a hardware interrupt. A buffer 
is allocated from the Frame Buffer Pool and the RxFrame function is called to copy the whole 
frame from the LAN-controller to the buffer. After that, a pointer to this buffer is posted to the 
received frame message queue (RxMsgQ). This signaling of an event makes a waiting task 
at layer C ready to run. Depending on the communication stack the frame-payload is 
processed and delivered to the associated application task. The uppermost level of the 
communication stack – or maybe the application task itself – is responsible for returning the 
buffer to the buffer pool when the frame isn’t needed anymore. 
The transmit path works very similar; an application task or the top layer of the used 
communication stack allocates a buffer and put in the payload data at an adequate position. 
The buffer is passed down the communication stack and specific header information is put 
into the buffer at each level. Finally the buffer’s address is posted to the transmit frame 
message queue (TxMsgQ). The TxFrameTask is scheduled and the frame is copied to the 
LAN-controller by means of the TxFrameFunction. After that, the buffer is put back to the 
buffer pool. The transmit semaphore (TxS) is necessary to synchronize the TxFrameTask to 
the LAN-controller in order to lock the controller’s frame memory unless the previously 
copied frame is transmitted over the network. 
 

5.3 Buffer management and the zero-copy approach 
The Frame Buffer Pool is a memory partition with a sufficient number of fix-sized memory 
blocks large enough to hold the maximum size network MAC frame together with the 
management header MH (Extended Frame, see figure 7a). The management header is not 
standardized in any way and holds additional information needed for the levels of the 
communication stack (see figure 7b). Usually the MH holds a set of pointers to the 
corresponding protocol headers and the start of the payload. 
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Fig 7: Extended Frame 

All the way up and down the levels of the communication stack there is no need to copy any 
data due to the zero-copy approach. Information is passed from one level to another only by 
handing over the pointer to the Extended Frame Buffer. A certain level knows the position of 
its relevant fields in the frame by means of the pointers supported in the management 
header. Each level, of course, has to know the structure of the management header, as it 
knows the organization of its protocol header as well. 



 

 

5.4 Initializing, control, status and error handling 
To initialize the network the application has to create and start the Network Start Task. This 
is usually done during normal system startup, right after starting the operating system. The 
Network Start Task itself creates all necessary tasks and inter-process communication (IPC) 
objects and calls the driver level initialization functions (layer A). After successful completion 
of the Network Start Task’s main function the event oriented network interface is up and 
running. 
Further control operations and status requests can be handled also by the Network Start 
Task by means of IPC-objects such as semaphores (shown in figure 6) in conjunction with 
shared memory regions or additional message queues. Layer B might be extended by a 
dedicated Network Control Task to implement a more elaborate network management 
functionality, e.g. to provide a basis for SNMP. 
Networking errors are usually signaled via hardware interrupts by the LAN-controller. The 
associated Interrupt Service Routine (see figure 6) calls the Err part of the Event Handler, 
where the network error semaphore NwErrS is posted and the Network Start Task (or a 
dedicated Network Error Task, not shown in figure 6) is scheduled in order to perform an 
escalation procedure to inform the afflicted application task. 
 

5.5 OS requirements 
As mentioned earlier we use the real time kernel µC/OS-II; currently in the release V2.51 
ported for C167 microcontrollers and the Keil-IDE. For implementing the layer B functionality 
there are some requirements to operating systems in addition to normal task-management: 
 

♦ semaphores 
♦ message queues 
♦ simple memory management 

 
Basically almost all operating systems fulfill these requirements. If memory management isn’t 
part of the OS, this feature can be realized very easily using the standard functions malloc() 
and free(). If the OS doesn’t provide message queues, this feature can be realized using 
circular buffers in conjunction with general semaphores to synchronize the conditions empty 
and full. If the OS doesn’t support semaphores (or semaphore like synchronization objects) it 
would be a good idea to think about choosing another OS. 
 

6 Conclusion 
The open software architecture introduced in this paper is suitable for almost all 
microcontroller platforms equipped with a LAN circuitry and a ported RTOS to implement a 
software layer with basic functionality necessary for both communication stacks (e.g. a 
TCP/IP stack) and flat networking applications. 
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