

A GENERIC TOOL FOR SYSTEMATIC TESTS IN EMBEDDED

AUTOMOTIVE COMMUNICATION SYSTEMS

Roman Pallierer

Dependable Computer Systems
DECOMSYS GmbH

Stumpergasse 48/28, A-1060 Vienna
pallierer@decomsys.com

Martin Horauer, Martin Zauner
University of Applied Sciences

Technikum Wien
Höchstädtplatz 5, 1200 Vienna, Austria
{horauer, zauner}@technikum-wien.at

Andreas Steininger, Eric Armengaud, Florian Rothensteiner
 Vienna University of Technology

Embedded Computing Systems E182-2
Treitlstr. 3/2, 1040 Vienna, Austria

{steininger, armengaud, rothensteiner}@ecs.tuwien.ac.at

Abstract. Systematic Test of Embedded Automotive Communication Systems is
the focus of the so-called STEACS project1 - a partnership between academia
and industry. The main emphasis in respect of automotive communication
systems is laid on the communication protocol FlexRay. The goal is to achieve a
systematic test approach and to evaulate the feasibility by corresponding
prototype implementations.

This paper presents one of the results of the project, a generic tool basis
supporting monitoring and diagnosis methods for FlexRay based systems, with
interfaces to other protocols, such as CAN, and digitial and analog input signals.

1 Introduction and Motivation
While well-proven and highly optimized mechanical systems in today’s cars hardly leave
any room for further improvements, the introduction of electronic control systems has
revolutionized the automotive industry. In fact, electronics has established itself as the most
important innovation driver in the automotive domain. Electronic control units (ECUs) not
only constitute a cheap and lightweight replacement for their mechanical counterparts but
even facilitate new functionality. One of these new options is to connect individual control
systems by means of communication networks, thus they facilitate sharing resources and –
most importantly – exchanging information. The access to global information provides the
local control systems with a more comprehensive view of the environment and allows them
to coordinate their activities. This finally forms the key to unprecedented “intelligent”
functions, e.g. to use brake-assistance for steering. The introduction of “by-wire” systems –
which essentially means replacing mechanical and hydraulic components by electronic
components connected by wires without the provision of a mechanical fallback – is
therefore viewed as a substantial innovation step for the automotive industry [LH02].

At the same time these new approaches create a lot of new challenges. Considering that
modern cars already contain up to 70 ECUs and thus represent highly complex distributed
architectures, one of these challenges is certainly to ensure the dependability required for
the safety critical applications under the given tight cost constraints. Car manufacturers
have soon identified the network architecture as the crucial point in this context. To that
end, an industrial consortium is establishing the communication protocol FlexRay [F04] that
provides the flexibility to operate the communication system in a time- and/or event-
triggered mode, respectively.

1 The STEACS-project (http://embsys.technikum-wien.at/steacs.html) received support from the Austrian “FIT-IT[embedded
systems” initiative, funded by BMVIT and is managed by the FFG (FFF) under grant 807146.

Despite all the wealth of properties to provide a reliable communication testing of such
complex distributed architectures remains an issue. Even though we can rely on proven
traditional test approaches for ensuring the functional integrity of all involved components
(in isolation), their proper interoperation remains to be verified – with a large number of
product variants and configurations. In particular, the test efforts are known to rise more
than linearly with system complexity. For electronic systems in automobiles, however,
system complexity increases with every new generation, hence, a solution to this problem
is vital for the future.

The project STEACS (Systematic Test of Embedded Automotive Communication Systems)
was established under the leadership of the industrial company DECOMSYS – a
development member of the FlexRay consortium – and two academic partners, namely the
University of Applied Sciences Technikum Wien and the Vienna University of Technology.
The common mission of this project is to address the above challenges and develop a
systematic approach that enables a test of the fully assembled complex system while still
facilitating some kind of decomposition, such that complexity remains manageable. Clearly
this approach shall be cost efficient and applicable during various phases within the
lifecycle of an electronic system.

2 Requirements and Objectives
It seems evident that the test requirements are strongly dependent on the considered
phase within the product lifecycle. During prototype development, for instance, the central
aim is to prove the absence of design errors, assess the robustness of a given
configuration or to diagnose observed phenomena. Access to any desired location is
usually provided and the test engineer has an in-depth knowledge of the system details.
For a maintenance test in a garage, on the other hand, accessibility is limited and a simple
go/no-go statement is desired since the test is performed by a non-expert with the aim to
find defects (and assuming a correct design). In order to be applicable in all phases of the
life cycle our test approach must be generic. In particular it should come along with limited
access and provide detailed diagnostic information that may be condensed to a go/no-go
statement if desired.

Four means are described in [AL+04] to attain dependability and security within
dependable systems. Fault prevention and fault tolerance are usually deployed during
system development respectively to prevent implementation faults and to improve future
system’s robustness. Fault removal aims at finding and correcting faults within the system
and can be applied during product development (removal of implementation faults) or field
operation (maintenance). Finally, the goal of fault forecasting is to evaluate the system’s
robustness with respect to its future field operation.

Our current focus in the development of our concept is fault removal during the design
phase, since this is where tool support is most urgently needed at the moment. Together
with our automotive partners we have identified four main scenarios in which a diagnosis
tool would be required:

1. Node level testing: A single node is defective before system operation actually
starts. This case is not within the focus of our project, since efficient tests methods
such as BIST are already available for chips or printed circuit boards.

2. System start-up: A set of successfully tested single nodes are integrated into a
prototype cluster which does not start then. Here a tool is required to provide
diagnostic information. Alternatively, if the prototype cluster does start up,
robustness tests are desired to guarantee that the given configuration will also start
up properly in mass production.

3. System operation: A system is successfully put into operation but then suddenly
fails. Again diagnostic information is required here. If no failure is encountered
during prototype operation, robustness tests shall support the projection of this
result to the mass production.

4. System fault tolerance: A tool is required to systematically subject the system to
all anticipated fault scenarios and thus test the fault-tolerance services.

To illustrate these points let us take a closer look at scenario 3: Here a typical example
would be that an error detection mechanism on one node triggers, and as a consequence
the communication controller switches the node to silent. This means it prevents the node
from sending further messages – which are, however, expected by the other nodes.
Another usual problem to cope with is the physical line break of one channel. Some
messages might still be successfully transmitted due to channel redundancy but the overall
system dependability is decreased. A third use case for our tool would be to acquire a view
of the global system state by monitoring the signals actually exchanged. This is an
important aid for application development.

Considering the above mentioned role of communication as the most important enabler for
distributed functionality, and in order to answer the current (and possible future) needs of
our partners, the focus of our project is set on diagnosis and testing methods for the
communication subsystem. It should be noticed, however, that the accurate information
obtained at the data link layer can easily be processed to increase observability at higher
layers (e.g. at the FTCOM [OV01] or application layer). The aim of the project can thus be
detailed as (i) elaborate a strategy for automated diagnosis in the communication
subsystem, (ii) develop methods for validation and verification of protocol parameters, (iii)
elaborate a fault injection methodology for testing of robustness and fault-tolerance
mechanisms upon system integration and maintenance, (iv) define a basis for protocol
conformance testing and finally as a matter of course (v) develop a demonstrator and
experimentally evaluate the concepts.

3 The STEACS approach
The quality of a test result (in terms of test speed and coverage) attainable with given
efforts strongly depends on the testability of the system under test. According to [BMS87]
two key aspects for testability are controllability and observability. Controllability is an
indicator of how easy it is to bring the system or node under test to a given state.
Observability is a measure of how easy it is to observe certain activities of the system or
node under test. For the given architecture this means that we must be able to bring the
system under test to all relevant states and observe all relevant details by means of our
tester node.

Testing and diagnosis of distributed systems are confronted to three main problems, which
are (i) geographic diversity: Each node is a discrete physical entity distant to the other one.
This results in the difficulty to observe and control the whole system (i.e. every node). The
second problem is (ii) the large system state space: Each module can usually be modeled
by a state machine, and consequently the system state is the product of each parallel state
machine. As a result, testing all states of the system is an elaborate operation; moreover,
synchronization between the nodes (state machines) is an additional problem compared to
single systems with only one global state machine. Finally, (iii) the highly layered
architecture leads to a very large fault range (from low level such as EMC to high level
such as malicious faults) that the usual fault injection methods can not handle.

Figure 1: System Setup Example

The STEACS approach is to connect a dedicated tester – the BUSDOCTOR – to the
communication medium of the distributed system, see Fig. 1. Since this is usually a single
dedicated node, one can afford a quite sophisticated design. This setup presents three
main advantages: (i) the intrusiveness of the system is kept low because no node is
modified, (ii) the centralized and single tester can reach every node, which solves the
geographic diversity problem, and (iii) this approach provides a very large coverage.
Indeed, the tester node is directly connected to the communication medium, and both
correct bus traffic and possible disturbances (e.g. glitches) or errors can be monitored with
a very high accuracy.

In this context, a main contribution of the STEACS approach is the decomposition of the
complex system by means of a layer structure. While this decomposition facilitates a
comparable complexity reduction as the usual (geographical) divide and conquer approach,
the implied vertical structuring suits more naturally to the nature of the distributed system
(with single services being distributed over multiple ECUs, e.g.). The fine grained layer
model we have developed for this purpose (see [AS+04, PH+04]) enables us to project
information collected on a low layer to any desired higher layer. Therefore, this generic
approach enables the diagnosis (and testing) of both low level mechanisms such as e.g.
glitches on the bus and high level mechanisms such as e.g. correct signal exchange within
the application.

4 The STEACS implementation
The implementation of the test approach encompasses two main hardware components: a
tester ECU, called BUSDOCTOR, and a remote PC. The BUSDOCTOR performs the
actual monitoring and replay functionality, see [HR+04], whereas the remote PC provides
the graphical representation, cf. Fig. 2. In order to speed-up the development, the
BUSDOCTOR hardware is based on the COTS component termed Node<ARM> from
DECOMSYS.

Figure 2: The BUSDOCTOR System Architecture

The BUSDOCTOR hosts the following implemented modules and units:
Hardware (Altera Excalibur FPGA)
 Two large FIFOs are used as replacement of the controller-to-interface of a COTS

FlexRay controller, cf. Fig. 1, to transfer the monitoring/replay data between the
FlexRay/CAN controller and the embedded ARM processor.

 A timebase unit with a resolution of 25 ns provides the basis for timestamping of
events.

 A cluster synchronization unit serves to synchronize the global time of the FlexRay
system towards the local timebase used for timestamping.

 Several monitoring and replay modules at different layers of abstraction enable
recording and insertion of data from/to the network traffic on either bus system.

Firmware (RTAI Linux)

 Control and configuration modules for the monitoring/replay hardware and the bus
controllers.

 A high-speed compact flash interface to transfer data to/from large flash disks.
 A Fast-Ethernet interface to transfer data to/from the remote PC via the TCP or UDP

transport protocols.
 Trigger and filter modules to record/inject only specific information.

Remote Software
 A BUSDOCTOR DLL handles data transfers between the embedded BUSDOCTOR

units on one hand and the visualization software and the PC filesystem on the other
hand.

 The visualization software provides various different ways to present the relevant data
to the user. This visualization software integrates seamless to the software toolchain of
DECOMSYS for configuration and control of automotive systems.

4.1 Logging Functionality
The BUSDOCTOR is capable of simultaneous logging both FlexRay channels, the CAN
bus and the analog/digital lines. By providing each sample with a timestamp (i.e. a common
reference point in time) it is possible to see all measurements in the same timeline, hence
investigating the total system response.

 CAN

Analog Lines
Digital Lines Logging

Compact
Flash

Memory

BUSDOCTOR

Figure 3: Online and Offline Logging

When logging communication or analog/digital lines the BUSDOCTOR can be configured in
two different operation modes, either in online or in offline mode. Online mode aims
primarily at lab tests whereas the offline mode is applicable for field tests as well.

When there is a lot of communication activity it often becomes necessary, depending of
course on the mode of operation, to limit the amount of data being collected, or to accept
that some logged data might get lost because of bandwidth limitations or limited memory
size. Limiting the amount of recorded data is done in the BUSDOCTOR by using a Filter,
and when to actual start/stop recording is done using a Trigger.

4.2 Filter
The Filter functionality allows defining specific rules to determine which data is being
logged. It is possible to specify different filters for the data going to the PC and the data
going to the CompactFlash Memory.

ID Repetition Base Cycle Channel
1-2047 1 0 -

1 1 0 A
2 2 0 B
3 4 1 AB

10-20 1 0 AB

Table 1: Example of an array with Filter rules

Filter rules consist of an array containing slot ID, communication cycle and channel. The
slot ID identifies the corresponding FlexRay TDMA slot, where data is transmitted. FlexRay
supports up to 64 communication cycles. Within the filter rule, a communication cycle is
specified by two values, base and repetition. Repetition defines the number of cycles until
the next cycle to investigate; only possible values are in step of 2 (1, 2, 4, 8, …, 64). Base
defines which cycle to start with; possible values are from 0 to Repetition -1.

4.3 Trigger
The trigger functionality allows specifying rules to control the start and stop of the data
logging. The trigger rules may consist of several logical equations including, e.g., the
following sources

 FlexRay header information (ID, CycleCounter, SyncBit, SUP Bit, Length)

 FlexRay Statusinformation (Errorflags)

 Data content

The Trigger is applied to one FlexRay frame at a time, and if a trigger equation results to
true the logging will either be activated or deactivated.

Figure 4: Combined Trigger and Filter Functionality

4.4 Replay Functionality
The replay functionality allows sending data back earlier recorded FlexRay logs onto the
communication bus.

Figure 5: Replay Functionality

There are two replay modes supported:

 In asynchronous mode the BUSDOCTOR emulates the majority of nodes participating

in the clock synchronization. Therefore a functional and timely replay is possible since
all other nodes synchronize to the BUSDOCTOR.

 In synchronous mode the BUSDOCTOR synchronizes itself to the schedule present on
the network. Hence, replay can only be performed in the correct functional way, i.e.

recorded FlexRay data can be sent back onto the bus with the right ID and in the right
cycle only.

5 Applications of the tool
With simultaneous logging of FlexRay and CAN communication together with analog/digital
input signals, connected for example to external sensors, the BUSDOCTOR can on
occurrence of external events record a total communication system response. The
recorded communication response can succinctly be analyzed using the software
visualization tool, where specific problem areas can be identified. Within the test scenarios
described in Chapter 2 typical application areas are therefore:

System startup - Debugging of FlexRay systems: For example in an prototype
environment the BUSDOCTOR could give valuable insights into an actual bus
communication, hence, verify the design and make it easier to identify problems.

System Operation - Analyzing of mixed bussystems: In a system where multiple bus
architectures are used (e.g. FlexRay and CAN being interconnected over gateways) the
BUSDOCTOR provides with its simultaneous logging functionality valuable communication
timing information.

System fault tolerance – Integration Testing: While integrating independent modules
into a larger system, e.g. in a car where many independent modules communicate over a
common bus, the BUSDOCTOR can record all important bus communication for later
analysis during system integration test drives.

To support these applications the BUSDOCTOR can operate in several different modes of
operation:
 In the Full Operation Mode the BUSDOCTOR is on one side connected to the bus

systems and the analog/digital sensors and via the Ethernet interface to the remote PC,
see Fig. 3 (left). Recorded bus traffic is directly fed to the visualization software and
vice versa for replay or fault injection. This kind of operation is often used in a prototype
development environment, where different kinds of system designs are being designed
and tested. In particular, the application-engineer wants to test the basic functionality of
a system; here the BUSDOCTOR is a valuable monitoring tool for verifying the design.
Furthermore, when many third party modules are being integrated into a larger system
interoperation issues can be a major obstacle; here the BUSDOCTOR is a powerful tool
for identifying which modules do not behave as specified.

 In Standalone Mode the BUSDOCTOR operates to/from the flash disk and must be
preconfigured prior to its operation. This kind of operation is especially useful for field
tests following the prototype phase. To monitor everything and provide documentation
for system wide correct behavior a BUSDOCTOR is taken along during test drives, cf.
Fig. 3 (right). When everything is working fine the BUSDOCTOR has nothing to record,
however, sometimes under real world conditions systems may temporarily fail, e.g. due
to EMC disturbances. Following the test drive the BUSDOCTOR can be coupled with a
remote PC and the recordings can be read-out and analyzed by a test-engineer.

Figure 6: Full Operation (left) and Standalone (right) Modes

6 Conclusion and Outlook
So far the STEACS project has made two main contributions. First, the establishment of
the scientific basis for systematic testing by introducing a layer-based test methodology
targeted for time-driven protocols such as FlexRay. The framework has been published at
international academic and industrial conferences. Second, prototype implementations of
the generic tool have been performed laying the basis for professional monitoring and
diagnosis products such as the DECOMSYS::BUSDOCTOR.

A wide range of testing activities is currently ongoing which use the presented generic tool.
At automotive customers, the tool is already used for monitoring FlexRay and CAN
messages simultaneously. Within the FlexRay consortium, the presented tool is used to
perform extended fault injection tests of the FlexRay communication protocol. Further
planned activities include the support of conformance and interoperability tests of the
FlexRay protocol, as well as the support of fault injection and diagnosis projects at
automotive customers.

References
[AL+04] A. Avizienis, J.-C. Laprie, B. Randell, C. Landwehr, Basic concepts and taxonomy of

dependable and secure computing. IEEE Transactions on Dependable and Secure
Computing, Vol. 1, Issue 1, pp. 11 – 33, Jan.-March 2004.

[AS+04] E. Armengaud, A. Steininger, M. Horauer, R. Pallierer, A Layer Model for the Systematic
Test of Time-Triggered Automotive Communication Systems. 5th IEEE International
Workshop on Factory Communication Systems, pp. 275 – 283, 2004.

[BMS87] P. Bardell, W. McAnney and J. Savir, Built-in Test for VLSI, Pseudorandom techniques.
John Wiley & Sons, New York 1987.

[F04] -, FlexRay Communications Systems - Protcol Specification Version 2.0. FlexRay
Consortium, 2004. http://www.flexray.com.

[HR+04] M. Horauer, F. Rothensteiner, M. Zauner, E. Armengaud, A. Steininger, H. Friedl, R.
Pallierer, An FPGA based SoC Design for Testing Embedded Automotive
Communication Systems employing the FlexRay Protocol. Proceedings of the Austrochip
Conference, pp. 119 – 123, 2004.

[LH02] G. Leen and D. Hefferman, In-Vehicle Networks, Expanding Automotive Electronic
Systems. IEEE Transaction on Computers, pages 88-93, January 2002.

[OV01] -, OSEK/VDX Fault-Tolerant Communication Specification 1.0. 2001. http://www.osek-
vdx.org.

[PH+04] R. Pallierer, M. Horauer and A. Steininger, Monitoring and Fault-Injection of X-by-Wire
Communication Networks. Design & Elektronik Tagungsunterlagen zum Entwicklerforum
"Drahtlose und drahtgebundene Netzwerke 2004", Munich - Germany, July 2004.

