
  1 

 
A Structured Approach for the Systematic Test of  
Embedded Automotive Communication Systems 

 
E. Armengauda, F. Rothensteinera, A. Steiningera, Roman Palliererb, M. Horauerc and M. Zaunerc 

 
aVienna University of Technology, ECS Group E182-2, Treitlstr. 3/2, 1040 Vienna, Austria 

bDECOMSYS GmbH, Stumpergasse 48/28, 1060 Vienna, Austria 
cUniversity of Applied Sciences Technikum Wien, Höchstädtplatz 5, 1200 Vienna, Austria 

 

Abstract 
We present a systematic test strategy for the 
communication subsystem of a distributed automotive 
system. Key points are (1) system decomposition into 
layers and services and (2) integration of fault injection 
and monitoring within this framework. 
 

1. Introduction 
The automotive industry has introduced a wealth of new 
and emerging electronic features in recent years with a lot 
of innovations still to come, e.g. X-by-Wire technologies. 
Among the benefits of these new technologies are 
increased safety, more efficient resource usage, less 
environmental impacts and an increase of comfort [1].  At 
the same time these new approaches create a lot of new 
challenges. Considering that modern cars already contain 
up to 70 electronic control units and thus represent highly 
complex distributed architectures, one of these challenges 
is certainly to ensure the dependability required for the 
safety critical applications under the given tight cost 
constraints. Car manufacturers have soon identified the 
network architecture as the crucial point in this context. 
To that end, an industrial consortium has established the 
communication protocol FlexRay [2] that provides the 
flexibility to operate the communication system in a time- 
and/or event-triggered mode, respectively. 

Despite all the wealth of properties to provide a reliable 
communication testing of such complex distributed 
architectures remains an issue. Even though we can rely 
on proven traditional test approaches for ensuring the 
functional integrity of all involved components (in 
isolation), their proper interoperation remains to be 
verified – in particular, with respect to the large number 
of product variants, configurations and their ever 
increasing complexity. Therefore, some means for testing 
are mandatory in order to detect faults and resulting errors 
and/or failures. A solution for an entire product lifecycle, 
i.e., during development, operation, and maintenance is 

desirable. Our STEACS1 project addresses some of these 
problems by developing suitable concepts and prototype 
implementations for diagnosis and fault injection. 

In this paper we describe our basic approach for a 
monitoring, replay and fault injection tool-suite that is 
applicable for system tests of distributed automotive 
networks. In addition, we detail some results obtained 
with our demonstrator system to show the applicability 
and benefits of our approach. 

2. System Architecture 
Nowadays, automobiles operate several bus-systems 
using different protocols each tailored to specific 
application needs. Figure 1 illustrates a possible 
automotive network consisting of several functional 
modules that are mapped to some node(s). 

Figure 1: Typical automotive network with several bus domains 

Testing and diagnosis of such distributed systems are 
confronted to three main problems, which are:  

(1) Geographic diversity: Each node is a discrete 
physical entity distant to the other one. This results in 
reduced observability and controllability of the whole 

                                                 
1 The STEACS-project received support from the Austrian ”FIT-
IT[embedded systems” initiative, funded by the Austrian Ministry for 
Traffic, Innovation and Technology (BMVIT) and managed by the 
Austrian Research Promotion Agency (FFG) under grant 807146. See 
http://embsys.technikum-wien.at/steacs.html for further information. 
 



  2 
 

system, aggravated by the desire for a purely remote test. 
Furthermore, communication across different bus domains 
must be considered, since the combination will likely be 
required for future applications, e.g. to combine 
navigation and/or speed with steering information.  

(2) The large system state space: Every module can be 
modeled by an individual state machine; hence, the global 
system state is the product of all parallel state machines. 
As a result, testing all states of the system is an elaborate 
operation that requires the synchronization of the 
individual state machines. Due to the large number of 
product variants and configurations it is impossible to 
completely represent the system by a prototype; optional 
upgrades make the system structure even dynamic over 
life time. 

(3) The large fault range: Faults may affect any function 
unit in a communication system and in a different failure 
behavior, e.g. omissions, timing failures, arbitrary 
failures, etc. 

Concluding, system tests for communication networks in 
the automotive area are of utmost importance for 
revealing problems early in the design and 
implementation phase as well as during operation and 
maintenance. The huge variety of possible configurations 
makes it imperative to explicitly test the inter-operation of 
nodes within the assembled system rather than the 
individual nodes in isolation. In particular, a structured 
approach is mandatory to tackle the complexity that arises 
from the distributed nature of these systems. 

3. Related Work 
A standard procedure for testing is the decomposition of 
the test object into smaller sub-units [3] in order to reduce 
complexity and improve accessibility. Usually this 
decomposition implies a physical separation of sub-units. 
In distributed systems such a physical decomposition is 
indeed useful for ensuring that the individual nodes 
participating in the communication are working properly 
(testing the nodes in isolation). At the same time this 
approach is not sufficient to test distributed services 
provided by a collective of nodes. Therefore, a logical 
decomposition into layers is often proposed [4, 5]. 

Using a similar approach, we defined a layer structure for 
FlexRay communication systems, see [6]. Herein we 
decompose the complex (overall) communication service 
into single sub-services located on different layers. 

In every test approach two fundamental sub-tasks can be 
identified, namely stimulation of the target and 
observation of its response.  

In most existing approaches [4, 7, 8] observation is based 
on some form of packet filtering [9, 10] for the network 

traffic performed on an observer node. While this high-
level approach is very flexible and does not require any 
dedicated hardware support, it does not provide sufficient 
diagnostic resolution for problems originating from 
hardware and lower level protocol services as expected in 
the automotive domain. Therefore, our tester is a standard 
node with enhanced capabilities (direct access to bus 
traffic on lower layers, e.g.). A similar solution has been 
used in [5] for a Profibus tester. 

For complex communication systems a purely “artificial” 
generation of stimuli by a tester is elaborate and time-
consuming. Therefore, it has become common practice to 
observe the target system during normal operation and 
“superpose” stimulation only to force it into desired 
execution paths and states [4, 8]. This is particularly 
necessary to include rarely exercised paths like error 
handling mechanisms in the test. The related techniques 
are commonly termed “fault injection”.  

According to [11] fault injection approaches can be 
classified according to their aims: Fault removal is 
intended to check whether the fault tolerance mechanisms 
are designed and implemented properly, while the aim of 
fault forecasting is to determine the parameters required 
for the system’s reliability model. The focus of our 
project is definitely fault removal, which means that the 
selection of our faults must be aimed at high test 
coverage. With a fault distribution that is representative 
for the field conditions our tool can, however, support 
fault forecasting as well. 

The main issue with fault injection into complex 
distributed systems is the huge fault space. Several 
approaches for the fault injection into a communication 
system have already been published (that essentially solve 
only part of the problem). One example is the Orchestra 
approach proposed in [4]. The aim there is to create a 
portable test tool that is applicable for a large variety of 
distributed systems. The insertion of a fault injection 
layer below the targeted protocol layer allows mutilating, 
inserting, or deleting messages on different abstraction 
levels. This approach, however, is purely software-based 
and hence does not allow investigating lower-layer 
services. 

In [8] a versatile concept for dependability assessment in 
distributed systems is presented. The proposed tool 
NFTAPE can be viewed as a kind of control system for 
different distributed fault injection methods. Dedicated 
fault injector hardware and/or processes on the target 
allow various types of faults to be injected directly into 
the target. For our remote test approach, however, we do 
not want to modify the target. In fact, we map all possible 
types of node misbehavior for whatever reason to its bus 
behavior and hence inject faults to the bus traffic only. 
Given that the communication media is the only 



  3 
 

interconnection between the individual nodes this must be 
possible, although this restriction makes it harder to 
selectively target services in higher layers. 

The Profibus tester framework proposed in [5] is based on 
a hardware solution similar to ours, but no discussion is 
given on how this tool is suitable for integration into a 
systematic test procedure. The Loki tool proposed in [7] 
is another (software based) fault injector for distributed 
systems; its focus, however, is the application level 
solely. 

4. Layered Test Approach 

4.1. Overview 
Our approach is to connect a dedicated tester to the 
network of the bus domain under consideration; 
deliberately avoiding additional cabling to access the 
distributed nodes. Since the tester is a single dedicated 
node, one can afford a quite sophisticated design. This 
setup presents the following advantages: 

• The intrusiveness of the system is kept low, 
• the centralized and single tester still can eventually 

reach every node in its communication domain, and 
• we can concentrate the required efforts to the tester 

node which allows us to afford probing deep into the 
communication services. 

To tackle the test complexity, we first constructed a 
detailed layer model [6] of the FlexRay bus protocol − we 
choose FlexRay as our target communication system. 
Based on this layer model we structured our test approach 
using generic building blocks as illustrated in Figure 2 for 
one abstraction layer. The same approach can be re-used 

for every other abstraction layer within the 
communication system, and, in principle, can be targeted 
effortlessly to other bus-protocols as well. The key idea is 
to decompose the entire communication system into a 
collection of services that can each be entirely 
characterized by a set of attributes. Such attributes can 
either be protocol configuration parameters (e.g., duration 
of a static slot, payload length) or protocol constants (e.g., 
initialization value for the CRC calculation, etc.). Hence, 
we can project our system test to a check whether all 
attributes are in the allowed range. The test of an error 
detection mechanism, in turn, implies observing the 
reaction of the system to a message that has been 
generated with the associated attribute(s) being erroneous. 

In this model the monitoring path, resembling the data 
monitoring, the data transformation and the data 
interpretation modules, aims at providing means to 
observe and (automatically) extract the current system 
behavior. Important features of this path are the capability 
(i) to project the bus traffic monitored at the physical 
layer to any other abstraction level, (ii) to exhaustively 
test the services by way of testing their attributes, and (iii) 
to automatically evaluate the correctness of these 
attributes (e.g. whether they are within the expected 
limits). 

The injection path, resembling the stimulus activation, 
data generation and data injection modules, provides 
means to (i) automatically select and modify one or a set 
of attribute(s) and (ii) transparently process bus traffic at 
any abstraction levels down to the physical layer. 
Consequently, any service deviation at a particular layer 
can be emulated, thus, gaining better controllability for 
the testing of the “remote” system under test. 

System 
Under test

Data  
monitoring Data injection

Correct behavior 
generation

Data 
interpretation

Stimulus 
activation

Current 
configuration Fault model

Data 
transformation

Data 
generation

System 
model

Filter

Transformation

Decision

Reference 
generation

Physical access

Bus traffic

Filtered data

Attributes 
(real)

User interface Results 

Attributes 
(reference)

Control and status 
information

Library

Bus traffic 
configuration

Service 
specification

M
on

ito
ri

ng
 p

at
h

In
je

ct
io

n 
pa

th

Figure 2: Proposed test approach illustrated for one layer 



  4 
 

For either path reference values are provided by the 
correct behavior generation module. This reference 
behavior is built from data obtained on one hand by the 
service specification library and on the other hand by the 
current configuration. The specification of the system 
attributes (e.g. min/max values for every attribute) is 
constant over time and, consequently, can be linked as a 
library to the test environment. The configuration, 
however, is specific for the actual system setup and must 
be provided by the test engineer (e.g. the actual duration 
of a static slot). Finally, an optional system model can be 
used to generate a specification conform bus traffic and 
an optional fault model can be deployed to map a user 
defined fault model to the actual faults being injected. 

4.2. The Monitoring Path 
The data monitoring module processes the received data 
up to the abstraction layer where the selected attributes 
can be best analyzed. Therefore, this module takes as 
input the bus traffic at the physical layer and de-
encapsulates all data up to the particular layer by 
removing information used by the lower layers solely 
[12]. E.g., when the “length of the static payload 
segment” (gPayloadLengthStatic [2]) is the attribute of 
interest, the data monitoring module processes the 
information present at the physical layer, removes 
glitches, performs decoding, and presents the raw bit-
stream to the data link layer. (For FlexRay frames the 
payload segment carries between 0 and 127 two-byte 
words of data. To indicate the size of the actual payload 
segment a separate payload length field is contained in 
the header segment.) 

The data transformation module takes the de-
encapsulated information and reduces its dimensionality 
by extracting information relevant for processing the 
attribute values and for relating it to its source (node). For 
the “length of the payload segment” attribute of a static 
transmission slot it removes the header and checksum, 
however, keeping the slot identifier and value of the 
payload length field. Next, it calculates the payload length 
from the remaining data, validates it with the payload 
length value, further removes the payload itself and, 
finally, forwards the obtained actual “length of the 
payload segment” value together with validity 
information and the slot identifier. The latter together 
with information from the system configuration allows 
the mapping of the attribute to a particular node. 

The data interpretation module interprets the monitored 
attribute values and thus the according system behavior 
by comparing it with reference values. The result may be 
either a match/no-match (e.g. useful for conformance 
tests) or the distance from the observed towards the 
expected reference values (e.g. preferable for robustness 
tests). Furthermore, with this module one can easily 

record a result log for attributes over time, thus gaining 
insight to the evolution of attribute values. This feature is 
especially useful during system operation to obtain 
information for preventive maintenance, e.g. to identify 
the weakness of certain components and modules. 

4.3. The Injection Path 
The stimulus activation module determines which and 
how attributes need to be modified. In particular, 
attributes are either selected based on information 
provided by a user specified fault model (i.e. for 
robustness tests) or all attributes relevant for the services 
are tested (i.e. for conformance tests). The valid range for 
every attribute is obtained from the correct behavior 
generation module, hence, the module can determine 
(with additional information from the user interface) how 
to manipulate the data in order to steer the attributes 
behavior. 

The data generation module modifies a given “normal” 
bus traffic in order to emulate the malfunction of one (or 
several) services by altering its/their corresponding 
attributes for a defined interval. This data modification is 
performed at the location of the target service layer. It is 
accomplished by combining the information from the 
stimulus activation module either with recorded data 
obtained from the data monitoring module or a system 
model. Data obtained from a running cluster presents the 
advantage of producing representative test vectors, 
however, requires an operational system prototype and 
does not necessarily conform to the specification. This 
approach is well suited for robustness tests where good 
representativeness plays an important role and a running 
system is usually at hand anyway. In contrast, a “perfect” 
bus traffic can be generated from a reference model. This 
approach does not require a running cluster and provides 
bus traffic conform to the specification, which is more 
appropriate, e.g., for conformance tests [13]. While 
additional efforts are required to design the reference 
model, this second method typically allows more freedom 
in generating suitable bus traffic. 

The data injection module takes as input the data file and 
performs all required processing down to the physical 
layer. Finally, it pushes the data onto the wires when the 
corresponding slots are present [12]. 

4.4. User Interface and Reference Generation 
The user interface provides control of the entire test suite. 
It resembles a library module (service specification, 
system model) that models the system’s expected 
behavior in accordance with the specification of the bus 
protocol and a set of configuration units (current 
configuration, fault model and bus traffic configuration). 
The latter is used on one hand to describe the current 



  5 
 

configuration of the cluster and on the other hand to 
describe the configuration of the test scenario. 
Furthermore, it presents the results to the test engineer for 
further post-processing. 

The bus traffic configuration module provides the test 
engineer with an interface to enter and specify the actual 
data values that shall be sent (e.g. payload values, slot 
identifier, etc.). Next, the service specification module 
provides the specified ranges for all attributes and how 
they need to be instantiated. Thus, with the information 
from these two modules the system model is able to 
construct actual frames conforming to the specification. 

Furthermore, the output of the service specification is 
used together with the current configuration as input to 
the correct behavior generation module to model the 
services according to their attributes and to generate a 
systematic and exhaustive list of rules defining the system 
behavior conforming to the protocol specification. As an 
alternative approach one might consider using a “golden 
reference node” as in [14], however, such references are 
rarely available at all. 

4.5. Projection to Other Layers 
The attributes of a protocol are associated with different 
levels of abstraction (layers); hence, the test approach 
illustrated in Figure 2 must be applied to all layers of the 
communication system at the tester node. In particular, all 
modules need be tailored for the specific layers, except 
for the data monitoring and data injection modules that 
must be able to handle the de-encapsulation and 
encapsulation up to/down from every layer. 

Our tester is able to monitor and/or replay bus traffic as 
well as to inject faults. Failures can be identified by 
observing invalid attributes at different layers. In 
particular, our approach enables the simultaneous testing 
of both low level mechanisms, e.g. glitch filtering on the 
bus, and high level mechanisms, e.g. correct signal 
exchange of a distributed application. Furthermore, the 
identified failures can be mapped with some probability to 
faults originating from remote nodes or the physical 
network, see [4]. 

5. Use Cases and Experimental Results 

5.1. Experiment Setup 
In this section we will use two communication attributes 
as examples to illustrate the usefulness of our approach 
for a systematic test. For these experiments the system 
under test consisted of four COTS FlexRay nodes and our 
tester node connected via a linear bus. The test procedure 
was the same in both campaigns: 

I. Reference trace generation: By means of the data 
monitoring module the bus traffic generated by a test 
application is traced and stored into a file. 

II. Attribute modification: The trace file is changed by 
means of the data generation module in a way that the 
considered attribute is consistently modified. 

III. Fault injection: The modified trace file is replayed to 
the system under test by way of the data injection 
module, and the succinct reaction is observed (i.e. 
whether the modification was tolerated or an error or 
a failure occurred). 

5.2. Systematic Test of the “Byte Start Sequence” 
According to [2], “the byte start sequence” (BSS) is used 
to provide bit stream timing information to the receiving 
devices. In particular, the BSS is defined as a specific 
vector of two consecutive bits – one high and one low. 

The goal of these experiments is to systematically test the 
BSS mechanism with respect to this model. Such a test 
approach can be used, e.g., in conformance testing in 
order to prove that the error detection mechanisms are 
operating as intended [13]. 

Our experimental campaign covers three fault scenarios: 

1. Value domain: Apply all possible erroneous values to 
the BSS. (3 options) 

2. Time domain: Shorten/extend the length of the BSS 
vector2. (1 bit / 3bit) 

3. Error position: Vary the position of the erroneous 
BSS within the frame. (n options for n byte frame) 

For these three experiments, the current configuration and 
the service specification provide the correct behavior 
generation module with the exact definition of a correct 
BSS. According to this information, the stimulus 
activation decides which attribute has to be modified 
(BSS) and which fault model should be used. The data 
generation module then alters the BSS as previously 
specified, and the data injection module injects the 
corrupted frame to the system. 

Node Reported Results 
System under Test Nodes Status Error  
Tester Node Erroneous BSS attribute  

Table 1: “Byte Start Sequence” experiment results for all three campaigns 

Table 1 summarizes the results of these experiments. In 
all cases the nodes operated conform to the specification. 

                                                 
2 Notice that the BSS service builds upon the services of the data link 
layer, hence, the handling of glitches has no relevance for the BSS 
service test. 



  6 
 

During the execution of the presented “byte start 
sequence” experiment 20 faults were injected; the 
experiment was executed in hardware in a single run 
lasting 3 seconds. In comparison, when executed by a 
simulator the same experiment lasted more than 30 
minutes. 

5.3 Systematic Test of the “Action Point Offset” 
The Action Point Offset parameter describes the position 
of the frame within its communication slot as illustrated 
in Figure 3. The aims of these experiments were to shift 
the frame with positive and negative offsets in order to 
check the frame reception tolerance, and to test whether 
the boundary violation detection mechanisms operate as 
specified. 

Figure 3: Action Point Offset mechanism 

Three experiments were conducted for this test campaign.  

1. Minor offset: Add increasing negative and positive 
offset values to the action point offset to slide the 
frame within a communication slot. 

2. Major offset: Add increasing negative and positive 
offset values to the action point offset to slide the 
frame out of a communication slot, i.e. so that it 
overlaps two slots. 

3. Excessive offset: Shift the action point far enough so 
that the entire frame is positioned into the 
previous/following slot, respectively. 

Exp. Node Reported Results 
SuT Nodes Frames received correctly 

1 Tester 
Node 

• Action Point within range 
• Offset to the boundary value 

SuT Nodes Frame Status Error 
2 Tester 

Node 
• Action Point out of range 
• Offset to the boundary value 

SuT Nodes Frame Status Error 
3 Tester 

Node 
• Action Point within range 
• Offset to the boundary value 

Table 2: “Action Point Offset” experiment results 

Table 2 summarizes the findings with our test approach. 
In the third experiment the tester identified the “Action 
Point Offset” as within bounds, although it was shifted to 
another slot. Instead, the “medium access check” attribute 

reported an error; hence, by way of other attributes this 
error could be uncovered. 

The “Action Point Offset” experiment lasted 35 seconds; 
in total about 300.000 faults and/or modifications were 
injected and carried out respectively. 

5.4. Industrial Application of the Approach 
Our industry partner DECOMSYS is involved in the 
development and test of the FlexRay protocol and 
solutions for FlexRay based distributed systems. To 
maintain the high quality standards of their solutions in 
the highly competitive market of automotive electronics 
extensive and efficient product tests are required. 
Additionally, tools and methods for cluster testing are 
being demanded by customers. DECOMSYS is 
committed to provide them with a comfortable, efficient 
and flexible test environment that meets the high demands 
associated with the verification of a safety critical 
application. In this context the test strategy developed 
within the scope of the FlexRay Cluster Tests in 2002 has 
been recently upgraded with the BUDOCTOR3 [12] that 
has been developed within the STEACS project, based on 
the concepts presented within this paper. 

6. Benefits and Limitations 
One key concept within our approach is to project the test 
of the communication system to a check of well defined 
attributes. The consequent implementation of this concept 
yields a highly efficient test approach in several respects: 
First of all, the decomposition of the complex 
communication system into (much simpler) services 
allows a substantial reduction of the target complexity. A 
systematic one-by-one check of the services requires 
substantially fewer test vectors than a less structured 
approach within the whole space of possible stimuli (and 
sequences thereof) as it is often applied. As a result our 
concept allows a much more systematic coverage of 
precisely targeted services than the ad-hoc test 
approaches often found in current practice. The structured 
search can be easily automated and provides high 
coverage within reasonable time. Still, however, all 
desired “ad-hoc” test scenarios can be composed as a 
superposition of attribute changes. In the same way 
diagnostic capabilities are improved: The systematic 
procedure allows to clearly identifying the erroneous 
service (and the erroneous node, if desired). 

The crucial point within this concept, however, is the 
reduction of a service to its attributes. In fact, the attribute 
is used to parameterize a model implied in the data 
transformation module and the data generation module, 
respectively. Obviously the accuracy of this model limits 

                                                 
3 http://www.decomsys.com/flyer/BUSDOCTOR.pdf 

Communication slot N

t

Frame ID N

Action Point Offset

Negative offset Positive offset



  7 
 

the quality of the whole approach and hence these models 
must be elaborated with special care (at this point the 
decomposition to simple services comes to the rescue 
again). All aspects that are not (correctly) reflected by this 
model will not be (correctly) covered by the test. Another 
crucial issue in this context is the mutual independence of 
the services: Decomposition and structured testing are 
only useful, if the services do not influence one another. 
It is the nature of a layer model to build the higher level 
services upon the lower level services – in this sense the 
independence of services can never be assumed. It is 
therefore necessary to employ a “bottom-up” test 
approach, thus ensuring the correct function of the lower 
levels before proceeding to the higher ones. Only then a 
correctly functioning lower level service becomes 
transparent with respect to testing the higher-level ones, 
as we have claimed in [6]. 

If this can be taken for granted, the test of a service 
effectively comes down to a comparison of its observed 
attribute(s) with a single (or at most several) reference 
values. This not only minimizes the efforts for diagnosis 
but also supports the intuition and avoids error-prone 
interpretation of complex scenarios as it is sometimes 
required in traditional approaches. The same is true for 
the test of fault tolerance mechanisms and the 
construction of the required bus traffic. As a prerequisite 
our test framework must allow us to view a given 
message (sequence) from the abstraction level that is 
appropriate for the service under consideration, and must 
thus allow us to arbitrarily change between these levels. 
The data monitoring module and the data injection 
module, respectively, provide this functionality. The 
accuracy of these transformation models, however, limits 
the quality of the approach. 

The ability to arbitrarily change between layers is also an 
important enabler for remote testing: By monitoring and 
modifying the bus traffic on the physical layer we have 
(indirect) access to all services within all nodes [6], 
provided that we do not consider Byzantine faults. Access 
to the physical layer is easily possible at any point of the 
communication network, while direct access to higher 
layers would involve physical access to each single node 
under test. Notice, however, that our remote test approach 
only allows us to observe node behavior as far as it 
affects bus behavior. This means that the triggering of an 
error detection mechanism or the suppression of an 
erroneous message is not necessarily noticeable by a 
remote tester. A simple and straightforward solution is to 
provide the tester with a more comprehensive access to 
the node (at the host side, e.g.), thus sacrificing the 
advantage of a purely remote access. Alternatively some 
form of loop-back of the high-level node behavior to the 
bus might be considered, and indeed several options exist 
to implement this and achieve membership-like 

functionalities. For example, identification of bus failures 
as described in [15] with redundant channels can be 
achieved with a non-redundant channel with our test 
approach. A further discussion of these options, however, 
goes beyond the scope of this paper. 

A tester node that monitors the bus traffic during the 
mission can indeed improve system dependability through 
early detection of service failures. It is, however, not the 
dedication of the tester node to enhance the system’s error 
detection capabilities like concurrent checking methods 
([16], e.g.) do. Aliasing effects in the CRC check, e.g., 
are an accepted – albeit not desired – facet of the proper 
node function, hence they must be reflected by the model 
implemented in the tester node as well. 

Similar aliasing effects may show up during fault 
injection as well: A fault that is severe enough to exceed 
the system’s (limited) error detection capabilities may 
generate a seemingly correct input. In fact this input is 
valid on the considered layer but likely to cause an error 
on a higher layer. Remember our second experiment 
campaign (Section 5.3) where we have observed an 
example of this effect. 

Although we have developed our approach for the 
specific problem of testing a FlexRay based 
communication system, it is applicable to different 
systems and different layers as well (in the sense that the 
concepts can be adopted, not the tools). However, for use 
in higher layers, like application level debugging, e.g., 
additional issues have to be considered (see [7]). 

7. Conclusion 
We have proposed a systematic test approach for 
distributed automotive communication systems for the 
FlexRay example. The key concept is the decomposition 
of the communication system into a set of (independent) 
services that are characterized by attributes. We have 
further presented a framework that allows extracting, 
checking and modifing all attributes in a systematic way. 
Our approach allows a very efficient and well targeted 
test of all attributes and hence all services within 
reasonable time. It also includes fault injection for the test 
of fault tolerance mechanisms. An additional advantage is 
that the involved procedure is easy to automate. We have 
illustrated our concepts by two experiment campaigns 
that tested specific attributes. 

We have kept our approach very flexible and have 
minimized the requirements on the test setup in order to 
allow its application during various phases of the 
system’s lifecycle. For example, test of the algorithms 
during system validation, fault removal during system 
development, conformance and interoperability tests 
during system verification, fault-forecasting and 



  8 
 

robustness tests during system evaluation or long-term 
monitoring during system maintenance can be easily 
accomplished. 

Further issues that we will consider comprise the 
extension of our fault injector to on-line modification of 
bus traffic and the development of a GUI that presents the 
results in a condensed and meaningful way and that 
allows the user to fully exploit all facets of the 
framework. 

8. References 
[1] Leen, G; Hefferman, D; “In-Vehicle Networks, 

Expanding Automotive Electronic Systems”, IEEE 
Transaction on Computers, January 2002, pp. 88-93. 

[2] −, “FlexRay Communications Systems - Protocol 
Specification Version 2.0”, FlexRay Consortium, 
2004. (http://www.flexray.com). 

[3] Bardell, P; McAnney, W; Savir, J; “Built-in Test for 
VLSI, Pseudorandom Techniques”, John Wiley & 
Sons, New York 1987. 

[4] Dawson, S.; Jahanian, F.; Mitton, T.; Teck-Lee 
Tung; “Testing of fault-tolerant and real-time 
distributed systems via protocol fault injection”, 
Proceedings of the Annual Symposium on Fault 
Tolerant Computing, 1996., , 25-27 June 1996, pp. 
404 – 414. 

[5] Carvalho, J.; Portugal, P.; Carvalho, A.; “A 
framework for dependability evaluation of 
PROFIBUS networks”, IEEE Int. Symposium on 
Industrial Electronics, 2003 (ISIE '03) , Volume: 1 , 
9-11 June 2003, pp. 466 - 471 vol. 1. 

[6] Armengaud, E.; Steininger, A.; Horauer, M.; 
Pallierer, R.; “A Layer Model for the Systematic 
Test of Time-Trirggered Automotive 
Communication Systems”, 5th IEEE International 
Workshop on Factory Communication Systems 
(WFCS’04), pp. 275 – 283, 2004. 

[7] Chandra, R; Lefever, R.M.; Joshi, K.R.; Cukier, M.; 
Sanders, W.H.; “A global-state-triggered fault 
injector for distributed system evaluation”, IEEE 
Transactions on Parallel and Distributed Systems, 
Volume: 15 , Issue: 7 , July 2004, pp. 593 - 605. 

[8] Stott, D.T.; Floering, B.; Burke, D.; Kalbarczpk, Z.; 
Iyer, R.K.; “NFTAPE: a framework for assessing 

dependability in distributed systems with 
lightweight fault injectors”, Computer Performance 
and Dependability Symposium, 2000 (IPDS 2000), 
27-29 March 2000, pp. 91 – 100. 

[9] McCanne, S; Jacobson, V.; “The BSD Packet Filter: 
A New Architecture for User-level Packet Capture”, 
USENIX Conference, January 1993, pp. 259 – 269. 

[10] Yuhara M; Bershad, B.N.; Maeda, C; Moss, J.E.B.; 
“Efficient Packet demultiplexing for multiple 
endpoints and large messages”, USENIX 
Conference, January 1994, Second Edition. 

[11] Arlat, J.; Aguera, M.; Amat, L.; Crouzet, Y.; Fabre, 
J.-C.; Laprie, J.-C.; Martins, E.; Powell, D.; “Fault 
injection for dependability validation: a 
methodology and some applications”, IEEE 
Transactions on Software Engineering, Volume: 16 , 
Issue: 2 , Feb. 1990, pp. 166 – 182. 

[12] Horauer, M.; Rothensteiner, F.; Zauner M.; 
Armengaud, E.; Steininger, A.; Friedl H.; Pallierer, 
R.; “An FPGA based SoC Design for Testing 
Embedded Automotive Communication Systems 
employing the FlexRay Protocol”; Austrochip 2004, 
pp. 119-125, Villach - Austria, October 2004, ISBN: 
3-200-00211-5. 

[13] Rasmussen, K.A.; “Open systems protocol testing 
techniques”, IEEE International Conference on 
Communications 1990, (ICC 90), 16-19 April 1990, 
vol.4, pp. 1387 - 1391. 

[14] Karlson, J; Folkesson, P; Arlat, J; Crouzet, Y; 
“Integration and Comparison of the Three Physical 
Fault Injection Techniques” Predictably Dependable 
Computing Systems, Springer, pp. 309-329, 1995. 

[15] Temple. C.; “Identifying Bus Failures in a Time-
Triggered Communication System Containing 
Redundant Communication Channels”, The 2000 
International Conference on Communications in 
Computing (CIC'2000), 26th - 29th June 2000, Monte 
Carlo Resort, Las Vegas, Nevada, USA. 

[16] Rela, M; Madeira, H; Silva, J; "Experimental 
Evaluation of the Fail-Silent Behavior in Programs 
with Consistency Checks", Proc. 26th International 
Symposium on Fault-Tolerant Computing (FTCS-
26), Sendai, Japan, June 1996, IEEE CS Press, pp. 
394-403..

 


