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Abstract— Time-Triggered Architectures are being introduced
in safety-critical automotive systems (“X-by-wire”) to cope with
the growing complexity and the high safety demands. One of
their merits is to provide a static operation schedule, thus
largely reducing the complexity of (otherwise input-dependent)
execution flow. This, however, comes for the price of increased
configuration complexity: The FlexRay protocol that implements
the time-triggered paradigm on the communication level requires
several tens of configuration parameters. The product of their
possible settings spans a space of more than 10

48 (theoretical)
configurations. This does not represent a problem as long as the
configuration is known and fault-free. However, in many cases –
ranging from debugging over conformance testing to maintenance
– an identification of the configuration is desirable, but turns
out extremely burdensome. This paper presents a systematic
approach that facilitates parameter identification in such complex
systems. Experimental results illustrate the usefulness of our
approach and explore its limitations.

I. INTRODUCTION

Nowadays most automotive innovations stem from elec-
tronic systems. Typical cars are equipped with more than
50 electronic control units (ECUs), most of which being
interconnected via broadcast networks. The use of these ECUs
and especially their interoperation [1] allow the establishment
of extended and improved functionality in comparison with
stand-alone components (e.g., combining speed with steering
information or combining multiple sensor information to a
comprehensive picture of the car’s surrounding). In this do-
main, the FlexRay protocol [2] has been defined by a large
consortium of leading automotive and electronic OEMs to
serve the needs of future distributed applications. Relying on
the time-triggered paradigm [3] FlexRay addresses reliability
and fault-tolerance aspects and provides the required band-
width, while additional provisions also support event-triggered
communication for an effective coupling of sensor/actuator
systems with lower requirements.

FlexRay supports different network topologies – i.e. a
passive bus, a star using star couplers and mixed topologies –
and hosts two communication channels that can be optionally
configured to operate in redundancy (fault tolerant systems).
Media access control is based on recurring communication
cycles consisting of (i) a static segment using a time division
multiple access (TDMA) scheme and, (ii) an optional dynamic
segment using a mini-slotting based scheme. In the static
segment permission to access the bus is confined to predefined

time windows (slots), leading to the advantage of a determin-
istic behavior. Distributed clock synchronization is the enabler
for the TDMA scheme. Another very interesting property
for automotive applications is the so called composability
[4]. It allows to develop different subsystems independently,
exactly simulate their final time behavior and subsequently
to integrate them into the application. Generally the overall
system architecture is defined by the OEM, which serves as
an interface specification for the individual nodes implemented
by the suppliers.

Drawbacks of time-triggered bus concepts are the lack
of flexibility, sub-optimal resource usage, and the restrictive
design process. In particular, all processes and their time spec-
ifications must be known in advance; otherwise, an efficient
implementation is not possible. In contrast to traditional –
event driven – protocols the static control flow necessitates
a comprehensive definition of the temporal relations through
additional parameters. In total, 74 parameters need to be
configured, each with a suitable value within a predefined
range. Now it becomes clear that for a system with more
than 50 nodes – potentially from different suppliers – the
configuration process can become a troublesome burden. There
is, however, sufficient tool support for this task as long as the
configuration is known and fault-free. Still in practice there is
an appreciable number of cases where the configuration is not
known or not trusted and shall hence be identified or verified.
This paper details how we addressed these problems in the
context of our research projects1.

The paper is structured as follows: After a description of
aims and requirements of our approach we will give a brief
survey on related work. Our proposed method for parameter
identification will then be introduced in Sec. IV. Next, Sec. V
will be devoted to an experimental exploration of the approach.
The benefits and limitations of the solution will be discussed
in Sec. VI. The paper concludes with Sec. VII.

II. MOTIVATION AND REQUIREMENTS

The deployment of configuration parameters is a small, yet
essential part during the development process of automotive

1The STEACS-project (Systematic Test of Embedded Automotive Commu-
nication Systems) received support from the Austrian “FIT-IT embedded sys-
tems” initiative under grant 807146. Furthermore, the DECS-project (Design
methods for Embedded Control Systems) received support form the Austrian
FHplus research initiative under grant 811414.
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applications. Most of the time the intended parameter settings
for a cluster and its respective nodes are at hand and stored in
suitable documentation files. Even when this documentation
should be missing, one might argue that the configuration
can be read back out of the configured nodes. This, however,
requires direct (intrusive!) access to every node in the system
or dedicated operating system support for reading out the
parameters via an (operational) network. Moreover, an exist-
ing configuration is not necessarily correct and trustworthy
(consider the case of debugging, e.g.). So in practice, there is
an appreciable number of situations where an identification of
configuration parameters during or after system deployment
might be beneficial. The following list categorizes these use-
cases:
Parameter check: Following the deployment of an application
to all the nodes in the system a system-wide end-to-end test
is desirable. For this purpose the cluster can be put into
operation and the configuration be identified and checked
against the application specification. Unlike a mere read-back
of the configuration this kind of check also covers the correct
execution of the respective settings by the communication
controller. Furthermore, a parameter identification of this kind
can turn out very useful as a quick maintenance check, too.
Parameter measurement: Measuring and checking config-
ured parameters can be used to identify minor mismatches
in the network setup or borderline cases with respect to
tolerances that do not completely inhibit communication but
cause intermittent problems.
Parameter characterization: Characterization implies the
determination of the tolerances exhibited by every single
parameter. This characterization in turn allows for a check
whether the behavior is still within the specification – an issue
that is of interest for a conformance test. In addition parameter
characterization may be useful for maintenance as well.
Parameter surveillance and logging: Monitoring the parame-
ters online over time allows assessing and identifying sporadic
parameter deviations (an approach is described in [5]) and the
gradual change of parameters over time due to ageing effects.
By using statistics and trend analysis one will be able to
identify weak components before they fail (active maintenance
[6]). Furthermore, logging of selected parameters is a very
concise form of information representation useful for routine
checks and post-mortem analysis.

The FlexRay protocol specification [7] lists 74 parameters
that can be used to adapt specific properties of the bus traffic
to the needs of the application. For every parameter pi a valid
range is specified, or, to be more precise, a finite and discrete
set P

∗

i
of permissible values. The network controller provides

dedicated registers to which the desired parameter settings can
be written. We call a complete and consistent image of such
register entries the node configuration, and the compilation of
the configurations of all nodes within the network the network
configuration. All parameters whose values are part of the
node configuration form the parameter set of a node.

A key problem for the desired parameter identification is the
large parameter space spanned by this parameter set and the

associated permissible values. Tab. I gives a rough overview,
without being able to go into details: Parameters related to
the frame syntax and bus schedule have been compiled into
groups (I) and (II), with group (II) representing parameters
relevant in context with the dynamic segment only. Group
(III) exemplifies some parameters used in context with clock
synchronization, start-up, or configuration of properties that
are local to a node only. The focus of our paper will be
on group (I), since the parameters contained herein are most
relevant for the above mentioned use-cases (consensus on
syntax and medium access). Still, the product of the parameter
ranges of these parameters spans a space of more than 1024

possible configurations for one node.
From an implementation point of view parameter identifi-

cation should be applicable in various different phases of a
product lifecycle. Hence, requirements are

(R1) to come along with a remote tester node whose only
connection with the system under test is via the FlexRay
communication network

(R2) an identification that is completely transparent for the
system under test, which means
(a) no change in the network structure
(b) no change in the bus access behavior / schedule
(c) no change in the node (HW, SW) or application

(value and timing)
This essentially means that no explicit support from the

target system is available – a challenging aim.

III. RELATED WORK

Monitoring of distributed embedded systems is frequently
used for debugging, logging and other analysis on the data
level; see [8], [9] for some recent advances. Commercial tools
for the analysis and diagnosis of the most popular automotive
or real-time communication protocols are available. Examples
are CANalyzer2 for the CAN protocol, the TTP monitoring-
card or -node3 for the TTP protocol, or the BusDoctor4, and
the CANalyzer5 expansion for the FlexRay protocol. All these
solutions, however, only enable the monitoring of the bus
traffic on top of the data link or higher layer (plus some error
flags). For the identification of the configuration parameters
of a communication protocol this needs to be complemented
by bus monitoring and dedicated measurements on lower
abstraction levels, as well as an appropriate data analysis.
Therefore, none of those tools currently provide means to
analyze or identify (part of) the configuration.

Some implementations related to the identification and dis-
covery of basic configuration parameters have been patented
and published, see e.g. [10], [11]. These approaches address
different – typically event triggered – communication proto-
cols with a significantly smaller parameter space, such that
an unstructured search is applicable. Knowledge discovery

2http://www.canalyzer.com/
3http://www.tttech.com/
4http://www.decomsys.com/
5http://www.vector-informatik.com/
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TABLE I
A SUBSET OF FLEXRAY CONFIGURATION PARAMETERS WITH THEIR VALUE SPACE AND SCOPE

class FlexRay Parameter |P∗

i
| Scope class FlexRay Parameter |P∗

i
| Scope

gdBit 3 frame syntax gdDynamicSlotIdlePhase 3 bus schedule
gdTSSTransmitter 11 frame syntax gMaxPayloadLengthDynamic 127 bus schedule
gPayloadLengthStatic 64 frame syntax II gdMinislot 62 bus schedule
gdCycle 15989 bus schedule gdMinislotActionPointOffset 31 bus schedule
gdStaticSlot 2043 bus schedule gdMacrotick 255 clock-sync

I gNumberOfStaticSlots 1022 bus schedule pOffsetCorrectionOut 7680 clock-sync
gdNIT 772 bus schedule pRateCorrectionOut 1922 clock-sync
gdActionPointOffset 31 bus schedule III gOffsetCorrectionStart 15988 clock-sync
gdSymbolWindow 87 bus schedule pDelayCompensation[A] 127 topology
gNumberOfMinislot 7994 bus schedule . . . . . .

approaches have been used in the network domain for topology
discovery, see e.g. [12]. The main drawback of the latter
approach is that it employs a challenge/response scheme,
which is highly intrusive.

IV. PROPOSED CONCEPT

Given the requirements from Sec. II we assume the tar-
get system to be a set of distributed computing nodes that
are connected over a communication network based on the
FlexRay protocol. Herein, our aim is to determine the network
configuration of this given, running target system. Therefore,
we attach a dedicated monitoring node to the bus and use a
remote host to perform the data interpretation, filtering, and
parameter identification steps, cf. Fig. 1.

FlexRay Network

System Under Test Parameter Identification

Node A Node B Node DNode C

Star
1

Node E

Star
2

Monitoring 
Node

Fig. 1. System Setup

Similar to knowledge discovery [13] in the artificial in-
telligence domain, our approach comprises four major steps:
Structuring: Given the huge parameter space it is evident that
some kind of “divide and conquer” is required to cope with the
complexity of the problem. We propose a fine-grained layer
structure that decomposes the communication service into a
number of atomic mechanisms, each characterized by one or
a few parameters, cf. [14].
Accessibility: Our layer concept only makes sense, if input
and output of all mechanisms can actually be accessed, such
that the individual service provided by a mechanism can be
directly observed. Since a standard node does not provide suf-
ficient support here, we have devised a dedicated monitoring
node [15] with extended capabilities for our purpose.

Determination: Once the task has been reduced to determin-
ing one single parameter (or a few parameters) of an isolated
mechanism, we use two complementary strategies, namely
measurement and tuning.
Interpretation: In most cases the determination does not
directly yield the desired parameter value. We have to apply
statistics in order to suppress undesired effects, and – since
there are many cases where a parameter is not directly visible
on the bus – we have to transform the measurement result to
the quantity of interest.

A. Structuring the Parameter Space

It is the task of the network controller’s receive service to
transform a serial signal received from the FlexRay bus via the
physical line interface into the enclosed payload data that can
finally be used within the application context. This involves
a lot of activities to assemble, strip and check the received
information (frame). We decompose this complex process into
a set of individual sub-services Si that are provided by so-
called mechanisms Mi. Ideally, a mechanism has one single
information input, one single information output and a status
output. Its operation is described by a simple model in a
generic way, and one or several parameters (and constants)
can be used to characterize it. Both, the generic operation
model (including the constants) as well as the set of applicable
parameters and their permissible values can be extracted from
the protocol specification. Let us consider the NRZ decoder as
an example. This mechanism receives the glitch-filtered serial
bit stream as its input. Its task is to remove the synchronization
elements between consecutive bytes. It recognizes these by
counting the bit sequence from the beginning of a frame and
removing the last two bits from every group of ten bits – in this
case a constant rule that cannot be configured. At its output it
provides a decoded bit stream plus a status whether a coding
error occurred (e.g. missing or erroneous byte start sequence).

The same decomposition approach is applicable for the
transmit path, too. In fact our tester can only observe a nodes’
transmission behavior. Given that transmit channel and receive
channel use the same configuration (anything else would not
make sense), we can project the parameters determined for the
transmit channel to the receive channel as well.

Our approach is somewhat similar to the OSI layer model,
however, finer-grained. In [14] we have illustrated the com-
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plete model for the FlexRay communication services. The fol-
lowing key property of this model shall be highlighted that will
become important later on: Mechanisms can be hierarchically
ordered in levels, such that a high-level mechanism Mk builds
upon the services provided by the lower-layer mechanisms
Mk−1 . . . M1. Therefore the service of mechanism Mk does
not suffer from an erroneous behavior or incorrect configura-
tion of a higher-layer mechanism Mk+i, while it does suffer
from an error of a lower layer mechanism Mk−i. This property
allows us to identify the parameters one by one, starting with
the lowest level mechanism and successively increasing the
level. Thereby every step builds upon the identification results
of the previous one(s).
This dramatically reduces the search efforts from a multi-
dimensional space to one single dimension at a time. In
some rare cases mechanisms comprise two parameters that
are mutually dependent on each other, such that the search is
two-dimensional – still a significant saving.

B. Accessibility

The proposed decomposition is only meaningful, if we can
indeed evaluate the mechanisms individually. For this purpose
we need access to every mechanism Mi’s input, output and
status information. We have designed a dedicated monitoring
node that basically works like a standard communication
controller, but is additionally capable of tracing information
at all required observation points. During the development
of this prototype it turned out that the decomposition into
mechanisms reflects the hardware implementation quite well
(in fact the typical HDL-design of a communication controller
is nothing else than a properly orchestrated collection of
modules implementing mechanisms) such that it was pretty
easy to provide access to the desired information in the
first place. The difficult points were (a) the high bandwidth
required for tracing and transferring the detail information
collected on lower levels to the host and (b) maintaining
the temporal correlation between events collected on different
levels. We used buffering and time-stamping to overcome these
problems, for details see [15]. In fact, for economic reasons
our implementation does not provide access to each and every
level. Instead, we decided to derive the information on some
carefully selected levels Lk from the trace of the lower level
Lk−1 by emulating the service of the enclosed mechanism
Mk−1. The price is a degraded decomposition of the involved
parameters.

C. Parameter Determination Strategies

The above measures put us in the position to have input
stream, output stream, status and model of a given mechanism
Mi available, and the remaining task is to determine the
respective parameter such that these pieces of information fit
together and produce the correct (fault-free) output.

Tuning: One approach here is to “tune” the parameter value
within the allowed range until there is a match. In practice this
involves the following steps:

For the determination of parameter pi associated with mech-
anism Mi

S1: identify all Parameters p1 . . . pi−1 and configure Mech-
anisms M1 . . . Mi−1 accordingly (As pointed out in
Sec. IV-A, the parameters are identified one by one
starting with the lowest mechanism M1).

S2: select a starting value for pi

S3: configure Mi with this value
S4: observe the status output of Mi to decide whether the

chosen setting matches the observed bus traffic:
a: if the status is “error” then select another valid setting

for pi and proceed with step S3
b: if the status is “ok” the chosen value is correct and

the parameter was successfully identified
The strategy for selecting a starting value and for stepping

through the elements of P
∗

i
can be optimized (i.e. the most

probable settings first) by using protocol know-how. In this
way the identification process can be speeded up.

In some cases more than one parameter setting may be valid
(see below). This means that every result from step S4b is
stored as successful and the process is continued with step S3
until the complete list has been processed.

Measurement: In a general sense protocol parameters are
used to shape the appearance of the bus traffic. This, in turn,
means that every parameter setting is visible in the bus traffic
in some way. Therefore it is a very natural approach for
parameter determination to measure some characteristics of
the bus traffic. This may be as simple as directly determining
a parameter such as the baud rate or the cycle length. In other
cases, however, parameters are not directly visible and must be
indirectly determined. Examples are the network idle time or
macrotick length. Finally, it may also occur that a parameter
cannot be determined at all, since the mechanism associated
with it is simply not exercised during the observed portion
of the communication. An example for this is a boundary
value (min, max) that is unlikely to be exceeded during an
observation.

This shows a fundamental limitation of the identification
approach: Hardly any communication scenario exploits all
features of the protocol, and hence communication is often
possible even if not all parameters are correct or congruent.
Possible reasons are that the communication schedule is not
dense, dynamic slots are not utilized or boundary conditions
are not reached. Depending on whether the respective protocol
feature will be utilized in the given setting later on such
a mismatch may or may not become visible. There is no
way for the identification process to make a decision between
(seemingly) equivalent configurations.

As an example let us consider the (frequent) case that the
last slots within a communication cycle are unused. With
respect to such an observation it makes no difference where
the start of the Network Idle Time (NIT) is assumed, which
makes the identification of the parameters gdNIT and gNum-
berOfMinislots (or gNumberOfStaticSlots when no dynamic
part is used) ambiguous. Integrating a node with parameters
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that are not congruent with the configuration of the other nodes
in this respect will cause no problems as long as the last slots
remain unused.

The decision between tuning and measurement is very much
dependent on the application purpose and implementation
details. In principle, both methods are equivalently applicable
for every parameter. In practice, however, it turned out that
the approaches are rather complementary: Tuning puts lower
requirements on the monitoring hardware (basically, only the
error status must be accessible) and proved very efficient
for parameters that have a relatively small set of permissible
values. Measurement, on the other hand, is beneficial when
the parameter in question can be directly observed and access
to the data inputs and outputs is easy. In practice, however,
these data streams can quite easily be derived from a trace per-
formed on a low abstraction level and an appropriate software
emulation for the “by-passed” mechanisms. In fact a bit-level
trace along with an associated time stamp for the frame start
allowed us to identify, check and strip all relevant information
concerning transmission start sequence, frame header, CRC
and payload. On the other hand, the determination of the bit
length by means of the measurement algorithm would require
us to trace and evaluate the oversampled bit stream – this task
can be easier performed by using the tuning approach.

D. Interpretation and Filtering

It is not surprising that the exploitation of protocol-specific
know-how can significantly increase the efficiency of the
identification process. Two examples for this in the above
description are the proper choice of a starting point for
tuning and the interpretation leading from a measurement
result to a parameter value. There is, however, much more
potential in an intelligent interpretation of the plain results and
observations: Not all combinations of valid parameter settings,
e.g., yield a valid and reasonable configuration. In some cases
it is therefore possible to restrict the range of higher level
parameters based on the knowledge of lower level parameters
and protocol restrictions. The knowledge, for instance, that
the offset correction must start within the NIT and finish
before the end of the NIT allows us to derive boundary values
for the parameter gOffsetCorrectionStart once the NIT has
been identified. Another example is the macrotick length: The
knowledge that this parameter must be a common divisor
of the static slot length, the network idle time, the symbol
window length, the minislot length, and others, usually allows
to narrow down P

∗

i
for this parameter to a few choices.

The meaningful presentation of the determined parameter
values to the user is another important issue. In the ideal case
an unambiguous and complete set of precisely determined
values – one for each parameter – can be presented as the
result of the identification process. In practice, however, this
turned out to be rarely the case. This is due to the following
reasons:

1) As already argued above, not all relevant effects may
have shown up during the observation interval. As a

consequence some parameters are difficult to identify;
often it will only be possible to narrow their range.

2) Since every node operates with its own local crystal
clock oscillator (microtick), activities are essentially
uncorrelated from a microscopic view (while a globally
agreed time base is established on a macroscopic level).
This inevitably leads to a measurement jitter, at least on
lower levels.

3) As a result of drift effects (temperature drift of the
crystals, e.g.) the communication properties of the ob-
served system are not completely static. A prominent
example for this is the drift of the global system clock;
for FlexRay this is allowed to vary within the specified
limits of 1500ppm. This drift directly causes a variation
of the cycle length and other parameters.

4) It cannot be taken for granted that the observed commu-
nication is completely fault-free. Therefore, it is impor-
tant to establish some means for suppressing outliers,
since these would lead to conflicting results otherwise.

With respect to issues 3 and 4 it may as well be the
purpose of the identification process to detect such outliers
and assess their frequency, or it may be the intention to assess
the parameter variations. As outlined in Sec. IV-C this depends
on the application context of the identification.

In any case it is generally not sufficient to perform a single
pass of the identification process and compute the results. In
general a longer observation yields a more precise result (and
in the ideal case the observation is continuous). This raises
the question of when to finish the observation process, and it
appears reasonable to give the control to the user and provide
him with information related to the trustworthiness of the
results. The latter may be a residual interval for a parameter
and/or statistic qualifiers like the number of samples or the
standard deviation.

V. EXPERIMENTAL VALIDATION

In order to demonstrate the practical usefulness of our ap-
proach and explore its limitations we performed an experimen-
tal investigation on our prototype implementation. In particular
we wanted to study how its efficiency depends on network
configuration and bus traffic density (bus load), and finally
evaluate its robustness against transient faults. The setup for
our experiments consisted of a COTS FlexRay cluster, our
dedicated monitoring node and a host computer for parameter
identification as illustrated in Fig 1. For a given scenario, a
complete identification took approximately 30 seconds and
each parameter was identified more than 1000 times.

A. Metrics

• Identification status: For every parameter pi a set of
permissible values is given in the specification (as a range
with defined step size, for example). This initial value set
P
∗

i
is hence known a priori, and it is the purpose of the

identification process to identify the precise parameter
value ci for a given cluster or at least reduce P

∗

i
by

ruling out elements, such that the cardinality |Pi| of the
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set of remaining possible values is as small as possible.
In our experiments the correct setting ci ∈ P

∗

i
for every

parameter pi is of course known and can hence be used
for checking the correctness of the identification result.
In this context the result of the identification of a given
parameter can be classified as

– “successful”: Pi = ci (the correct value was exactly
identified)

– “correct”: |Pi| > 1 and ci ∈ Pi ⊂ P
∗

i
(set was

reduced & contains the correct value)
– “not detected”: Pi ≡ P

∗

i
(the set could not be reduced

at all)
– “faulty”: ci /∈ Pi (the set determined does not contain

the correct value)
• (Local) Efficiency: We want the efficiency metric to

express – on a scale between 0% and 100% – how
far the identification process has aided us in precisely
determining the actual parameter value ci of a parameter
pi or at least in reducing the initial value set P

∗

i
. Logically,

an efficiency of 100% implies that the parameter has been
“successfully” identified, while 0% denotes that no reduc-
tion of P

∗

i
has been accomplished (“not detected”). Given

that (a) many parameters exhibit a large set of permissible
values (|P∗

i
| > 1000, e.g.) and that we (b) strive for a

significant reduction of this set, it seems appropriate to
use a logarithmic scale for expressing the amount of this
reduction. This leads to the following formal definition
of the (local) efficiency Ei for the identification of a
parameter pi : Ei = 1−lg(|Pi|)/ lg(|P∗

i
|) [%]. Notice that

Ei expresses the relative improvement in the exponent of
|Pi| with respect to the initial set |P∗

i
|. Consequently for

the same absolute improvement Ei tends to become larger
when |Pi| approaches 1.

• Global Efficiency: In analogy to the local effi-
ciency, the global efficiency is calculated as GE =
1 −

∑
lg(|Pi|)/

∑
lg(|P∗

i
|). Global efficiency denotes

how far the aim of identifying the parameter vector
(c0, c1, c2, . . . cn) describing the configuration of the sys-
tem under consideration has been accomplished: In this
sense a value of 100% indicates that the configuration
has been “successfully” identified while 0% mean that
no reduction at all has been attained.

B. Experimental Efficiency Assessment

Tab. II shows the identification results for scenario CF3
(see Tab. III) with 70% bus traffic density. It can be seen
that 7 out of 10 parameters could be successfully identified
(Ei = 100%), which is a remarkable achievement in any case.
Since the application did not use dynamic messages, only
trivial results could be identified for the related parameters,
which are therefore excluded from the calculation of the global
efficiency.
A similar case is gdSymbolWindow that describes the length
of the symbol window. Since no symbol was observed during
this experiment (20 seconds of bus traffic), it was not possible
to identify the length. Unlike the case of dynamic frames, we

TABLE II
EXPERIMENTAL RESULTS FOR SCENARIO CF3, 70% TRAFFIC DENSITY

Parameter P
∗

i
Pi Ei

gdBit 3 1 100.00%
gdCycle 15989 1 100.00%
gdStaticSlot 2043 1 100.00%
gNumberOfStaticSlot 1022 1 100.00%
gPayloadLengthStatic 64 1 100.00%
gdNIT 772 767 0.10%
gdTSSTransmitter 11 1 100.00%
gdActionPointOffset 31 24 7.45%
gdSymbolWindow 87 87 0.00%
gNumberOfMinislot 7994 1 100.00%
gdDynamicSlotIdlePhase - - -
gMaxPayloadLengthDynamic - - -
gdMinislot - - -
gdMinislotActionPointOffset - - -
Total Space / Global Efficiency 1.17E+24 1.60E+06 74.21%

regarded this as a “natural” effect in an identification process
rather than a deficiency of our setup and therefore considered
the unfavorable result (Ei = 0%) in the calculation of GE.
The parameter gdActionPointOffset describes the frame offset
within the slot which is mandatory to increase the robustness
against clock drift. Since this parameter largely suffers from
local oscillator drifts, it cannot be precisely identified without
having access to the nodes’ local view of time. By appro-
priately relating information on actual slot length and frame
length Ei = 7.45% could at least be achieved.
As already discussed above gdNIT is not directly visible on the
network, and its identification efficiency largely depends on the
network traffic. Our bad result of (Ei = 0.1%) is partly due to
an unfavorable traffic constellation, but still an improvement
by a more sophisticated interpretation strategy is conceivable.

Overall, the applicable search space could be reduced from
1.17∗1024 to 1.60∗106, i.e. by almost 18 orders of magnitude,
yielding a global efficiency of GE = 74.22%. Our correct
implementation of the identification tools was confirmed by
the fact that no faulty detection occurred.

C. Impact of the Bus Traffic Density

The bus traffic density (or bus load) – expressed as the
proportion of bus activity within a communication cycle –
was varied between the values 5%, 30%, 70% and >90% for
configuration CF3 (see Tab. III). The frames were positioned
randomly within the communication cycle, but always in
accordance with the FlexRay specification.

Fig. 2a illustrates the dependence of GE on the network
traffic density at the example of configuration CF3. It can
be observed that an increase of the network traffic density
from 5% to 100% improves GE from 62% to 74% (i.e. by
an absolute factor of 50). A closer analysis revealed that this
improvement only affected the parameters gNumberOfStatic-
Slots and gdNIT. This indicates that increased traffic tends to
contribute to a clearer perception of the segment boundaries.
More precisely, high network traffic increases the chances for
observing “valuable” frames that are positioned right at the
boundaries of interest. While this is true for the general case,
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TABLE III
NETWORK CONFIGURATIONS USED FOR THE EVALUATION

FlexRay Parameter CF1 CF2 CF3 CF4 CF5
gdBit [Mbps] 10 10 5 10 2,5
gdCycle [µs] 3000 5582 10780 180 7401
gdStaticSlot [µs] 20 16 90 16 175
gNumberOfStaticSlot [slot] 142 118 118 2 2
gPayloadLengthStatic [byte] 3 16 16 1 12
gdNIT [µs] 151 145 151 139 392
gdTSSTransmitter [bit] 8 11 11 11 15
gdActionPointOffset [µs] 1 1 1 1 1
gdSymbolWindow [µs] 9 9 9 9 9
gNumberOfMinislots [slots] 0 0 0 0 353
gdDynamicSlotIdlePhase [bit] 1 1 1 1 1
gMaxPayloadLengthDyn. [byte] 0 0 0 0 16
gdMinislot [µs] 3 3 3 3 15
gdMinislotActionPointOff. [µs] 1 1 1 1 1

there may be a more favorable schedule that yields higher GE
than a less favorable one for the same network traffic density.

Interestingly GE does not noticeably change when reducing
the network traffic from 30% to 5%. This indicates that there
is a significant share of parameters whose local efficiency is (at
least largely) independent from the network traffic. A similar
saturation effect can be observed in our results for an increase
from 70% to 100%: Even a dense traffic cannot compensate
for local oscillator drifts and the lack of symbols.

D. Impact of the Configuration

Five different network configurations (CF1 . . . CF5) were
used to evaluate the dependence of identification quality on
diverse settings. These respective settings are summarized in
Tab. III (only the parameters that are within our scope are
listed).

During this campaign, the configurations CF1 . . . CF5 were
compared, all with 5% bus traffic. Fig. 2b shows GE plotted
for these different configurations. It can be observed that the
variation of GE remains within 1%, which is quite surprising
considering the large differences among the configurations.
Similar to Sec. V-C the choice of the configuration only
affected the local efficiency for gdActionPointOffset, gNum-
berOfStaticSlots and gdNIT.

E. Robustness Evaluation

As already outlined in Sec. IV-D we do not rely on a single
measurement but apply statistics to multiple determination
results such that outliers can be suppressed (or identified, if
desired). In our experiment setup we discarded the lowest 10%
and the highest 10% of the results from the determination step
(commonly known as “quantile”) to get rid of transient fault
effects. In order to experimentally validate this robustness we
superposed the following faults to an originally fault free bus
traffic:

• Transient syntax errors: The fault rate in this experiment
was 10−3, 10−2 and 10−1 single bit flips per frame,
which resulted in 18, 180 and 1808 faults during the 5
second observation period.

• Transient parameter deviations: The fault rate was
10−3, 10−2 and 10−1 cycle length extensions per cycle,

yielding 1, 10 and 95 faults during the 5 second obser-
vation period.

Fig. 2c compares the global efficiency GE attained under
the above faults with the fault free case. In all fault scenarios
GE remains at the original level of 62.14%, which proves
the expected robustness to faulty bus traffic. In addition, each
deviation was properly indicated in the report files of the
identification process.

VI. BENEFITS AND LIMITATIONS

As our experimental results show, it is indeed possible to
attain reasonable results even under the tight industrial con-
straints stated in Sec. II. In practice the presented experimental
results are by far sufficient for a “plug-and-play” integration
of a passive (“listen only”) node into a running cluster. The
same is true for an active node (i.e. one that may also send)
provided that the bus traffic observed during the identification
contained all relevant protocol features (for our experiments
this would mean that there are indeed no dynamic frames) and
the global schedule was set up accordingly, beforehand. While
safety critical applications will probably not adopt these plug-
and-play features, they may benefit e.g. from the parameter
surveillance enabled by our approach.

Some problems, however, still remain unsolved:
• As already outlined above, the distinction between differ-

ent configurations that are equivalent with respect to the
observed bus traffic is not possible. This seems to remain
a fundamental limitation unless our monitoring node is
allowed to apply stimuli. Therefore we are planning to
complement our parameter identification with the option
to actively stimulate the network by means of a dedi-
cated active tester node. While this extension obviously
sacrifices the transparency with respect to the network
traffic, it allows a more comprehensive identification. In
addition we have to convey information on the reception
status of the stimulus from the node back to the tester.
A way to accomplish this without modifications at the
node’s side is currently being investigated in a separate
research project.6

• By listening to the bus traffic we have a quite direct view
on the nodes’ transmit paths. Since it does not make sense
to use divergent parameter settings for transmit path and
receive path (and since this is usually not supported by
the controller hardware), it is reasonable to project the
identification results to the receive path as well. How-
ever, in the context with more advanced applications of
the parameter identification (characterization of boundary
values or path-specific constants, e.g.) this projection may
become insufficient and some kind of stimulation paired
with a loopback from the top of a node’s receive path to
the tester again becomes inevitable.

• In the current concept the monitoring node is viewed as
an ideal reference. All observed faults and inaccuracies

6See http://www.ecs.tuwien.ac.at/mitarbeiter/armengaud/extract.html for
details on the ExTraCT project
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Fig. 2. Identification quality vs. bus traffic density (a); Identification quality vs. cluster configuration (b); Identification quality vs. fault rate (c)

are attributed to the target system. While this supposition
may be legitimate for a node that is periodically checked
and calibrated, it definitely needs to be reconsidered
for an embedded solution used, e.g., in context with
parameter surveillance.

• The parameter identification tool used in our experiments
does not cover parameters for start-up and clock synchro-
nization. Active stimulation and the option to restart the
nodes on demand would be required for this purpose.

The basic concepts of our approach can be applied to
other communication protocols as well, although a different
protocol specification with different parameters and value sets
obviously implies different rules for the determination step and
the interpretation, particularly for event driven protocols.

VII. CONCLUSION AND FUTURE PROSPECTS

We have proposed a strategy for automatic identification of
the network configuration in a FlexRay network. The approach
employs a remote node that passively listens to the network
traffic from which all relevant information is extracted. This
makes the approach perfectly transparent. The strategy com-
prises four steps, namely (i) structuring the complex protocol
service into simple mechanisms, (ii) providing access to all
relevant data within a dedicated monitoring node, (iii) using
the tuning approach and – as a complement – measurement of
traffic properties to determine the parameter values, and (iv)
applying protocol know-how and statistics to narrow down the
remaining parameter space to suppress undesired effects.

Our experimental evaluations on a prototype implemen-
tation of a monitoring node and the associated software
tools have yielded very encouraging results. At the same
time several limitations have shown up, some of which can
be overcome by improving the concept and implementation,
while others appear to be fundamental. Our next steps will be
directed towards including an option for stimulus generation
into the tools and implementing a transparent way for observ-
ing the reception status of a node. We have identified numerous
relevant application domains, where a tool for parameter
identification can be very useful, and even in its current
prototype implementation our approach already provides very

versatile support from debugging prototypes in a lab to an
efficient maintenance in a garage.
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