

Network- and Internet Integration of Embedded Systems

Peter Balog
University of Applied Sciences Technikum Wien

A-1200 Wien, Höchstädtplatz 5
balog@technikum-wien.at

Abstract. This paper deals with different approaches and solutions for enabling
network connectivity in the embedded systems domain. Furthermore an RTOS-
based open software architecture is introduced in order to realize flexible
applications with functional and non functional requirements on network and
internet connectivity.
The main advantage of this “open solution” in comparison to plug & play solutions
is that the desired network functionality can be customized, even if it is necessary
to extend or violate some network protocol standards, which is not unusual in
embedded system applications due to specific constraints and limitations.

1 Introduction
Today, Internet accessibility in one form or another, if not an a priori requirement, is at least a
highly desirable option in many embedded applications. Internet connectivity – or in more
general words – network connectivity for embedded systems can be seen as an enabling
technology for both current and future applications. Even today’s low cost microcontrollers
are strong enough to handle a LAN controller (on-chip, off-chip), a communication stack and
usually multithreaded applications.

2 Types of applications
Actually there are two types of network applications distinguished by their requirements for
network capability. The first category of applications requires network connectivity as a core
feature (functional requirement) to establish the desired functionality, e.g. all kinds of mobile
computing, health care applications (patient monitoring), home automation and home
security, as well as several environment monitoring tasks.
Additional features, e.g. system maintenance, remote configuration, remote system control
and monitoring, and software upload, are the motivations for the second class of
applications. These so called non-functional requirements are primarily not required for the
device’s main tasks, but lead to increasing system flexibility.

3 Out of the box solutions
In the following a few out of the box hardware-/software-solutions are introduced:

3.1 LANTRONIX XPort
The XPort is connected to a serial interface of a microcontroller and enables web- and other
network-access by means of a fully developed TCP/IP network stack and OS running on a
high performance microprocessor with a 10/100Mbit Ethernet interface. Mechanically the
XPort is integrated in a 33,9x16,25x13,5 mm3 RJ45-Package. The microcontroller software
application communicates via high level commands (e.g. AT-commands) to the XPort.

3.2 Beck IPC@CHIP
The IPC@CHIP is an embedded controller designed to WEB- or LAN-enable products
implemented in a 32 pin 600mil package. The hardware consists of a 16 bit 186 CPU, RAM,
Flash, Ethernet, Watchdog and power-fail detection. The preinstalled software consists of a
Real Time Operating System (RTOS) with file system, TCP/IP stack, web server, FTP
server, Telnet server and Hardware interface layer, providing a high level API to the
application programmer. The goal is to put the whole application into this chip.

3.3 High end Microcontroller systems
An embedded system based upon a high end 32-Bit Microcontroller – usually equipped with
an on-chip LAN-unit –, such as the Coldfire (Freescale Semiconductors), has enough power
to run an operating system like µCLinux together with inet-demon supporting full internet
connectivity. The software API for network applications is the BSD Socket Interface [3].

3.4 High end Microprocessor systems
An embedded system based upon a high end 32-Bit Microprocessor, such as a PowerPC,
has enough power to run an operating system like a full Linux or RT-Linux. The design
environment for networking applications is quite the same as for platforms, e.g. Unix-
Workstations and PCs.

3.5 Low cost Microcontroller systems
Widespread used 8- and 16-Bit Microcontrollers are generally not equipped with dedicated
LAN interfaces but with a variety of serial and parallel IO units. To obtain network and
internet connectivity additional hardware (and software, of course) has to be added.

4 Principle approaches
Basically there are three suitable approaches embedded systems engineers can apply in
order to achieve internet connectivity for the embedded device:

4.1 Internet connectivity via a modem facility
By means of a standard serial interface (e.g. RS-232) a communication path to a modem-
chip or modem-device (fig. 1) is established. The other side of the modem is connected
either to a POT-, ISDN-, or xDSL-line. A TCP/IP-stack with a serial network layer (SLIP,
PPP) has to be implemented into the systems software or firmware of the embedded device.

Embedded Systems

Modem

Internet

RS-232 e.g. POTS

Appl

TCP

IP

Serial
SLIP/PPP

DevDrv.

Fig 1: Internet connectivity via Modem

4.2 Using a Gateway-Computer
By means of a standard serial interface (e.g. RS-232) a communication to a gateway
computer is established. The gateway computer itself is equipped with a standard
LAN/Internet interface; the entire internet related software (TCP/IP-stack, Web server with
CGI-functionality [2]) runs on this gateway computer. There’s no need for any standard
protocol between the embedded system and the gateway.

Embedded Systems

Gateway-Computer

LAN

RS-232 e.g. 10Base-T

HTTP+CGI

TCP

IP

Network

Internet

CGI-APPL

Proprietary

Serial

APPL

Proprietary

Serial

Fig 2: Internet connectivity via a gateway computer

4.3 Direct LAN access
The embedded system hardware is equipped with a LAN controller to access a network
directly. The entire networking and internet related software (LAN-driver, TCP/IP-stack
including all application modules like web-, ftp-, and telnet-server), as well as the application
software run on the embedded system.

Embedded Systems

Internet

Appl

TCP

IP

Network

LAN

e.g. 10Base-T

Fig 3: Direct network / internet connectivity via LAN interface

5 Open software architecture for embedded networking applications
In our case study we use an embedded system equipped with Infineon’s C167 low cost
microcontroller together with the Cirrus Logic CS8900 Ethernet controller chip (see fig. 4) in
conjunction with the µC/OS-II real time operating system kernel [1] as an open design
platform for multithreaded applications with network and internet connectivity.

Fig 4: Keil MCBnet-167 evaluation board

The main advantage of this solution in comparison to plug & play solutions like the
LANTRONIX XPort and the BECK IPC@CHIP is that the desired network functionality can
be customized, even if it is necessary to extend or violate some network protocol standards,
which is not unusual in embedded system applications due to specific constraints and
limitations.

 Hardware LAN
Module

 Driver LAN
Driver

RTOS

CommStackApplica
tio

n

Fig 5: Basic software architecture

From the application’s point of view there are several abstraction levels as shown in figure 5.
A typical network based application doesn’t access directly the LAN-chip hardware or the
functions at driver level. Usually a communication stack (e.g. TCP/IP, UDP/IP) provides an

appropriate application programming interface (API) to the network tasks of the application.
Furthermore, both the application and the communication stack make use of the features of
the underlying multitasking- or real time operating system.

5.1 RTOS-based software architecture
The goal of our approach is a transparent integration of the network functionality by means of
inter-process communication (IPC) objects offered by almost all multitasking- or real time
kernels used in the embedded systems domain. Figure 6 shows the software architecture in
detail. The basic hardware abstraction is done by a set of driver functions located in layer A.
Layer B realizes an event oriented interface at network frame level to the application (with or
without a dedicated communication stack) in layer C. Both layers B and C need operating
system (OS) support.

A

Applications (communication stack included)

Init & Status
Functions

Network Start
Task (Control)

TxFrame
Task

TxFrame
Function

Interrupt Service
Routine

RxFrame
Function

Event Handler

S

RxTx Err

Frame Buffer
Pool

put

get

pend post

pend

post

call

NwErrS

TxS

S

copy copyint. request

Network Controller Hardware

create
& start

TxMsgQ RxMsgQ

S

S NwStsS

NwCtlS

System, RTOS &
Application Startup

Transmit
Path

Receive
Path

Network Startup

NW Control

get

put

C

B

pendpost

Fig 6: RTOS-based networking software architecture

5.2 The communication paths
After a successful startup of the networking hardware and the objects of layer B a frame
based communication can take place. Let’s first consider the receive path. After the LAN-

controller has received a complete MAC frame the receiver part (Rx) of the Event Handler is
invoked by the Interrupt Service Routine which is triggered by a hardware interrupt. A buffer
is allocated from the Frame Buffer Pool and the RxFrame function is called to copy the whole
frame from the LAN-controller to the buffer. After that, a pointer to this buffer is posted to the
received frame message queue (RxMsgQ). This signaling of an event makes a waiting task
at layer C ready to run. Depending on the communication stack the frame-payload is
processed and delivered to the associated application task. The uppermost level of the
communication stack – or maybe the application task itself – is responsible for returning the
buffer to the buffer pool when the frame isn’t needed anymore.
The transmit path works very similar; an application task or the top layer of the used
communication stack allocates a buffer and put in the payload data at an adequate position.
The buffer is passed down the communication stack and specific header information is put
into the buffer at each level. Finally the buffer’s address is posted to the transmit frame
message queue (TxMsgQ). The TxFrameTask is scheduled and the frame is copied to the
LAN-controller by means of the TxFrameFunction. After that, the buffer is put back to the
buffer pool. The transmit semaphore (TxS) is necessary to synchronize the TxFrameTask to
the LAN-controller in order to lock the controller’s frame memory unless the previously
copied frame is transmitted over the network.

5.3 Buffer management and the zero-copy approach
The Frame Buffer Pool is a memory partition with a sufficient number of fix-sized memory
blocks large enough to hold the maximum size network MAC frame together with the
management header MH (Extended Frame, see figure 7a). The management header is not
standardized in any way and holds additional information needed for the levels of the
communication stack (see figure 7b). Usually the MH holds a set of pointers to the
corresponding protocol headers and the start of the payload.

MH

MAC
Frame
(raw)

Pointer to
Extended Frame

Buffer

e.g. pointer to higher
level protocol header

*

* Management
Header

unused

fix sized buffer

 type / length of MH
 pointer to start of MAC frame
 status of MAC frame
 pointer to protocol X header
 status of protocol X
 pointer to protocol Y header
 status of protocol Y

Management Header example

(a) (b)
Fig 7: Extended Frame

All the way up and down the levels of the communication stack there is no need to copy any
data due to the zero-copy approach. Information is passed from one level to another only by
handing over the pointer to the Extended Frame Buffer. A certain level knows the position of
its relevant fields in the frame by means of the pointers supported in the management
header. Each level, of course, has to know the structure of the management header, as it
knows the organization of its protocol header as well.

5.4 Initializing, control, status and error handling
To initialize the network the application has to create and start the Network Start Task. This
is usually done during normal system startup, right after starting the operating system. The
Network Start Task itself creates all necessary tasks and inter-process communication (IPC)
objects and calls the driver level initialization functions (layer A). After successful completion
of the Network Start Task’s main function the event oriented network interface is up and
running.
Further control operations and status requests can be handled also by the Network Start
Task by means of IPC-objects such as semaphores (shown in figure 6) in conjunction with
shared memory regions or additional message queues. Layer B might be extended by a
dedicated Network Control Task to implement a more elaborate network management
functionality, e.g. to provide a basis for SNMP.
Networking errors are usually signaled via hardware interrupts by the LAN-controller. The
associated Interrupt Service Routine (see figure 6) calls the Err part of the Event Handler,
where the network error semaphore NwErrS is posted and the Network Start Task (or a
dedicated Network Error Task, not shown in figure 6) is scheduled in order to perform an
escalation procedure to inform the afflicted application task.

5.5 OS requirements
As mentioned earlier we use the real time kernel µC/OS-II; currently in the release V2.51
ported for C167 microcontrollers and the Keil-IDE. For implementing the layer B functionality
there are some requirements to operating systems in addition to normal task-management:

♦ semaphores
♦ message queues
♦ simple memory management

Basically almost all operating systems fulfill these requirements. If memory management isn’t
part of the OS, this feature can be realized very easily using the standard functions malloc()
and free(). If the OS doesn’t provide message queues, this feature can be realized using
circular buffers in conjunction with general semaphores to synchronize the conditions empty
and full. If the OS doesn’t support semaphores (or semaphore like synchronization objects) it
would be a good idea to think about choosing another OS.

6 Conclusion
The open software architecture introduced in this paper is suitable for almost all
microcontroller platforms equipped with a LAN circuitry and a ported RTOS to implement a
software layer with basic functionality necessary for both communication stacks (e.g. a
TCP/IP stack) and flat networking applications.

References

[1] Labrosse, Jean J., MicroC/OS-II The Real-Time Kernel, R&D-Books
[2] Jan Axelson, Embedded Ethernet and Internet Complete, Lakeview Research
[3] W. Richard Stevens, UNIX Network Programming - Volume 1, Networking APIs:

Sockets and XTI), Prentice Hall

	Introduction
	Types of applications
	Out of the box solutions
	LANTRONIX XPort
	Beck IPC@CHIP
	High end Microcontroller systems
	High end Microprocessor systems
	Low cost Microcontroller systems

	Principle approaches
	Internet connectivity via a modem facility
	Using a Gateway-Computer
	Direct LAN access

	Open software architecture for embedded networking applications
	RTOS-based software architecture
	The communication paths
	Buffer management and the zero-copy approach
	Initializing, control, status and error handling
	OS requirements

	Conclusion

