
A FLEXIBLE HARDWARE ARCHITECTURE FOR FAST ACCESS

TO LARGE NON-VOLATILE MEMORIES

Eric Armengaud, Florian Rothensteiner, Andreas Steininger Martin Horauer

Vienna University of Technology University of Applied Sciences

Embedded Computing Systems Group E182-2 Technikum Wien

Treitlstr. 3, A-1040 Vienna Höchstädtplatz 5, A-1200 Vienna

{armengaud, rothensteiner, steininger}@ecs.tuwien.ac.at horauer@technikum-wien.at

Abstract. For distributed systems, the ability to accurately monitor the bus

traffic is required in order to enable fault removal and fault forecasting for

system verification, enhancement and evaluation. Typically, modern

communication systems have high data throughput, and monitoring the bus for

hours produces large amounts of data at high rates. In the expected operating

environment of the monitoring tool, non-volatile memories are often mandatory

as data storage. The required frequent access to these memories, however,

results in high processor load. To that aim, this paper presents an approach

that illustrates the improvements that can be achieved when several memory

access functionalities are transferred from software to hardware. To quantify

the results, the different approaches implemented in an FPGA were subjected to

an experimental evaluation.

1 Introduction

An important issue in our STEACS
1
 project is to monitor the FlexRay [1] network traffic

and store it to non-volatile memories, which is especially useful when the tests cannot be

performed on-line. By post-processing the monitored data it is possible to apply systematic

tests on the syntax and the content of the messages exchanged between the nodes. This aids

in correctness checking, debugging and testing of the distributed system, see [2]. Next to

testing, performance enhancement at the system level can be achieved by analyzing and

optimizing the data flow between the nodes. Finally, replaying monitored data is useful for

debugging purposes and to force the system into defined states in order to observe the

reaction and compare it to a known-good reference.

 One application of such a monitoring tool is prototyping in the automotive domain; here

power supply continuity cannot always be assumed, therefore, using non-volatile memories

is mandatory. Another constraint issued by our industry partners is that the monitoring

1
 The STEACS-project received support from the Austrian ”FIT-IT[embedded systems” initiative, funded by the

Austrian Ministry for Traffic, Innovation and Technology (BMVIT) and managed by the Austrian Industrial
Research Promotion Fund (FFF) under grant 807146. See http://embsys.technikum-wien.at/steacs.html for
further information.

device should not contain any rotating parts, i.e. no hard-disks. As a result, we decided to

rely on compact flash technology. These devices are designed for a sustained speed of up to

9 Mbytes/s [3]. In practice, a maximum effective continuous data rate of 4 Mbytes/s can be

reached, while the FlexRay bus uses two channels with 10 Mbits/s and additional data has

to be written into the memory. The memory bandwidth turned out to be close to our

requirements, thus reducing the flexibility for further improvements. Moreover, first

prototypes of our implementation yielded a high processor load for writing the data into the

compact flash device. Hence, almost no processor time was left for other tasks.

 This paper presents a hardware dedicated to improving the data throughput and to

reducing the processor resources needed for memory access. In particular, the presented

architecture is inspired from the OSI reference model to decrease complexity and improve

flexibility. The idea is to implement one physical layer and one data link layer for each

memory bank connected, and a global transport layer on the top of them. The structured

architecture improves the flexibility; when a new bus or memory is used, only one layer

needs to be changed. Moving the services onto a dedicated hardware and parallelizing

memories saves processor resources and improves performance.

 The paper is organized as follows: The next section identifies the requirements for this

specific problem. The aim of Section 3 is to give an overview of the state of the art and

present our approach. After that, the proposed architecture is discussed more in detail in

Section 4. In Section 5 an implementation is described and the achieved improvements are

discussed. Finally, some conclusions are drawn in Section 6.

2 Requirements

One goal of the STEACS project is to design a monitoring tool for network traffic. This

tool shall be used autonomously within an automobile as a single box storing recorded

information into onboard memories. This section presents the requirements for this module.

a) Non-volatile memories, i.e. compact flash devices shall be used: In the prototyping

environment power supply continuity cannot be assumed and in case of a system crash the

monitored data shall not be lost. Moreover, the operational environment restricts us from

using mechanical parts (hard disks) for that purpose.

b) The transfer of a large amount of data with high throughput shall be supported:

The monitoring module is expected to record bus traffic up to some hours with a maximum

bandwidth of up to 20 Mbits/s (2 channels at 10 Mbit/s). Peak loads of the data generated

can reach up to 25 Mbits/s due to additional information such as timestamps or identifiers

that are added in the monitoring process. In particular, monitoring one hour of bus traffic

might generate up to 11 Gbytes of raw data (i.e. before filtering or compressing).

c) The data flow is mostly sequential, only a few memory jumps will be needed: The

data monitored is written to the memory bank sequentially. However, a basic file system is

used and some ‘super blocks’ have to be periodically updated to describe the data validity

within the memory banks. Due to the sequential data flow optimization techniques that

make use of data access recurrence to improve memory access time – such as memory

caches [4] – can not be applied. However, the use of sector based memory accesses as

described in the ATA protocol specification [5] and commonly implemented in hard-disks

and compact flash devices is favorable.

d) A protection of critical data against a system crash is required: The file system

shall be resistant to a system crash; in fact, without protection, the corruption of a super

block can lead to a loss of the whole monitored data.

e) Flexible start-up and configuration of the memory banks: while these specific

operations are not time critical, a high flexibility is required to enable different operating

modes or for system upgrades to more powerful memory elements.

f) The processor load shall be kept as low as possible in order to save processor time:

The host needs resources for other tasks such as e.g. controlling or filtering. Moreover,

frequent requests to drive the memory banks shall be avoided in order to reduce the

scheduling constraints or the interrupt overhead (task switch).

g) The architecture shall be flexible to allow the use of different types of memories

and/or different bus interfaces.

3 Improving the state of the art

While higher data throughput can be achieved by accessing memory banks in parallel,

reducing processor load is usually done by moving tasks to dedicated hardware. Both

methods in isolation have already been largely explored and documented [4]. The aim of

this work is to combine both methods and provide a structured architecture with small

independent modules and well specified interfaces to achieve flexibility; a single module

can be easily exchanged when another bus system or memory type is used, and the global

architecture is kept unchanged. Moreover, these small and independent modules are much

easier to design, verify and integrate in hardware than a single big one. This approach is

largely based on the OSI reference model [6]. Indeed, similarities between serial and

parallel communication systems can be exploited for the physical layer (transmitting atomic

information – bit or vector – over a communication medium), data link layer (structure raw

transmission into frames – or sectors) and transport layer (data organization). Figure 1-A

presents the starting architecture without dedicated interface hardware.

 The use of several memory banks in parallel is nothing new since it can be found in

almost every digital system design, e.g. when two 8-bit wide memory banks are connected

to a 16-bit CPU. Another approach using configurable parallel memory architectures has

been developed in [7]. Using a dedicated hardware with several memory banks connected

in parallel, a new bank can be accessed during ongoing accesses on other banks

(‘interleaving’ architecture, Figure 1-B). This solution can be seen as a parallelization of the

physical layer in order to pipeline the atomic transfers. While the resulting data throughput

from processor view is improved, the alternating access to the memory banks results in

frequent interrupts and makes the task scheduling difficult.

 Optimization at the physical layer as described above does not care about the internal

structure of large memory banks. They are typically organized in heads and sectors and

special handling and long pauses are needed when accessing a new sector. It is precisely the

aim of the data link layer to organize data transfers in frames or sectors. This layer can be

moved into hardware (Figure 1-C) and be parallelized (one for every memory bank). The

resulting module is in charge of accessing autonomously an entire sector for a specific

memory bank; its autonomous work results in a smaller processor load because the host

does not need to explicitly start every atomic operation anymore. Besides, an internal high

speed interface can be used between the host and these modules and the data can be

internally buffered. To sustain the desired high data rate, the host has to provide the

hardware with data (sectors) as soon as needed, which causes strict real time constraints.

With this architecture the service of splitting and merging the data between the different

memory banks is still done in software.

(B) (C) (D)

Host

Memory

bank 0

Physical

layer 0

Memory

bank n

Physical

layer n

Data link

layer 0

Data link

layer n

Transport layer

(A)

Host

Memory

bank 0

Physical

layer 0

Memory

bank n

Physical

layer n

Data link

layer 0

Data link

layer n

Host

Memory

bank 0

Memory

bank n

Physical

layer 0

Physical

layer n

Host

Memory

bank 0

Processor

Dedicated

Hardware

Memory

Figure 1: Architecture proposals

 The transport layer is situated on top of the data link layer. During the transmission part

its function is to split the data flow from the host into sectors, distribute these sectors to the

different memory banks and control the memory accesses. During the receive part the data

is read in parallel from the memory banks and then re-organized for the host (Figure 1-D).

 The idea is to implement one physical layer and data link layer for every memory bank,

and an additional transport layer on top of them. This structured architecture eases

maintenance; when a new bus or memory bank is added only one layer needs to be

changed. Moreover these parallel processing paths enable the use of different memory types

(data link layer) and / or different memory interfaces (physical layer), which improves

flexibility. Finally, moving the services to a dedicated hardware and parallelizing the

memory accesses saves processor time and improves performance. As a result, the non-

volatile aspect is kept, the memory speed and size are improved from the host’s view, and

the number of connected memory banks is abstracted to the host.

4 Proposed architecture

Figure 2 illustrates the proposed solution. The lowest layer (physical layer) builds a

physical connection with the memory banks (using for example an IDE, IndustryPack or

ISA interface), and describes the mechanical, electrical and timing interface. It typically

implements a wrapper between a specific internal bus system to an external one, and

performs single and atomic memory accesses to specified addresses. Next, the data link

layer implements the access protocol to a specific memory type (e.g. sector addressing

using the ATA protocol [5]). It typically offers read and write functions to access the

devices sector-by-sector and provides a high speed internal buffer. These two layers are

already well documented in different implementation notes (e.g. [5], [8]) and won’t be

described any further in this document.

 The aim of the transport layer is to abstract the physical memory organization to the

host and to automatically distribute the data stream to the different connected memory

banks. To that aim, this layer comprises a set of control and status registers, a control state

machine and a Memory Management Unit (MMU) module. The register set is used to

configure and control the layer. The state machine processes the commands of the host,

routes the requests to the different memory interfaces and controls them. Finally, the MMU

is in charge of mapping the data between the host and the different memory banks.

...

...

Memory bank 0 ...

Host

Transport

Layer

Physical

Layer

Bus System A

Bus System B

Gateway

Control / Status

Memory

Management

Unit

Data

link

Layer

Protocol State

Machine

Control State

Machine

Memory bank i

control

data

Data

link

Layer

Protocol State

Machine

Physical

Layer

Bus System A

Bus System C

Gateway

Figure 2: Global overview of the architecture

 The Memory Management Unit maintains a FIFO queue for each physical memory

bank, which is selected in a cyclic manner using a multiplexer. As a result, the data stream

is automatically allocated to the different banks during write operation and automatically

sorted during read operation. Additionally, the MMU supports a basic file system where the

status of the global memory content (typically beginning and end of the valid data and

information about the data content) is summarized. This information has to be periodically

saved to the memory banks to refresh the memory status and is thus very sensitive: The

entire memory content may be lost when this block is corrupted. To avoid conflicts, a lock

system is used to share this block between the host and the different memory banks. That

way, the information can be written on different memory banks (value redundancy) and at

different points in time (timing redundancy resulting from the lock mechanism).

 The host might additionally bypass the dedicated hardware to directly access the

memory banks. This operation is needed for initialization (not time-critical) to save

resources in reducing the functionalities required in hardware and to improve the

configuration flexibility.

5 Case study

In order to test our concept we made an implementation which enables the connection of

two compact flash memory banks in parallel. Both physical layers consist of a wrapper

between a standard parallel interface (AMBA, [9]) and the IndustryPack logic interface [8].

The data link layers implement the ATA protocol with the capability to directly address

memory sectors. The transport layer MMU provides a FIFO queue with size of two ATA

sectors for each compact flash. Our actual implementation has been done using an Altera

Excalibur chip EPXA4FI672-2 [10] that combines a 400kGates FPGA with an ARM

processor stripe. Our implementation consumes 2.100 logic cells (13%), 20.480 memory

bits (9%) and operates at a maximum frequency of 55 MHz.

5.1 Comparison between the different optimizations

Figure 3 outlines a sector access according to the ATA protocol with respect to timing at

the physical pins of the compact flash memory bank (ATA) and the resulting processor load

(A – D) for the different architectures described in Figure 1.

Figure 3: ATA access and processor load for different architectures

 An ATA packet access is divided into command setting field, data accesses and sector

release. In the first part (command setting), always the same data structure is written (first

the base address followed by the access type, the length, and finally waiting for the memory

availability). Then a configurable number of sectors are accessed – 32 for our

implementation. This task consists of two phases: first accessing a sector (data access) and

then waiting for the memory availability (sector release), where a register content is polled

until a value is set.

 Figure 3-A represents the processor load for the purely software based architecture of

Figure 1-A. All memory accesses are explicitly performed by software and the CPU must

wait for the availability of the memory bank. Consequently, the processor load is hundred

percent during the whole ATA access.

 Figure 3-B is using a first optimization at the physical layer according to Figure 1-B.

The host initiates the individual memory accesses which are then performed by a dedicated

hardware. Consequently the processor is free to perform other tasks during the slow

memory access – such as initiating an access to another compact flash device. This solution

allows interleaving architectures where several memory banks can be accessed in parallel

[11]; however, to allow fully pipelined accesses, these banks must have exactly the same

access timing. The limitation of this architecture is the high interrupt frequency.

 Figure 3-C presents a further optimization at the data link layer according to Figure 1-C.

The whole sector access is automatically performed by the dedicated hardware. This

solution presents the advantage of saving explicit control accesses by the software and

allows more efficient memory accesses due to the use of a high speed data buffer.

Consequently, computation resources are saved and the processor has more time (one sector

release tsrel) between two successive requests. However, the resulting real time requirements

were still too tight for our application and the memory management remained complex.

 Figure 3-D presents the processor load for the final architecture employing an

optimization at the transport layer (according to Figure 1-D). While the cumulated

processor load stayed the same as in the previous optimization, the maximum time between

two successive host requests was extended, thus decreasing real time constraints for the

other tasks. Additionally, the Memory Management Unit simplified the memory

management.

5.2 Results

Table 1 presents the results achieved with a single and a dual memory architecture,

respectively. The main advantage of the second architecture is the ability to access both

memory blocks simultaneously, which consequently increases the data rate. For a given

architecture, the memory values (overall access time and data rate) are constant for all

optimization stages since they represent limitations of the physical memory banks. It would

be possible to connect more memory banks in parallel to improve the data throughput

further; the limitation herein is typically given by the processor throughput (processor

load).

Table 1: Experimental comparison of single and dual memory architecture

Memory architecture Single memory bank architecture Dual memory bank architecture

Data size 100 KB 1 MB 10 MB 100 MB 100 KB 1 MB 10 MB 100 MB

overall access time 25,6 ms 268 ms 2,67 s 28s 12,8 ms 134 ms 1,33 s 14s
Memory banks

data rate (MB/s) 3,9 3,73 3,75 3,57 7,8 7,5 7,5 7,1

processor time 25,6 ms 268 ms 2,67 s 28s

processor load 100% 100% 100% 100%
Pure software

(fig. 3-A)
request period 0 µs (continuous)

Not applicable

processor time 6,0 ms 60,1 ms 603 ms 6,03 s 6,0 ms 60,1 ms 603 ms 6,03 s

processor load 23,4% 22,4% 22,5% 21,5% 47% 44,8% 45,3% 43%

Physical layer

optimization

(fig. 3-B) request period 0,59 µs 0,59 µs

processor time 5,83 ms 58,3 ms 584 ms 5,83 s 5,83 ms 58,3 ms 584 ms 5,83 s

processor load 22,7% 21,8% 21,9% 20,8% 45,5% 43,5% 43,9% 41,6%

Data link layer

optimization

(fig. 3-C) request period 154 µs 154 µs

processor time 5,83 ms 58,3 ms 584 ms 5,83 s 5,83 ms 58,3 ms 584 ms 5,83 s

processor load 22,7% 21,8% 21,9% 20,8% 45,5% 43,5% 43,9% 41,6%

Transport layer

optimization

(fig. 3-D) request period 308 µs 308 µs

 The row ‘request period’ represents the time between two successive software requests

to access the memory banks, which, in other words, represents the real-time constraints.

Since the processor resources are already completely blocked for driving a single memory

bank, the pure software method can not be used with a dual memory architecture. The

processor load is decreased to approximately 22% and the request period is relaxed to 0,59

µs with the physical layer optimization. It enables other tasks to run in parallel, for example

the alternating control of several memory banks. Next, the request period is relaxed by a

factor of 300 with the data link layer optimization since an entire sector can be buffered

within the dedicated hardware. Finally, the period is increased by an additional factor of

two with the last optimization. This result is implementation specific and is due to the use

of a FIFO queue size of two sectors. Increasing the FIFO size would increase the interrupt

period at the cost of hardware resources.

 In summary, the optimization at the transport layer with a dual memory architecture

resulted (i) in an increased memory bandwidth, which enable high data rates, and (ii) in

long request periods, which enable continuous processing of other tasks without being

interrupted. Furthermore, this experiment illustrates the independence between the

improvements achieved and the data volume transferred. Additionally, the resulting

memory size was doubled.

6 Conclusion

The required operations for storing a large amount of data generated by unfiltered

monitoring of a distributed FlexRay-based automotive system can heavily load an

embedded processor system leaving insufficient resources for other tasks. To that aim, this

paper has described how to optimize and improve the accesses to non-volatile memories,

i.e. compact flash devices, by transferring several functionalities from software to

hardware.

 In our FPGA based implementation we used the layering and data encapsulation aspects

found in serial networks. Our modular approach proposed a method to improve the

processor load and the real time requirements, i.e. the frequency and duration of the

required accesses to the memory bank, by transferring different functionalities from

software to hardware in a systematic, structured manner.

 Following the presentation of our approach an implementation and the achieved results

are listed by way of an experimental evaluation. The results show the optimizations due to

the hardware implementations of different layers. While the data throughput is improved

when increasing the number of memory banks driven in parallel, the most efficient

architecture in terms of processor load and real time constraints is reached when the

services up to the transport layer are shifted to dedicated hardware.

7 References

[1] FlexRay Consortium, FlexRay Communications System Protocol Specification Version 2.0,

www.flexray.com, 2004.

[2] Beth A. Schroeder, On-Line Monitoring: A Tutorial, Computer Practices, Volume 28, pages: 72 -78,

June 1995.

[3] SanDisk Ultra® II CompactFlash, http://www.sandisk.com/retail/ultra2-cf.asp.

[4] J. L. Hennessy and D. A. Patterson, Computer Architecture, a Quantitative Approach, second edition,

Edition Morgan Kaufmann, 1996.

[5] AT Attachment - 4 with Packet Interface Extension, ANSI NCITS 317-1998.

[6] A.S. Tanenbaum. Computer Networks, fourth edition. Pearson Education, Inc, 2003.

[7] J. Vanne, E. Aho, K. Kuusilinna and T. Hamalainen. Enhanced Configurable Parallel Memory

Architecture. Proceedings of the Euromicro Symposium on Digital System Design, pages: 28 – 35,

2002.

[8] IP Modules Draft Standard, VITA 4-1995, Draft 1.0.d.0, April 7, 1995, VITA Standards Organization.

[9] ARM Corporation, AMBA Specification Rev 2.0, 1999, http://www.arm.com/.

[10] Altera Corporation. The Advantages of Hard Subsystems in Embedded Processors PLDs, version 1.0.

March 2002, White paper

[11] A. Seznec and J. Lenfant. Interleaved Parallel Schemes. IEEE Transactions on Parallel and Distributed

Systems, Vol. 5, Issue 12, pp. 1329 – 1334, Dec. 1994.

