
Efficient Stimulus Generation for Testing Embedded Distributed Systems –
The FlexRay Example

Eric Armengaud, Andreas Steininger
University of Technology Vienna

Embedded Computing Systems Group
Treitlsstr. 3, 1040 Vienna, Austria

{armengaud, steininger}@ecs.tuwien.ac.at

Martin Horauer
University of Applied Sciences

Technikum Wien
Höchstädtplatz 5, 1200 Vienna, Austria

horauer@technikum-wien.at

Abstract

Embedded electronic communication systems play a
vital role in the future development of automotive sys-
tems. For successful application developments new test
and diagnosis solutions for these distributed systems are
required. This paper presents solutions for the stimulus
generation of test systems based on a remote test under
the stringent constraints of the automotive industry. We
elaborate a flexible and accurate method that enables a
systematic and comprehensive test of data link layer re-
lated communication services. Furthermore, we discuss
how this solution can be applied for various different test
purposes (e.g. for verification, robustness, interoperabil-
ity or maintenance tests) and demonstrate its application
by use of an example that varies one fundamental protocol
parameter of FlexRay.

1. Introduction

Today’s vehicle networks are transforming automotive
control tasks, once the domain of mechanical or hydraulic
components, into truly distributed electronic systems. Re-
placing rigid mechanical components with dynamically
configurable electronic elements triggers an almost or-
ganic, system wide level of integration. As a result, the
cost of advanced systems should plummet.

Sophisticated features such as chassis control and
smart sensors, now confined to luxury vehicles, will likely
become mainstream. All these functionalities translate
into higher performance, reliability and maintainability
requirements for future automotive systems. Suitable so-
lutions must be developed under stringent cost constraints
and provide the modularity to allow the interchangeable
use of components from different vendors.

With more than 50 distributed electronic control units
and applications requiring frequent exchange of informa-
tion even today’s cars have already become complex dis-
tributed systems. Herein, the data networks are an im-
portant enabler for future technologies. Time-triggered

communication is being regarded as the most capable
paradigm for advanced and safety related control applica-
tions (“X-by-wire systems”), and it is quite evident that
buses with time-triggered operation modes will play a
major role in future automotive networks. Against this
background an industrial consortium of leading automo-
tive and electronic manufacturers has established a very
promising candidate for future automotive communica-
tion systems termed FlexRay, cf. [1]. Relying on both the
time- and event-triggered paradigms, FlexRay promises
reliability and fault-tolerance aspects with the bandwidth
to serve the needs of a communication backbone and the
flexibility for the coupling of sensor/actuator systems re-
quired for future automotive solutions.

In this context of safety critical operations where a fail-
ure can lead to severe consequences, means for the eval-
uation of dependability properties are required. Clearly,
testing is essential in order to evaluate whether the sys-
tem is correctly implemented and will react as expected
in its future field environment. However, while methods
for testing of the computing nodes themselves on the one
side and the bus on the other side do exist, a unified, ac-
curate and systematic test approach on the system level is
required that does not only consider the function of these
singular components in isolation. Experience shows that
problems with interaction of “fault-free” components are
becoming increasingly relevant in practice. The problem
is further aggravated by the large number of new product
variants.

It is the aim of our STEACS1 project to address these
challenges and take a first step towards a solution. Our
goal is to develop a compact method to enable accurate,
systematic and comprehensive tests of data link layer re-
lated communication services for distributed real time sys-
tems based on the FlexRay protocol.

In every test approach two fundamental sub-tasks can

1The STEACS-project received support from the Austrian “FIT-IT
[embedded systems” initiative, funded by the Austrian Ministry for Traf-
fic, Innovation and Technology (BMVIT) and managed by the Austrian
Research Promotion Agency (FFG) under grant 807146.
See http://embsys.technikum-wien.at/steacs.html for further informa-
tion.



be identified, namely stimulation of the target and obser-
vation of its response. The focus of this paper is on the
stimulation aspect, in particular on improving system con-
trollability such that any desired bus traffic can be emu-
lated. A single method is developed that is efficient and
flexible enough to be applicable for tests during the dif-
ferent stages within the product life cycle. This aids in
amortizing the efforts for the test infrastructure.

The next section gives an overview of common test
goals and test methods. In Section 3 we summarize related
work, before we present our system setup and approach to
stimulus generation in Section 4. After a discussion of
the applicability of our approach for various test purposes
in Section 5 we detail an experiment in Section 6 that we
conducted with a FlexRay demonstrator system in order to
illustrate the benefits and usefulness of this method. Sec-
tion 7 concludes the paper.

2. Aims of Testing

According to [7], “testing is any activity aimed at eval-
uating an attribute or capability of a program or system
and determining that it meets its required results”. This
common definition can be applied to testing of distributed
automotive real-time systems with different goals in mind
(we assume that every single node has passed its node
test):

• Verification is a common test procedure during sys-
tem development that involves checks whether the
system adheres to given properties [5]. It aims at re-
vealing implementation faults. Typically, only mod-
els or early prototypes of the system are available,
and the tests are focused to the investigation of a few
mechanisms at a time. Thus, the emphasis for the test
environment is set on flexibility.

• Conformance testing represents the process of evalu-
ating whether the parameters of an implemented sys-
tem conform to a specification or a standard; in our
case the FlexRay protocol specification [1]. Herein,
correct system operation has to be validated for the
entire range of possible inputs and parameters. This
test is usually executed with some kind of prototype
system. In practice, however, these tests will be re-
stricted to a subset of relevant configurations since an
exhaustive test of all possible configurations seems
not plausible.

• Robustness testing is defined in [9] as the charac-
terization of the system behavior in presence of er-
roneous and/or stressful input conditions. Ideally,
all possible inputs (including illegal ones) should be
tested; again, however, only a subset will be feasi-
ble in practice. Therefore, e.g., fault-injection tech-
niques are used to execute and check the imple-
mented error detection and handling mechanisms.

• According to [8], the purpose of interoperability test-
ing is to prove end-to-end functionality between (at
least) two communication systems according to the
standard(s) on which those systems are based. Typ-
ically, nodes from different vendors are integrated
into a distributed system in order to test whether
these nodes are able to communicate under a set of
possible configurations.

• Performance testing, or system evaluation, is used to
assess the performance of a given system by means
of metrics that can be used to compare the differ-
ent implementations. Its main focus is on measur-
ing the performance of a system for a well defined
set of tasks [3], and not to verify or validate a sys-
tem. In contrast to verification, efforts are set to the
standardization of the test procedure and the tests are
typically run on an early product implementation.

• Finally, the goal of maintenance testing is to detect
and localize faults that emerge during the mission
phase of a system. The scope is typically narrowed
to (physical) faults that occurred since the last main-
tenance actions (e.g., due to ageing effects) [5]. In
practice, e.g., some kind of tester node is coupled to
the system-under-test as illustrated in Figure 1 and a
set of tests are executed in order to unveil defective
components.

Verification, conformance, interoperability, and main-
tenance tests are qualitative tests with the purpose to prove
whether an assumption is correct or wrong whereas ro-
bustness and performance tests are quantitative tests that
aim at deriving a numerical characterization for a given
attribute.

Our aim is to develop a single method to enable accu-
rate, systematic and comprehensive tests of FlexRay com-
munication services that, in principle, can handle all of the
above tests.

3. Related Work

A typical test procedure involves the application of (a
sequence of) stimuli – in order to move the system to the
desired state – and the observation of the subsequent sys-
tem reaction.

Mainly, for verification, performance, and maintenance
testing a correct stimulus in both the value and the time
domain is required. In this context we have to deal not
only with testing but also with debugging of distributed
real-time systems. The observational requirements for
these mechanisms differ in the amount and type of in-
formation required. Testing is used for unveiling failures
(a mainly automated task) whereas debugging is used for
identifying the errors that cause the failures (essentially an
interactive task). For either purpose we need some facili-
ties to monitor the events emanating from the distributed
nodes along with their temporal relation. Furthermore, for



debugging it must be possible to reproduce a situation that
led to a failure. In this context a mechanism for determin-
istic distributed replay of a previously traced or artificially
generated behavior is required.

State-of-the-art methods that rely on an instrumented
kernel to on-line record the timings and occurrences of
major system events and a way to off-line replay the
recorded events have been presented in [10] and [11].

Conformance and interoperability testing requires that
the stimuli can be “tuned” in both the value and the time
domain to test the range of valid parameters and con-
figuration constraints. Again a way to monitor and re-
play the activities of the distributed real-time system is
required. To accommodate for the tuning an alteration of
the recorded data in both domains must be possible prior
to replay, see [8] for some recent advances. The same re-
quirement applies to robustness testing, since it must be
possible to create stress conditions for the system.

In addition, some types of tests – such as robustness
testing, e.g. – involve activating error detection and han-
dling mechanisms. Given that during normal operation
fault occurrence is (fortunately) too rare to obtain mean-
ingful results within a reasonable observation time, the
artificial insertion of faults and/or errors into a system
(“fault injection”) has become popular. The various fault
injection techniques and tools, that have been introduced
over the years, can generally be divided into simulation
based, software based, hardware based and hybrid fault
injection, see [6] for a compilation of recent papers. In
contrast to these systems our approach aims at an efficient
stimulus generation in general generating both valid and
(optional) faulty stimuli, respectively.

The complexity of our system under test in conjunc-
tion with the desired long observation time rules out sim-
ulation based approaches. Software implemented fault in-
jection, on the other hand, would require us to install and
control some kind of “saboteur” processes on all target
nodes – a highly intrusive procedure. Finally, the tradi-
tional hardware fault injection techniques requires direct
access to the target nodes that is ruled out by our system
setup, cf. section 4. Moreover controllability of most tra-
ditional methods (pin-level fault injection, heavy ion radi-
ation, etc.) is too low. So obviously none of the existing
fault injection methods actually suits our purpose without
modification.

For laboratory use some kind of general purpose pro-
grammable pattern generation and analysis tool could be
used to facilitate all the above tests. In practice, however,
the usage of such devices is often ruled out since a sim-
ple rugged tester implementation for field operation is re-
quired and such systems are too complex to handle due to
their general purpose design.

4. Stimulus Generation for Testing FlexRay-
based Systems

This section presents our system setup and discusses
different ways how to generate and/or alter the bus traffic,
how the fault space can be structured and provides some
insights to the architecture of our tester node.

4.1 System Setup
For test purposes access to the system under test is

needed, and in general the ability to freely access all de-
sired points in a system is decisive for its testability. How-
ever, in practice it is impractical to directly access signals
on every single node and provide some means to correlate
the measurements. Instead, the communication subsys-
tem that is dedicated to facilitating information exchange
among all independent physical entities (nodes) suggests
itself as the central test access point. Consequently we
have chosen the setup illustrated in Figure 1 for our ap-
proach: A dedicated remote tester node is connected to
the communication bus where it can both, apply stimuli
and observe the system reaction. Although this approach
is very effective and applicable throughout all phases in
the life cycle (access to the communication bus should be
available even during maintenance), there are still some
restrictions such as, e.g. the distinction of node reactions
that have identical (or no) manifestation on the communi-
cation bus. Our goal is to exploit the capabilities of this
setup as far as possible; in particular we will consider the
stimulation aspect in the following.

Tester

Node A Node B Node DNode C

Star
1

Star
2

Node X Node Y Node Z

can emulate an entire Sub-Net

Figure 1. System setup

Part of the FlexRay protocol is built upon a Time Di-
vision Multiple Access (TDMA) principle, which means
that a node is allowed to broadcast a frame within a pre-
viously defined time window (slot). This allows for three
options to physically interfere with the ongoing bus traf-
fic:

1. Physically override regular traffic. The fact that we
cannot override a dominant bus state with a recessive
one severely limits the capabilities of this method.

2. Use available communication bandwidth to accom-
modate the stimuli. Considering that the bus sched-
ule is normally very tight, it is optimistic to assume
availability of all static and dynamic slots required
for testing (changing the bus schedule for the pur-
pose of testing is viewed as a prohibitively intrusive



action). Moreover, this ”addition” of traffic does not
allow for the desired change of the regular traffic.

3. Replace part of the regular traffic by tester-generated
traffic. This method may either be implemented
by (a) physically removing nodes from the system
whose behavior is then emulated by the tester node
or (b) dividing the system into two subsystems with
the tester acting as a bridge between them that mod-
ifies the traffic appropriately. Notice that (a) can be
viewed as a variant of (b) in which one subsystem is
emulated by the tester.

We have decided to use method (3) for our purpose,
although, it is still intrusive in some sense namely with
respect to the physical arrangement of the system. Its
main advantage, however, is to give us full control over
the bus traffic, thus allowing a large range of target faults
or their manifestations, respectively, to be injected. Faults
that have no manifestation in the bus traffic are definitely
local faults and hence not the target of our test.

4.2. Structuring the Fault Space
There are two key ideas involved in our approach for

structuring the fault space (A more detailed discussion on
this can be found in [4]):

• Rather than dividing the system into physical regions
– as it is often done in traditional test approaches –
we use vertical structuring into layers. This reflects
the nature of a distributed system: A service may be
spread over several physical nodes. Moreover, with
a clever decomposition into independent services lo-
cated on different layers we can assume lower layers
to be transparent for faults that occur on higher lay-
ers, which allows us to target faults to every desired
service on one or several nodes under test by means
of our remote tester.

• We describe each service by a set of parameters,
which allows us to map every type of failure of this
service to one or more parameter faults.

Due to the high controllability given by our method –
our tester is able to act as an entire sub-net – we are able
to produce (generate and/or modify) almost any kind of
bus traffic and more especially a stimulus that will ren-
der all lower services transparent, allowing us to focus the
test on specific mechanisms. Thus, we are able to sys-
tematically step through the fault space service by service
and parameter by parameter in an automated way. Given
the implied independence of the considered mechanisms,
single physical defects or local disturbances are likely to
affect a single mechanism only (i.e. due to their locality)
and hence subclasses thereof can be well represented as
single parameter faults. This allows us a systematic treat-
ment of fault causes. On the system level it should be
feasible to provoke all possible failure modes of a fault

containment region (=node) by means of single parame-
ter faults (or simple combinations thereof), which allows
a systematic treatment on this level as well. In summary,
this structuring is a notable achievement since a system-
atic or even exhaustive coverage of the the fault space
based on a less strategic permutation of the bits within the
bus traffic alone is hopeless.

4.3. Stimulus Generation/Modification
Obviously the most realistic way to alter services

within a system implementation is achieved by physi-
cal nodes that directly exhibit the hypothesized behav-
ior/defect. However, this solution is very expensive, in-
flexible and inefficient for an exhaustive exploration of
the fault area. An alternative approach uses an emula-
tion of the faulty nodes that generates the same, however,
controllable bus traffic as generated by erroneous nodes.
Therefore, a complete and accurate model of the emulated
nodes/system including the fault model is required in or-
der to attain coherent and realistic results. Four different
variants to conceive the emulation of the faulty nodes can
be implemented:

Online Generation: The tester node executes the emu-
lation of the faulty nodes in real-time. This variant
requires substantial processing performance and is
mainly required when a direct interaction with the
rest of the cluster is mandatory (e.g. to test the clock
synchronization, the system start-up or node integra-
tion when only a few nodes but no “running” cluster
is at hand).

Offline Generation: Using this approach, the entire
stimulus is pre-processed and stored in an “image” of
the bus traffic. The latter is succinctly replayed using
a dedicated tester node. This variant suits best when
no direct interaction with other nodes is required and
no running cluster is at hand, e.g. for verification
purposes early in the system design process.

Online Modification: When a cluster is available and al-
ready operating some faulty nodes can be emulated
by generating the respective bus traffic. Herein, the
tester must be able to alter/override orderly traffic
emanating from other, remote nodes in order to em-
ulate the intended faulty behavior. Instead of gener-
ating the entire traffic for a set of nodes this variant
concentrates on the alteration of existing traffic. The
difficulties lie in the triggering of these fault injec-
tions and the alteration of the bus traffic (e.g. the
tester could split the network by acting as a kind of
gateway, modify the traffic emanating from one sub-
net and replaying the modified bus traffic to the other
one). Furthermore, the delay originating from the
processing time of the tester node must be accom-
modated in some way.

Offline Modification: Using this variant, the bus traffic
of a “running” cluster is recorded by the tester; an im-



age is off-loaded to a remote processing host where it
is altered. The modified image is then copied back to
a tester that transforms it into a bus traffic. The chal-
lenge herein lies in controlling the remote “properly
behaving” nodes during replay in order to reenact the
same scenario as encountered during the monitoring
process. Thus, this method best suits test situations
where the majority of nodes is under control of the
tester. As with the offline generation approach, this
variant is practical for systems requiring only limited
interactivity with the system under test.

The main differences between the online and the offline
methods are the performance requirements of the tester
node and the interaction with the test engineer to con-
trol the test and debug process. The offline methods relax
the performance requirements at the tester node since the
bus traffic to be inserted by the tester is created at a host
without real-time constraints. In case of modification this
means that data is monitored for a fixed amount of time,
off-loaded to a host, presented to the test engineer and
post-processed. The latter involves extracting and modi-
fying those portions of the image that correspond to traffic
generated by the nodes to be emulated. Next this so mod-
ified data is copied back to the tester and replayed to the
system under test. The online methods, in contrast, pro-
cess and alter the data of the emulated nodes in real-time.
In order to keep the delay caused by the processing of the
emulated mechanisms low, substantial processing perfor-
mance and suitable optimizations are required at the tester.

The main difference between generation and modifica-
tion methods lies in the source of the “regular” bus traffic:
Modification methods use existing regular traffic, thus re-
ducing the modelling efforts to the actual alteration. This
approach implicitly reflects implementation details of the
system under test (which is the origin of the regular traf-
fic) and therefore creates a very realistic and represen-
tative traffic. Generation methods, in contrast, require
a complete model including the regular behavior. Their
strength is to provide a “perfect”, specification conform
traffic without being influenced by implementation details
of the considered system.

4.4. Tester Node Architecture
All variants of the previously discussed approaches can

be implemented within one single, dedicated tester node.
Figure 2 illustrates the resulting architecture with four dif-
ferent paths for the stimuli. The tester is built upon a stan-
dard protocol engine enhanced by the ability to access and
therefore modify data on different layers according to a
fine grained layer model, cf. [4].

The common characteristics of the online methods is to
compute the bus traffic modifications directly on the tester
node. On the contrary, off-line methods employ external
data manipulation resources to alter (and possibly gener-
ate) the bus traffic. To that aim, the tester node can be
equipped with observation points and control points to in-
crease the system testability and provide by-passes to the

“normal” processing path. Ideally, for the offline modifi-
cation approach the bus traffic is received, from an obser-
vation point in a representation just on the very layer the
service under consideration is located at and passed on-
wards to the modification unit. The latter alters the infor-
mation as required and feeds it back down onto the trans-
mission path using a control point right below the layer of
the considered service. In practice, the position of con-
trol and observation points is implementation dependent
and not dense (i.e., in practice not every layer needs to be
equipped with a control point and an observation point).
Consequently, additional simulation for the neighboring
layers might be required to adjust the abstraction level of
the data (1) between the observation point and the level
on which it is to be modified and (2) between there and
the next control point where the data can be re-injected
within the tester node (cf. Figure 2 for the offline modi-
fication method. For the other methods this procedure is
essentially the same with the difference that for generation
methods no observation is required, of course.).

Finally, a fault library is required to control the process
of fault injection. In particular, information is required
where the fault shall be injected, what kind of fault model
shall be used, and when the fault shall be activated (i.e. a
trigger condition). In our case, the fault library is focused
to the tester node’s transmit path. Indeed, the deviations
are aimed to be injected on the communication medium
solely, hence, the receive path of the tester is not our main
focus since it provides only very limited influence onto the
system under test (e.g. via the clock synchronization).

5. Application of the Stimulus Generation
Methods

The different stimulus generation/modification meth-
ods are applicable to the different tests listed in Sec. 2.
The following list highlights the methods better suited for
the various test scenarios:

• An image of a generated bus traffic can be used to de-
rive stimulus for simulation based methods for verifi-
cation purposes in an early design stage when a new
distributed application is being developed and no sys-
tem prototype or cluster is at hand. In practice, some
means will be required to convert the generated bus
traffic to a format that can be interpreted by the par-
ticular target simulator in use. Instead of bus traffic
generation, a similar cluster equipped with our tester
node could be re-used to record the bus traffic that
can be fed to the simulator as well.

• When a prototype of one node is available our
tester node can be configured to employ a generation
method in order to emulate an entire network, thus,
easing system development. For debugging purposes
the offline variant is more attractive since the devel-
oper has better and direct control of the generated
stimuli. In contrast, the online variant is preferable



Bus Driver Bus Driver

Protocol engine

Controller Host Interface

Host System

Receive
path

Transmit
path

Transmit
path

Hardware
tester

Software
(off-line mode only)

Data manipulation tool 

Fault 
library

OP(i+1)

OP(i)

OP(i+2)

OP(i+3)

CP(j)

CP(j+1)

CP(j+2)

OP: Observation Point

CP: Control Point offline generation variant  

offline modification variant

Hardware
tester

online generation variant

online modification variant

Figure 2. Stimulus generation methods

for testing in order to verify specific functionalities
in an automated manner.

• Later on in the development phase, generation meth-
ods and herein the offline variant in particular using
standard “images” is useful for conformance testing
to test whether the developed application acts con-
form to the standard.

• For robustness tests the availability of an entire clus-
ter is advantageous. A tester attached to the network
of this cluster using the modification method is able
to disrupt the bus traffic by way of fault injection
(Online modification is preferable here due to its low
intrusiveness). Hence, using this approach one can
efficiently test the fault tolerance mechanisms of the
communication subsystem.

• For interoperability tests, generation methods are
useful when only one node is available. The tester
can emulate an entire network using traffic patterns
recorded in conjunction with other nodes. Hence,
one can easily evaluate whether the nodes will be
able to communicate with each other using the vari-
ous different, tested configurations.

• Likewise, generation methods are useful for perfor-
mance evaluation. A pre-defined, standard set of
stimuli can be applied to different systems in order
to derive characteristic measures.

• Finally, the online variants can be used to test a sys-
tem put into service. Then offline variants are useful
to debug the system in order to help for an identifica-
tion of certain faulty behaviors.

Summarizing, generation methods are more useful
when no entire cluster is available otherwise modification
methods can be used as well. Offline methods on one
hand are better suited for situations where the developer
needs to interact and directly control the system under test,
e.g. for debugging purposes. Online methods on the other
hand are preferable for automatic tests. Our approach is
flexible enough to support all four methods.

6. Experimental Assessment

The aim of the subsequent experiment is to explore the
controllability and execution time of the off-line modifi-
cation method. The test object is a distributed application
based on FlexRay [1]. As already mentioned this com-
munication protocol partially relies on a Time Division
Multiple Access (TDMA) principle, which means that a
node is only allowed to send a frame within a previously
defined time window (slot).

Communication 
slot N

t

Frame ID N

Action Point

40 cm
120 cm

Node A 
(replay)

Node B 
(short)

Node C 
(long)

Figure 3. Experiment setup



0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

-1
75

0
-1

70
0

-1
65

0
-1

60
0

-1
55

0
-1

50
0

-1
45

0
-1

40
0

-1
35

0
-1

30
0

-1
25

0
-1

20
0

-1
15

0
-1

10
0

-1
05

0
-1

00
0

-6
00

-2
00 20

0
60

0
10

00
14

00
18

00
21

25
21

75
22

25
22

75
23

25
23

75
24

25
24

75
25

25
25

75
26

25
26

75
27

25
27

75
28

25
28

75

offset(ns)

fa
ul

t r
at

e 
(%

)

Node B Node C

...

Figure 4. Results of the fault injection

The following, experimental campaign consisted of
shifting the “action point” of a frame – i.e., the point
in time when transmission of this frame is started – in
a way so that the frame moves close to/beyond its asso-
ciated slot boundary. The aim was to create a slightly-
off-specification2 failure [2] and observe the rate of faulty
frames at different points of the communication medium
and with different hardware implementations (physical
layer chips from different vendors). This experiment
could be used, e.g., to assess robustness properties when
one node violates its pre-defined transmission slot or for
interoperability tests to evaluate the range of allowed
shifts within one slot.

Before the campaign start, 35 seconds of bus traf-
fic generated by a FlexRay based application have
been (physically) traced. The bus traffic consisted of
2.223 communication cycles, each composed of 336

slots/frames. Within this image 62 of these frames were
shifted; in particular negative offsets – i.e. when the frame
started too early – in a range from −1750ns to −1000ns

and positive offsets – i.e. when frame started too late –
between +2125 and +2875ns were applied with a gran-
ularity of 25ns that was determined by the 40MHz sys-
tem clock of our tester node implementation. This pro-
cedure was repeated for all communication cycles, which
accounts for a total of 137.826 modifications. Finally, the
modified bus traffic was replayed to the communication
medium.

Figure 3 illustrates the experiment setup. The modi-
fied bus traffic has been replayed by node A to the other
nodes B and C placed at a distance of 40 and 120cm from
node A, respectively. During this campaign node A re-
played the entire bus traffic and therefore emulated the
FlexRay application at the communication medium inter-
face for node B and C.

The experimental results are quite interesting: Node C
regarded messages with an offset range between −1100ns

2An example for a slightly-off-specification failure is when a node
sends on its slot boundaries in such a manner that it is accepted as tempo-
ral accurate by a subset of nodes whereas it is not accepted by a different
subset of nodes, hence, causing asymmetry in the system.

and +2475ns as correct. This attests a quite high robust-
ness of the protocol with respect to the frame offset. Be-
yond this 3.5µs range there is a quite steep slope from 0

to 100 percent error rate (see Figure 4): Approximately
200ns in the negative direction and 250ns in the positive
direction. This observation, and more generally the ability
to perform this type of measurement with a suitable accu-
racy and within reasonable time is a first confirmation of
the practical usefulness of our concept.

Node B showed a significantly different behavior: Off-
sets in the range between −1525ns and +2250ns were
tolerated. As Figure 4 illustrates, this means that in
comparison to node C the tolerance window of node B
is broader and oriented more towards negative offsets.
This observation allows another important conclusion:
There is definitely a non-zero probability that slightly-off-
specification failures may cause Byzantine effects in the
network: The same frame has been regarded as correct by
node C and as erroneous by B.

In order to evaluate whether the node’s position in the
network is decisive for this different perception, we sim-
ply exchanged nodes B and C and repeated the experi-
ment campaign. The results (not shown) were nearly the
same, which clearly indicated that the position has only
a minor influence, and that the differences observed in
Figure 4 are therefore mainly due to the different physi-
cal layer chip implementations (Considering that the sig-
nals require only 5ns to travel 1m on the communication
medium, this was essentially no surprise). This allows a
further important conclusion: The potential for Byzantine
effects is significantly higher when different hardware im-
plementations are interoperating.

This simple experiment illustrated some important ben-
efits of our test pattern generation method: (1) The
controllability is sufficient for exploring temporal proto-
col/implementation boundaries with suitable resolution.
(2) The test on a prototype boosts test execution: Indeed,
the monitoring of the FlexRay application required 35 sec-
onds once, and then approximately 38 seconds were suf-
ficient (i) to shift the 137.826 frames in the image in a



fully automated way, and (ii) to replay the modified image
and monitor the bus traffic. This allowed us to complete
one systematic experimental campaign within 2 minutes,
based on a total of 137.826 samples. (3) Recording the bus
traffic pattern from a cluster executing an actual workload
guarantees a representative and realistic scenario. In the
same way the system reaction is actually observed in a
physical implementation, which not only guarantees that
the observed effects are relevant in practice, but moreover
allows to associate the observation with a given imple-
mentation.

7. Conclusion

Testing of distributed embedded automotive commu-
nication systems gains momentum since electronic com-
ponents absorb more and more functionalities. Herein,
one fundamental process that is repeated for all kinds of
tests is the generation of stimuli. To that end, we pro-
posed in this paper methods and an architecture tailored
for stimulus generation that can be used to test communi-
cation subsystem related functionalities of distributed au-
tomotive applications. In particular, a dedicated remote
tester may emulate the behavior of one node or an entire
sub-net (including nodes with faulty behavior) and, hence,
provides an elegant way to enhance the controllability re-
quired for testing such systems. Our experimental exam-
ple has illustrated that the controllability attained by this
remote approach is sufficient for a boundary test of pro-
tocol parameters and allows a very systematic and fully
automated test procedure, yielding a significant number
of samples within reasonable time.

The presented approach can be re-used for many differ-
ent purposes, e.g. for debugging and testing during system
verification, for interoperability or robustness tests as well
as even for maintenance tests. In addition, the same tester
can be used for monitoring the bus traffic. Finally, the
combination of stimulus generation and monitoring may
be extended to enable remote fault diagnosis and fault lo-
calization.

References

[1] Flexray Communications Systems - Protocol Specification
Version 2.0. FlexRay Consortium, 2004.

[2] A. Ademaj. Slightly-Off-Specification Failures in the
Time-Triggered Architecture. Seventh Annual IEEE Inter-
national Workshop on High Level Design Validation and
Test , October, 2002, Cannes, France, pages 7–12, Oct.
2002.

[3] J. Arlat, K. Kanoun, H. Madeira, J. Busquests, T. Jarboui,
A. Johansson, and R. Linström. State of the Art. DBench
project deliverables, Aug. 2001.

[4] E. Armengaud, A. Steininger, M. Horauer, and R. Pal-
lierer. A Layer Model for the Systematic Test of Time-
Triggered Automotive Communication Systems. 5

th

IEEE International Workshop on Factory Communication
Systems, pages 275–283, September 2004.

[5] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr.
Basic Concepts and Taxonomy of Dependable and Secure
Computing. IEEE Transactions on Dependable and Se-
cure Computing, 1:11–33, Jan.-Mar. 2004.

[6] A. Benso and P. Prinetto. Fault Injection Techniques
and Tools for Embedded Systems Reliability Evaluation.
Kluwer Academic, 2003.

[7] W. Hetzel. The Complete Guide to Software Testing, Sec-
ond Edition. Wiley, 1988.

[8] S. Mosely, S. Randall, and A. Wiles. Experience within
ETSI of the Combined Roles of Conformance Testing and
Interoperability Testing. The 3

rd Conference on Standard-
ization and Innovation in Information Technology, pages
177–189, Oct 2003.

[9] A. Mukherjee and D. P. Siewiorek. Measuring software
dependability by robustness benchmarking. IEEE Trans-
actions on Software Engineering, 23(6):366–378, June
1997.

[10] D. Sundmark, H. Thane, J. Huselius, and A. Pettersson.
Replay Debugging of Complex Real-Time Systems: Ex-
periences from Two Industrial Case Studies. Proceedings
of the 5

th International Workshop on Algorithmic and Au-
tomated Debugging, pages 211–222, September 2003.

[11] H. Thane, D. Sundmark, J. Huselius, and A. Pettersson.
Replay Debugging of Real-Time Systems Using Time Ma-
chines. In Proceedings of Parallel and Distributed Sys-
tems: Testing and Debugging (ACM), pages 288–295,
April 2003.


