
A Layer Model for the Systematic Test of Time-Triggered Automotive
Communication Systems

Eric Armengaud, Andreas Steininger
Vienna University of Technology

Embedded Computing Systems Group E182-2
Treitlstr. 3, A-1040 Vienna

{armengaud, steininger}@ecs.tuwien.ac.at

Martin Horauer Roman Pallierer
University of Applied Sciences Dependable Computer Systems

Technikum Wien DECOMSYS GmbH
Höchsẗadtplatz 5, A-1200 Vienna Stumpergasse 48/28, A-1060 Vienna

horauer@technikum-wien.at pallierer@decomsys.com

Abstract

This paper presents a layer model tailored for the test of
distributed systems that rely on the time-triggered paradigm,
such as the FlexRay protocol that is currently employed in
the automotive industry. The presented layer model is ap-
plied for the generation of a fault model, aids in the inspec-
tion of fault propagation throughout the distributed system
under consideration and is used for fault diagnosis of defec-
tive electronic control units. To that end, this systematic test
and diagnosis approach will provide a solid basis for ana-
lyzing and verifying future by-wire systems with respect to
their communication properties.

1 Introduction

Automotive electronics is the key innovation driver in the
automotive domain. Analysts estimate that more than 80
percent of all automotive innovations now stem from elec-
tronic systems [5]. High-end cars such as the BMW 7,
already contain up to 70 electronic control units (ECUs),
and even middle-class cars comprise up to 40 ECUs. The
use of these ECUs and especially their interoperation allow
the establishment of increased and improved functionality
in comparison with stand-alone components (e.g., combin-
ing speed with steering information). For non safety-critical
communication (central locking, seat motion control, power
windows, etc.), automotive multimedia and personal com-
puter networking a number of fieldbus protocols are already
in wide-spread use, such as CAN, LIN or Byteflight. For
safety-critical and advanced control applications (”X-by-
wire systems”) an industrial consortium of leading automo-
tive and electronic manufacturers is establishing a common

communication protocol, termed FlexRay. With these by-
wire systems it will be possible to replace rigid mechanical
and hydraulic components with configurable electronic ele-
ments. They make vehicles lighter, cheaper, safer, and more
fuel-efficient and, in addition, will enable an unprecedented
boost of functionality of such systems. Customers, however,
will probably hesitate to accept this completely new tech-
nology. Therefore it is of utmost importance to establish
confidence in automotive electronic systems by all possible
means. Undoubtedly, one of these means will be testing [7].
Efficient methods for test and diagnosis will be required to
check the functional integrity of all involved components
and hence prevent failures, see [4, 9] for some recent exam-
ples. Successful approaches for fault diagnosis and testing
as employed in the semiconductor industry – see [8] for a
survey – may be applicable to the automotive industry as
well when tailored to the strict cost and safety constraints.

Since communication is the most important enabler for
distributed functionality, the focus of our STEACS1 project
is set on diagnosis and testing methods for the communi-
cation subsystem. One main scientific challenge lies in the
elaboration of a systematic test approach. While methods
for testing of the computing nodes on the one side and the
bus on the other side do exist, a unified and systematic test
approach is required that does not only consider the func-
tion of these singular components in isolation. Experience

1The STEACS-project received support from the Aus-
trian ”FIT-IT[embedded systems” initiative, funded by the
Austrian Ministry for Traffic, Innovation and Technology
(BMVIT) and managed by the Austrian Industrial Research
Promotion Fund (FFF) under grant 807146.
See http://embsys.technikum-wien.at/steacs.html for further
information.



shows that problems with interaction of ”fault-free” compo-
nents are becoming increasingly relevant in practice. The
problem is further aggravated by the large number of new
product variants.

From a conceptual point of view this testing problem is
particularly interesting, since the usual ”divide and conquer”
test approach cannot be applied here – in some sense it can
even be viewed as the root of the problem. Another struc-
turing method must be found that goes beyond the physical
borders and allows the inclusion of distributed services.

In this paper we propose a layer-based approach for struc-
turing the test process of the communication system. Fol-
lowing a brief summary of our motivation in Sec. 2, we
present a generic method for structuring the layers of a com-
munication system and illustrate its usage by presenting a
detailed layer model of a FlexRay-based communication
system along with a short description. To demonstrate the
usefulness of the model we apply it to some example prob-
lems in Sec. 4. Finally, in Sec. 5 we conclude the paper.

2 Rationale

A fundamental property of time-triggered systems is their
composability in the temporal domain that, in principle, sim-
plifies the integration and coexistence of different nodes.
In practice, however, wrong configuration parameters or
slightly out of specification values of the employed nodes
restrict us from simply performing the test in a node-by-
node manner. Performing an unstructured functional test of
the configured system, on the other hand, is not reasonable,
since the complexity of the distributed system is substan-
tially higher than that of a single node. As test efforts rise
more than linearly – typicallyO(n2) cf. [2] – with system
complexity this would either result in excessive test duration
or in poor test coverage. Thus, some kind of structured test
is mandatory.

The fundamental purpose of a test is to check whether the
system under test provides all services as specified. Should
any service deviate from the specification or be completely
missing, we have encountered a failure, and this is exactly
what the test is intended to discover. If we want to structure
the test, it will probably be a good strategy to identify and
separate all services, break them into sub-services (which
we call mechanisms) as far as possible and focus the test to
each of these mechanisms separately. The rationale why we
chose to employ a layer model as the central point of our test
concept is the following:

1. The layer definition is generally based on the notion of
services (see Sec. 3) and hence suits naturally to our
intended test strategy. In particular, the layer model
reflects all services provided by the system with a fine
– ideally atomic – granularity.

2. In the process of model elaboration the decomposi-
tion of the complex global communication service into
smaller mechanisms is performed in a systematic man-

ner. This aids in achieving a complete picture of all
relevant mechanisms.

3. The comprehensive layer model shows the individual
services and mechanisms and also their interrelations.
In that way it is possible to identify all relevant inputs
of the particular service or mechanism as well as the
receivers of the service outputs in the next level. This
can substantially simplify diagnosis and helps in iden-
tifying potential sources of error (fault model).

4. By using the layer model one can determine the ab-
straction level at which monitoring should be per-
formed to test a particular mechanism.

5. If potential error signals issued by a mechanism are in-
cluded in the model, a hierarchy of error signals can be
constructed that further eases diagnosis.

6. Furthermore, a detailed model will enable an inspec-
tion of fault propagation, cf. [3].

In order to test the fault tolerance- and error detection capa-
bilities of the communication system in our project we will
employ fault injection. Again the layer model can be helpful
to provide a systematic structure for planning these experi-
ments, however, we will not cover these topics in this paper.

3 A layer model of a time-triggered architec-
ture

The OSI reference model provides a standardized way to
structure the functional entities of a communication system
into a set of layers. In practice, however, the majority of
modern communication systems typically only use a subset
of the proposed layers due to reasons of efficiency demanded
by every particular implementation.

mechanism mi
configuration
parameters ci

input ai-1

abstraction level ai

output ai

Figure 1. Abstraction Level and Mechanism

For a systematic test and diagnosis of a communication
system it is desirable to have at least one or a small set of
dedicated nodes with extended monitoring and some fault-
injection capabilities. The idea herein is to monitor the com-
municated data stream at functional boundaries within the
receiver of a test node that is assumed to behave correctly.
When an erroneous condition is detected it will be possible
to draw conclusions from the location where the fault was
detected to the originator of the misbehavior, see Sec. 4. To
extract useful information, however, a detailed structuring



of the involved layers is required. To that end, we introduce
the concept of abstraction levelsai and mechanismsmi. An
abstraction level represents a detailed view of the system
whereas a mechanism provides simple – ideally atomic –
services that are controlled by several inputsai−1 and op-
tional configuration parametersci and produce one or more
outputsai, cf. Fig. 1.

3.1 The FlexRay example
Fig. 2 presents a detailed layer model of a FlexRay com-

munication system (see [6]) based on the functional entities
”abstraction level” and ”mechanism” described above and
structured according to the OSI reference model.

Herein, the lowest layer is the physical layer whose ser-
vice is to transmit raw bits from a node to another through
a communication channel. Its interface to the upper layers
are serial bit streams received from or to be sent through the
communication system.

The next layer above is the data link layer whose ser-
vices organize the bit stream into a frame structure, detect
potential transmission errors, and control the medium ac-
cess. In contrast to the data link layer defined in the OSI ref-
erence model, the FlexRay protocol specification does not
include an acknowledgement system to automatically initi-
ate re-transmission of faulty frames. In addition, this layer
provides a view of the network synchronized time that han-
dles the medium access control (MAC) service.

The network layer, transport layer and session layer de-
fined in the OSI reference model are not present in the pre-
sented model because the corresponding services are not
particularly pronounced in FlexRay: With a communica-
tion based on broadcast channels, every frame transmitted
is seen by all receivers throughout the distributed system
and the addresses are implied by the bus schedule; there-
fore explicit routing as provided by the network layer is not
needed. Typical services of a transport layer are fragmen-
tation and re-combination of large data or the provision of
reliable communication. At this particular layer these ser-
vices, however, are not necessarily needed by applications in
the automotive domain; hence, they were not implemented
here. Finally, the session layer is omitted because establish-
ment and control of sessions between two nodes are implied
by the static schedule.

In FlexRay, the presentation layer is located upon the data
link layer. Its services are to format the data contents accord-
ing to the needs of the application and present a signal based
interface to the application layer. Furthermore, the optional
fault-tolerant communication paradigm as specified by the
OSEK/VDX2 joint project of the automotive industry are in
the context of the presentation layer as well.

Finally the application layer is situated on top of the
model and makes use of the services of the lower layers to
communicate from a node to another.

Although these layers are arranged in a hierarchical or-
der, the mechanisms within the layers are not necessarily

2http://www.osek-vdx.org/

hierarchically organized; in fact, some loops are present.
These loops make the system more difficult to test and diag-
nose because the inputs of a mechanism might be indirectly
dependent on its outputs. However, by breaking the loop
the mechanism can be controlled directly at its inputs and
observed at its outputs and, hence, totally tested.

4 Application of the model

In Sec. 2 we have briefly summarized the aims we want
to achieve with our model. Having given a brief overview
and illustrated a detailed model for the FlexRay communi-
cation system in Sec. 3 we want to apply this model now
to some practical problems in order to investigate, how far
it actually serves our purpose. As fault hypothesis we con-
sider single faults within the communication subsystem and
presume a properly working tester node. Given this hypoth-
esis we investigate how the presented layer model can be
used for fault model generation, fault propagation analysis
and diagnosis.

4.1 Fault model generation
With the fine grained structure of the time-triggered layer

model generation of a fault model boils down to the system-
atic search for reasons why a particular mechanism should
provide an incorrect output. If we perform this analysis for
every mechanism, and if no hidden dependencies between
mechanisms exist (i.e. ones are not included in our model),
then we have finally developed an exhaustive fault model
for our system (still excluding global sources of error like
power supply or clock, however).

Looking at the structure of a mechanism in our model we
can identify three reasons for a mechanism to produce an
erroneous output (see Fig. 3)

(a) The mechanism operates on erroneous inputs.This
case represents the propagation of faults and is hence
not part of the fault model. A more thorough treatment
of fault propagation can be found in Sec. 4.2.

(b) The mechanism is provided with erroneous parameters.
This scenario can be attributed either to faulty config-
uration data (e.g. an old version) or a hardware fault
in the configuration memory (e.g. a stuck-at error in a
bit-cell).

If we consider the frame structuring mechanism in the
receive path, e.g., an erroneous configuration of frame
start sequence length or pattern would fall into this cat-
egory.

(c) A fault in the implementation or underlying hardware
of the mechanism.This may either be the consequence
of a hardware defect, or of a design or implementation
fault. E.g., for the frame structuring mechanism this
would mean that valid frame start sequences are not
properly detected (i.e. not according to the configura-
tion); whereas other bit patterns might be erroneously
identified as frame start sequence instead.



Figure 2. Layer Model for a Time Triggered Architecture (FlexRay)



mechanism mi
configuration
parameters ci

input ai-1

output ai

case (a)

mechanism mi
configuration
parameters ci

input ai-1

output ai

case (b)

mechanism mi
configuration
parameters ci

input ai-1

output ai

case (c)

Figure 3. Reasons for a mechanism to produce an erroneous output

Type Input Output Interpretation
1 Ok Ok Normal Operation; the mechanism works properly
2 Ok Error Mechanism Failure Erroneous Parameters; case (b)

Implementation Fault or HW defect; case (c)
3 Error Error Fault Propagation; case (a); see Sec. 4.2
4 Error Ok Fault Masking; see Sec. 4.2

Table 1. Interpretation of the input/output behavior of a mechanism

Tab. 1 summarizes all possible cases that can be distin-
guished based on an observation of the mechanism’s in-
put/output mapping.

Notice that cases (b) and (c) of Fig. 3 differ from case (a)
in that the faulty output is generated from a correct input.
Further notice that cases (b) and (c) cannot be distinguished
from one another by simply observing the mapping between
input and output, since they both show the same behavior to
the outside, i.e. type 2.

A substantial advantage of the proposed mechanism-
based approach to fault model generation is that we are
dealing with symptoms rather than actual sources of errors:
From the service point of view it is sufficient to find out
whether the configuration parameters, e.g., are faulty. This
drastically reduces the size of a fault model and hence makes
an ”exhaustive” approach feasible, albeit with a limited level
of detail. Should a higher resolution be desired for a specific
purpose, we can further investigate the liable physical effect
by starting with the knowledge of the symptom resulting in
a reduced search space. For the example of faulty configura-
tion parameters this would mean identifying the reason why
the configuration is faulty.

4.2 Error propagation

As a prerequisite for diagnosis we have to elaborate a
thorough understanding of how errors propagate in the sys-
tem. With the proposed model the study of error propagation
involves the identification of a mechanism’s possible reac-
tions to an erroneous input. From an input/output point of
view this is summarized by behavior types 3 and 4 in Tab. 1.
In the following, however, we will derive a more detailed
classification of the mechanisms’ behavior.

For this purpose we must first of all separate between
the transmit and receive path. These paths behave different,
since in the transmit path additional information is appended
to the actual application data to enable a transmission, while
this information is successively stripped in the receive path.

4.2.1 Error propagation in the transmit path

A mechanismmi of the transmit path receives its inputai

from the output of mechanismmi+1 and processes it, typi-
cally, by appending some additional information or by struc-
turing the given input. While some constraints with respect
to the format ofai may apply (interface specification), in
general no check or analysis can be performed for the input
value. Mechanismmi is usually not supposed to identify
illegal values inmi+1’s output, but rather processes all pos-
sible input values transparently. Since the source of the in-
formation is the chain of mechanisms abovemi , the source
of the error must also be there, i.e. in mechanisms with in-
dex higher thani. E.g., the frame delimiter mechanism ap-
pends the required delimiters to any frame packet it receives
at its input without being able to decide whether the packet
is corrupted or not.

4.2.2 Error propagation in the receive path

Here the inputai−1 for mechanismmi is provided by the
output of mechanismmi−1. Processing this input often
involves some kind of dedicated rule checking or analysis
in the value and time domains in addition to checks in the
structural domain. Specifically, in the data link layer redun-
dant portions of the incoming data are used for checking and
are then discarded, or the consistency with a timing schedule
is checked. The source of information is the chain of mech-
anisms belowmi, hence a potential source of an error must
be assumed in the mechanisms with an index lower thani in
the receive path of nodeNr (the node under consideration),
the bus or the transmit path of the sending nodeNs.

Under the assumption of single faults, an error that is
detected at the abstraction levelai in the receive path of
nodeNr can not originate from a mechanism higher than
mi in the transmit path of the sending nodeNs, see Fig. 4.
The reason is as follows: Erroneous information originat-
ing from mechanismmi in nodeNs’s transmit path will



Node p Tester node

abstraction level aimechanism mi

FlexRay
Network

Figure 4. Remote diagnosis by a tester node

be properly ”wrapped” by mechanismmi−1 and all sub-
sequent mechanisms in the transmit path. Then it will be
sent over the bus and unwrapped by nodeNr ’s mechanisms
in the receive path without problems until it reaches mech-
anismmi. (From the point of view of a layer model, we
could as well imagine that a virtual communication from
mechanismmi−1 of nodeNs to mechanismmi−1 of node
Nr has taken place.). There is no reason why the unwrap-
ping of the properly wrapped incorrect information should
cause problems. Hence transmitter errors will show up for
the first time in mechanismmi of nodeNr ’s receive path,
or later, if the check performed bymi is not sufficient to
detect the error. Looking back from receiver to transmit-
ter this means that an error detected by mechanismmi can-
not originate from mechanisms higher thanmi including the
transmit path, which is essentially the statement we wanted
to prove. E.g., an erroneous input to the frame structuring
mechanism might be a raw bit stream with a corrupted start
sequence. The origin of this error may be anywhere on the
path between frame delimiter insertion mechanism of the
transmitter and frame structuring mechanism at the receiver.
A failure of the transmitter’s endianness corrector, however,
will never show up in the frame structuring mechanism.

4.2.3 Error detection properties

Previously, we have mentioned that some mechanisms al-
ready perform checks on the structure and/or the content
of the incoming information themselves. In general, such
checks are infrequently encountered in the transmit path
whereas they are very common in the receive path. If such a
check detects an error, some kind of error indication signal
is activated to trigger an appropriate error handling. With a
perfect error detection on every single mechanism the inter-
pretation of the error indication would be straightforward:
An error indicated by mechanismmi in the receive path of
nodeNr can either be traced to a failure of mechanismmi−1

in the receive path (in a perfect system failures of mecha-
nisms with indexj < i−1 would have been detected by the
respective subsequent mechanismmj+1) or originate from
the transmit path of the sending nodeNs. In particular, it
can be assigned to mechanismmi of Ns’s transmit path for
the following reason: We have already argued that failures

of transmit mechanisms with index higher thani cannot be
detected by receiver mechanismi. On the other hand, any
failure of a transmitter mechanism with indexj lower thani
would be detected by the corresponding receiver mechanism
mj .

Unfortunately there are several reasons why error detec-
tion is not perfect in practice:

• Since mechanisms usually check specific properties of
the incoming data only, errors that affect other proper-
ties are not accounted for. The frame alignment check,
e.g., evaluates the temporal alignment of the frame only
and does not consider the actual frame content.

• For several checks there is a non-zero probability that
erroneous data – even if explicitly checked – is still re-
garded as valid (e.g. the aliasing probability of CRC
checks).

• The check is performed somewhere between the input
and output of the mechanism. As a result an error de-
tected by mechanismmi will be assigned to the output
of mechanismmi−1, although it may as well have orig-
inated in the input path ofmi before the actual check.
A stuck bit at the input of the frame protection check,
e.g., will have the same effect on the result of the CRC
check as an erroneous frame packet coming from the
frame structuring mechanism. A distinction can be
made here by directly monitoring the frame packets.

4.2.4 Classification of the output behavior

Independent of an error indication, the mechanism will pro-
cess the erroneous input and may react in several ways:

(A) View the erroneous input as valid and produce the re-
spective output (direct error propagation), e.g., the en-
dianness corrector.

(B) Suppress the erroneous input and produce no output at
all (omission). In general this implies some error de-
tection capabilities, e.g., the frame protection check.

(C) Produce a correct output in spite of the incorrect input
(fault masking), e.g., the glitch filter. This will nor-
mally happen if error correction techniques are applied,
in rare cases when the erroneous portion of the input
does not contribute to generating the output or simply
by chance.

(D) Produce any arbitrary output in an undefined (or at least
unexpected) way (undefined behavior). In this case the
mechanism will probably be upset by the erroneous in-
put and its further function is questionable. This is nor-
mally viewed as a design flaw. E.g., a state machine
within a decoder enters an illegal state due to an illegal
encoded bit stream at the input.



Clearly the cases (B) and (C) are desirable. Notice, however,
that even in case (A) the mechanism provides a correct map-
ping from a given input to the specified output from a local
view, hence it cannot be considered faulty. Further notice
that it is easy to distinguish cases (A) . . . (D) if output and
input of the mechanism are monitored, while this distinction
may become fuzzy otherwise.

Tab. 2 summarizes the conceivable properties with re-
spect to a mechanism’s error propagation behavior.

4.2.5 The time management path

In addition to the transmit path and the receive path Tab. 2
also shows the Time Management path. Basically mecha-
nisms within this path allow the same classification of output
behavior: While the bus scheduler, e.g., simply propagates
erroneous slot start events to erroneous slot numbers, fault
masking is achieved by the inherent fault tolerance of the
clock synchronization mechanism. No mechanism, how-
ever, in the Time Management path is designed to exhibit
omission.

The error detection behavior of this path is very inter-
esting: Although the path is mainly ascending (such as the
receive path), we could not identify any mechanisms that
are able to generate an error indication by themselves. The
time management, however, provides several services to the
transmit path and the receive path, part of which is directly
used for checking (alignment check and medium access
check). Therefore failures of mechanisms within the time
management are very likely to lead to an error indication
within the receive path, i.e. in an indirect way. Similarly
an incorrectly generated slot start event or slot number will
cause transmission errors that are finally detected by the re-
ceiver node.

It is interesting to observe that the time management
path has only one relevant input from the message stream,
namely the frame delimiters. This input is very well pro-
tected (a) by the fault tolerant clock synchronization algo-
rithm and (b) by the subsequent check of the frame validity
(that ultimately relies on the error detection properties of the
receive path), such that error propagation is inhibited. Due
to its very limited local extension and its well protected in-
puts this path is often implemented without explicit protec-
tion by the other mechanisms.

4.3 Fault diagnosis
Basically, a fault that is not visible for the application is

not relevant, and hence, not worth being traced since the sys-
tem still completely fulfils its purpose in spite of this fault.
There are, however, two good reasons why we still take the
efforts to perform monitoring on a mechanism by mecha-
nism base:

(I) Since many faults may become masked on higher lay-
ers, error detection latency is much higher compared to
the case when we can perform monitoring directly at
the output of the respective mechanisms. In particular,

if we perform error detection on the application level
only, it might take a long time until a constellation oc-
curs in which the fault propagates to this layer.

(II) If we are interested in diagnosis rather than the mere
detection of the error, we have to collect indications on
the root of the problem, and this requires monitoring
on different layers and abstraction levels.

Monitoring on different abstraction levels requires a special
implementation of the communication controller, since ac-
cess to specific points in the data processing pipeline is re-
quired. Furthermore, provisions must be made to direct the
respective stream of monitoring data to a storage device (or
an online evaluation). Currently we are developing such
a monitoring hard+software in the scope of our STEACS
project, see [1] for a first prototype.

While being a perfect goal in theory complete observ-
ability on all layers and abstraction levels causes excessive
overheads in practice. Moreover, the mere collection of in-
formation by monitoring is not sufficient – an appropriate
interpretation is crucial for diagnosis. Our layer model can
aid us in both, determining the appropriate number and lo-
cation of layers and abstraction levels to perform monitoring
for a given problem, and finding the correct interpretation of
the assessed information.

Concerning the interpretation of the collected data we can
make use of the fault model and the error propagation anal-
ysis described above, and elaborate a diagnostic matrix that
relates every fault with one or more syndromes. A syndrome
can be viewed as the trace of an error when propagating
through the layers and mechanisms. We can easily create
a syndrome for a single mechanism by measuring the input
and the output at the respective abstraction levels and ad-
ditionally observing potential error indications. From this
measurement we can derive the input/output behavior ac-
cording to the proposed classification given in Tab. 1 and
Tab. 2. Finally, we put these ”local” syndromes for the sin-
gle mechanisms in context to form a global syndrome. In
this sense an example syndrome for the receive path with
the observation at the physical layer would be

case 1 case 2
physical→ raw bit stream correct erroneous
frame packet: erroneous omitted
frame contents→ signals omitted omitted
frame protection check error active inactive
all other error indications inactive inactive

Conclusion (case 1):A frame structuring mechanism fail-
ure occurred (correct input/erroneous output). The er-
roneous output is filtered out by the frame protection
check.

Conclusion (case 2):The frame delimiter inserter at the
sender has failed. The resulting error is filtered out by
the frame structuring mechanism, thus, no error indica-
tion is given.



Path Origin of fault detected in mi Error Indication Output Behavior
Receiver receive path: allmj with j < i Yes, (A) Propagation

(some mechanisms) (B) Omission
transmit path of sender: allmj with j < i (C) Masking

(D) Undefined
Transmitter all mj with j > i No (A) Propagation

(D) Undefined
Time Lower mechanisms within local MAC Indirect (A) Propagation
Management or sender’s MAC (C) Masking

(D) Undefined
Table 2. Error propagation behavior

Based on the fine-grained measurement data and the thor-
ough understanding of error propagation, it is quite easy to
perform diagnosis. A systematic approach to this would be
to build a table listing every fault in the fault model along
with the related syndromes in advance and use this table in
the reverse direction as diagnosis matrix. With this table
we can immediately identify the cause (or a list of potential
causes) for every syndrome we encounter. Notice that the ef-
fect of a fault may depend on circumstances like, e.g., data
contents. As a consequence the respective syndrome also
varies. In this way the set of different syndromes that are
observed over time become quite characteristic for the fault.
However, the syndrome alone does not allow us to distin-
guish between a parameter fault and an implementation or
hardware fault in the frame structuring mechanism. This is
because they all have the same effect on the input/output be-
havior.

4.3.1 Application to remote diagnosis

Normally we would not like to perform extensive monitor-
ing as suggested above on all nodes within a network. It
would be much smarter if we could detect and diagnose
mechanism failures on all nodes contributing in the commu-
nication by means of a single dedicated tester node which is
the only one that is equipped with monitoring capabilities.
In fact, it is possible to project an error encountered in the
receive path on tester nodeNt to the transmit path of the
sender nodeNs. Without further provisions, however, it is
not possible to diagnose the receive path of nodeNs in this
setup. There are, however, two solutions to this problem:

(1) We can employ a specific ”loopback” application on
Ns, such that any information received byNs is sent
out to the bus and can hence be analyzed byNt.

(2) We can make use of the loopback that exists anyway
in the guise of the Time Management path: In Fig. 2
it can be seen that this path utilizes information from
the frame structuring and medium access check mech-
anisms within the receive path to generate the required
information for the transmit path. Hence careful analy-
sis of the transmit behavior ofNs allows conclusions
on the receive path. It should be considered, how-
ever, that the fault masking behavior of the clock syn-

chronization mechanism renders this conclusion very
vague.

5 Conclusion and future prospects

In this paper we presented a layer model tailored for the
test and diagnosis of a time triggered distributed system ar-
chitecture by using the FlexRay protocol as an example. The
structure of the layer model is presented in accordance to the
OSI model, however, it uses the functional entities ”abstrac-
tion level” and ”mechanism” to provide a finer granularity.
Using this layer model we show how it aids us in the gen-
eration of a fault model that allows dealing with symptoms
rather than actual sources of errors; a fact that drastically
improves on the complexity and practicality. Next, we study
the propagation of errors in the transmit, the receive and the
time management path – the latter being specific for time
triggered architectures – respectively. Furthermore, we in-
vestigate common error detection properties and classify the
output behavior of the involved mechanisms. Finally, we
show how our model can be applied to fault diagnosis, in
particular how remote and node local faults can be identi-
fied with one test node.

In the next step we are planning to introduce faults into
the communication system by means of fault injection with
the purpose to test the error detection and fault-tolerance
mechanisms and assess the robustness of our target system
with respect to a given fault set. In this context we em-
ploy our presented models to identify where the modifica-
tion should be made in order to efficiently check the target
feature. The direct access to the different mechanisms that
we have already implemented for the purpose of monitoring
will allow a substantial improvement of controllability and
observability in these experiments.

References

[1] E. Armengaud, A. Steininger, M. Horauer, R. Pallierer, and
H. Friedl. A Monitoring Concept for an Automotive Dis-
tributed Network - The FlexRay Example.7th IEEE Work-
shop on Design & Diagnostics of Electronic Circuits & Sys-
tems (DDECS’04), pages 173–178, 2004.

[2] C. F. Hawkins, H. T. Nagle, R. R. Fritzemeier, and J. R. Guth.
The VLSI Circuit Test Problem - A Tutorial.IEEE Trans. On
Industrial Electronics, 36(2):111–116, May 1989.



[3] M. Hiller, A. Jhumka, and S. N. An Approach for Analyzing
the Propagation of Data Errors in Software.Proc. of the In-
ternational Conference on Dependable Systems and Networks
(DSN’01), pages 161–170, 2001.

[4] N. Kandasamy, J. Hayes, and B. Murray. Time-constrained
failure diagnosis in Distributed Embedded Systems.Proc. of
the International Conference on Dependable Systems and Net-
works, pages 449–458, 2002.

[5] G. Leen and D. Hefferman. In-Vehicle Networks, Expanding
Automotive Electronic Systems.IEEE Transaction on Com-
puters, pages 88–93, January 2002.

[6] R. Mores, G. Hay, R. Belschner, J. Berwanger, C. Ebner,
S. Fluhrer, E. Fuchs, B. Hedenetz, W. Kuffner, A. Krüger,
P. Lohrmann, D. Millinger, M. Peller, J. Ruh, A. Schedl, and
M. Sprachmann. FlexRay - The Communication System for
Advanced Automotive Control Systems.Society of Automo-
tive Engineers (SAE) 2001 World Congress, March 2001.

[7] G. Reichart. Systemintegration in der Elektrik/Elektronik.7.
EUROFORUM Jahrestagung Elektronik Systeme im Automo-
bil, February 2003. (in German).

[8] A. Steininger. Testing and Built-in-Self-Test - A Survey.Jour-
nal of Systems Architecture, 46:721–747, 2000.

[9] R. Tappe and D. Ehrhardt. Dynamic Tests in Complex Sys-
tems. Proc. of the32nd International Test Conference ITC,
pages 609–614, 2001.


