

Design Trade-offs for Systematic Tests of Embedded Communication Systems

Eric Armengaud, Andreas Steininger
Vienna University of Technology; Embedded Computing Systems Group E182-2

{armengaud, steininger}@ecs.tuwien.ac.at

Martin Horauer Roman Pallierer
University of Applied Sciences, Technikum Wien Dependable Computer Systems GmbH

horauer@technikum-wien.at pallierer@decomsys.com

1. Introduction

Embedded computer systems are currently revolutio-
nizing the automotive industry [1]. Mechanical solutions
are gradually being replaced by microcontrollers, and
what has formerly been a local sensor, actuator or control
system is now becoming part of a complex distributed
system. The power of this approach lies in the interaction
of the distributed components: Information of sensors
distributed all over the car, for example, can be used to
detect skidding and force the braking of one single wheel
to aid in steering – a functionality impossible with strictly
localized solutions. At the same time the interaction of
many distributed components causes a considerable chal-
lenge for testing, since the proper function of one single
component in isolation is required but not sufficient to
guarantee the proper distributed functionality. An exhaus-
tive functional test of the complete distributed system, on
the other hand, is ruled out by its complexity. So an ap-
propriate test strategy is urgently needed.

The idea to develop such a test strategy is the central
focus of our research project STEACS (“Systematic Test
of Embedded Automotive Communication Systems”)1.
With project partners spanning from academia to industry
we had some very interesting discussions on how such a
test concept should ideally look like. These discussions
not only ascertained us that the choice of a project type in
the area of conflict between fundamental research and
applied research was a very fruitful choice for this topic;
we also felt that it would be interesting to summarize the
essence of these discussions in the following.

2. Considered Target System

We consider an automotive control application exe-

cuted on a set of distributed nodes that are connected over

1 The STEACS-project (http://embsys.technikum-wien.at/steacs.html)
received support from the Austrian “FIT-IT[embedded systems” initia-
tive, funded by BMVIT and managed by the FFF under grant 807146.

a serial broadcast channel (bus, star or mix of both topolo-
gies). Due to their favourable properties in safety-critical
automotive applications we consider time triggered com-
munication protocols, and in particular the FlexRay proto-
col in our study. In these protocols a global time base is
maintained by a distributed clock synchronization algo-
rithm, and all sensitive activities on the communication
channel are time-driven. While it is relatively easy to test
the involved nodes in isolation, the challenge lies in the
testing of the inter-operation between the nodes.

3. The “Dream”-Solution

In a first step we tried to define what would be a perfect

solution from the testing point of view, without consider-
ing practical limitations such as overheads, test time, and
cost. We felt that the term “systematic” could be best
translated into “comprehensive” in this context and that
the concept is understood as a generic long-term solution.

Clearly a perfect test concept provides 100% test cov-
erage. Therefore all protocol features must be tested in
detail, ideally in all possible modes of operation. To this
end we can choose one of the following strategies:
(1) Observe the cluster during normal operation without
having the tester interfere in any way. While this provides
very natural test conditions, it will probably not be possi-
ble to observe all conceivable modes of operation within a
limited observation time. Even in our “dream” solution it
appears useless to assume infinite observation time.
(2) Run a specific “stress” application or have the tester
interfere with the system such that all relevant modes of
operation are actually entered during the observation in-
terval. Since we want to include fault tolerance and error
handling features in our test as well, we have to generate
error conditions, by means of fault injection, for instance.

Compliance with the specification must not only be
tested on the functional level, but parametric tests need to
be performed as well. For example, it must be possible to
find out whether the local clock oscillator of a node is
notoriously slow even if the value is still within the al-

http://embsys.technikum-wien.at/steacs.html

lowed margins. At the same time features that are not
protocol-related (like low or noisy power supply, e.g.) are
not within the scope of our test. Detecting such non-target
faults as a side effect is undesired, since we want our test
to be perfectly selective, i.e. not to cause false alarms.

In addition to detecting faults we want to be able to
perform diagnosis: If a service is detected to be incorrect
or missing we want to know the exact cause. In order to
achieve such a high-resolution diagnosis we have to per-
form extensive monitoring. We have developed a layer
model [2] – with abstraction levels reaching from the
signal representation on the communication bus to the
semantic contents of the message – that allows us to iden-
tify the input and output stream of every service in the
protocol. In context with this model extensive monitoring
means tracing the complete data stream on every abstrac-
tion level, such that an (off-line) analysis of the recorded
streams allows a clear identification of the initial fault. For
this purpose we want to add a monitoring node to the
communication bus that receives all bus traffic and trans-
forms it into the respective layer-specific representations.
This should occur without the operational system even
noticing the existence of this tester node.

4. The Practical Borderlines

From a practical point of view a “systematic” test is a

“(cost) effective” one. In contrast to the dream-solution –
which concentrated on finding a most elegant generic test
concept – the practical borderlines have a higher focus on
the problem. In this context it is not so important for the
test to have high coverage with respect to a theoretical
fault model, but the most important question is rather: “Is
the test concept capable of solving our current (and poten-
tial near-future) problems?” Should the test cover more
than these burning problems, it is probably too expensive
and could be reduced. On the other hand, it is very wel-
come, if the test aids in solving relevant non-target prob-
lems. The diagnostic resolution is not oriented towards the
actual root of a problem; in practical operation it is gener-
ally sufficient to identify the node or module that needs to
be replaced. This, however, should ideally occur in an
automated fashion instead of requiring a sophisticated
interpretation of symptoms by an expert. Test duration is,
of course, limited, but the actual limits depend on the
phase during which the test is performed: In the develop-
ment phase and the system integration phase, the “stress”
approach will be applied, and there will usually be very
tight limits on test duration. During the mission an online
monitoring tool that does not influence the ongoing opera-
tion may be allowed very long observation periods.

Another point that showed up very early was the limita-
tion of resources: The time to develop and implement the
concept is limited, and there are constraints with respect to
cost, size and power consumption of the solution. Since
for these reasons we cannot afford to develop an own

specific hardware platform, we have to choose from a
limited set of available platforms, which limits the admis-
sible complexity [3]. For example, monitoring the com-
plete flow of information on every abstraction level as
suggested in the dream solution is ruled out by this con-
straint – we have to choose the information we trace very
carefully. Moreover, in practice not all required informa-
tion can be collected just by having a tester node record
the traffic on the bus. As already mentioned it will be
necessary to actively influence the data on the bus, e.g., by
means of fault injection. In addition internal information
from the observed nodes will be required in some cases.
For this purpose it will be necessary to have some soft-
ware agent residing on the node under consideration that
transmits the required information over the communica-
tion bus from where it can finally be received and ana-
lysed by the tester node. Unfortunately, the execution of
the software agent and the transmission of the collected
data are likely to cause an undesired influence on the
timing behaviour of the node and on the bus schedule,
respectively. Therefore we will try to circumvent this
solution whenever possible.

5. Merging Dreams and Borderlines

Considering these practical limitations our dream solu-

tion may seem very naive at the first glance. Still we be-
lieve it is a good strategy to make clear what can be at-
tained in the ideal case beforehand and decide for every
issue whether a reduction makes sense. From this point of
view our dream solution represents a 100% performance
full-featured tool. If we decide to reduce the diagnostic
capability, e.g., we can balance the savings with the per-
formance degradation.

From a formal point of view the task of concept elabo-
ration involves optimizing the performance parameters
towards the dream solution while considering the practical
borderlines as boundary conditions. This optimization
process is extremely complex, and many decisions – espe-
cially those related to cost and complexity – depend on
implementation details that can be clarified only by a
direct comparison of alternatives.

6. References

[1] G. Leen and D. Hefferman. In-Vehicle Networks, Expanding
Automotive Electronic Systems. IEEE Transactions on Com-
puters, pp. 88–93, January 2002.

[2] E. Armengaud, A. Steininger, M. Horauer, R. Pallierer. A
Layer Model for the Systematic Test of Time-Triggered Auto-
motive Communication Systems. 5th IEEE International Work-
shop on Factory Communication Systems, 2004 (submitted).

[3] E. Armengaud, A. Steininger, M. Horauer, R. Pallierer, and
H. Friedl. A Monitoring Concept for an Automotive Distributed
Network - The FlexRay Example. 7th IEEE Workshop on Design
& Diagnostics of Electronic Circuits & Systems, 2004.

