
A METHOD FOR BIT LEVEL TEST AND DIAGNOSIS OF

COMMUNICATION SERVICES

E. Armengaud, F. Rothensteiner, A. Steininger M. Horauer

Vienna University of Technology University of Applied Sciences

Embedded Computing Systems Group E182-2 Technikum Wien

Treitlstr. 3, A-1040 Vienna Höchstädtplatz 5, A-1200 Vienna
{armengaud, rothensteiner, steininger}@ecs.tuwien.ac.at horauer@technikum-wien.at

Abstract. Test and diagnosis of communication services is a pre-requisite for

the validation of reliable distributed communication. In-depth observability and

controllability of the bus traffic enables access to information typically filtered

out by dedicated hardware. Given a fixed time interval, however, higher

accuracy implies larger volumes of data that increase the test complexity and

paradoxically constrain the test activity. In this paper we analyze the trade-offs

between accuracy and data volume and present solutions to enable efficient test

and detailed diagnosis of serial communication protocols. These trade-offs are

illustrated using experiments conducted with the FlexRay protocol.

1 Introduction

Nowadays, modern cars are forming highly complex distributed systems with up to 70

Electronic Control Units (ECU) connected to each other. Higher connectivity enables

coordination between these ECUs resulting in a comprehensive view of the environment,

hence, permitting efficient local processing (e.g. brake assistance). This in turn, provides

the basis for dependable applications required for X-by-Wire [1]. A drawback of these

systems, however, is their complexity and the difficulty to efficiently test the whole system.

Although each node can be tested in isolation, the proper function of the system relies on

the correct interoperation between all ECUs. Since test efforts are known to rise more than

linearly with system complexity a systematic method is required providing a good test

coverage. Within our STEACS project
1
 particular emphasis is set on the communication

network that presents the crucial part of these distributed systems.

 Frequently, observation is based on some form of packet filtering using a high level

view of the communication, see [2, 3] and usually implements a dedicated hardware to

automatically interpret the bus traffic. Although these approaches save host processing

resources, they inhibit user-specific, accurate tests of the communication medium due to the

1 The STEACS-project received support from the Austrian “FIT-IT Embedded systems” initiative, funded by the Austrian

Ministry for Traffic, Innovation and Technology (BMVIT) and managed by the Austrian Industrial Research Promotion

Fund (FFF) under grant 807146. See http://embsys.technikum-wien.at/steacs.html for further information.

substantial data reduction. Bus access at the bit level is desirable in order to obtain accurate

information for tests, since it enables:

1. Observability and controllability next to the physical interface of the communication

controller hardware, thus, enabling “black box” test methods.

2. An accurate characterization of bit streams that is not (fully) supported by standard

hardware (e.g. symbols used for signaling at the physical layer, erroneous frames, etc.).

3. Access to events that are otherwise removed at higher levels (e.g. glitches).

However, a fundamental drawback of accessing the bus traffic at the bit level is the large

amount of data that needs to be transferred and processed. Furthermore, constraints in

automotive embedded systems (e.g. low costs, robustness, etc.) prohibit the field-usage of

COTS development tools as e.g. logic analyzers or pattern generators. Other approaches

have been presented to test the lower layers of field bus systems, e.g. [4, 5]. They provide

means to insert and detect a pre-defined subset of faults; however, the user has no access to

the bit stream itself to enable more sophisticated processing.

2 Rationale

A fundamental problem of testing distributed communication systems is the requirement to

maximize the accuracy of the tests although the data volume must be minimized. To that

end, the following items need to be considered:

• Sampling frequency

• Data format (e.g. to include an identifier, a timestamp, etc.)

• Trigger and filter mechanisms

2.1 Sampling frequency

Both data accuracy and data amount are directly related to the sampling frequency. While

accessing the bus at a lower abstraction level provides higher accuracy, it usually produces

larger amount of data. Therefore, it is important to choose the relevant level of abstraction.

To that aim, a fine grained layer model has been presented in [6] and two abstraction levels

are highlighted:

• Over-sampled stream: This abstraction level represents the waveform at the bus

transceiver interface and constitutes the highest accuracy accessible in the digital domain. It

enables detection of symptoms below the bit level, e.g., glitches, line delays, jitter or bit

length variation due to its continuous time scale. However, it requires a high sampling

frequency.

• Raw bit stream: This abstraction level is the interface between the physical layer and

the data link layer. Herein, the information is made up of bits with a fixed length. Thus, the

use of a standard clock is acceptable, which results in a low data volume compared to the

“over-sampled stream”.

 The main advantage of the “raw bit stream” abstraction level is to present a concise

view of the bus traffic: each bit represents a bit cell actively transmitted. However, the

accuracy is limited and information below the data link layer is already abstracted. In

contrast, the over-sampled stream enables a more accurate diagnosis at the cost of a data

volume increased by a factor five to ten. Additionally, access to this abstraction level is

mandatory for “black box” tests of the hardware where direct access to its physical

interfaces is required. Figure 1 depicts an example consisting of a raw bit stream and a 6

times over-sampled stream.

oversampling clock

over-sampled stream

physical input

bit clock

raw bit stream

’0' ’0'’0' ’0' ’1' ’0' ’0'’0' ’0'’0' ’1'’1'’1'’0' ’0' ’1'’1'’1'

’0' ’0' ’1'

’0'

glitch

Bit cell (i-1) Bit cell (i) Bit cell (i+1)

Figure 1: Example: bit stream versus over-sampled stream

2.2 Data format

The characteristic of a serial communication protocol is to transfer complex information

over a single wire; the single bit information in itself becomes meaningful only in context

with the whole bit stream representing the complex information. Consequently, bandwidth

can be saved when grouping bits into streams. The structure overhead – mandatory for

monitoring – is then limited to one tag per stream instead of one per bit.

 Moreover, the sampling method applied has a direct impact on the data volume

generated. Sequential sampling produces a data amount proportional to the acquisition

accuracy but independent of the bus traffic. This method is preferable when the events to

monitor are changing with a frequency close to the sample clock (e.g. raw bit stream)

because no additional timing information has to be stored. Transitional sampling produces

a data amount proportional to the bus activity but not (linearly) proportional to the

acquisition accuracy. This method is more efficient when the sampling clock is much

higher than the events to be monitored (e.g. over-sampled stream). If no glitches occur, one

can expect the logic values of the samples to remain constant throughout the whole bit cell,

and therefore produce less entries compared to the sequential sampling.

2.3 Triggering and filtering

Whereas a trigger is a mechanism to control tool activation during a predefined time

window, filter (or converter) methods are based on data transformation or interpretation.

Defining a trigger means defining a time window for which the tool should be activated and

therefore defining two points in time respectively to start and stop the measurement. A

trigger can be continuous when the user is accessing the entire bus traffic and the start and

stop conditions are defined by the beginning and end of system operation. An absolute

condition is defined before the experiment is started (typically according to a time base). A

relative condition, in contrast, is derived from the experiment itself (e.g. trigger on a frame,

an error, etc.). Due to the possible cyclic nature, trigger mechanisms might result to filter-

like operation.

 Parallel to the trigger, several filter modes can be defined. The first one is direct access,

when the entire bus traffic (without filtering) is accessed. The second one is transformation,

where the data format is converted to a more advantageous format or where specific (high

level) information is extracted. Finally, knowledge about the correct behavior (i.e. rules the

bus traffic should comply to) can be transferred to the tool to achieve interpretation and,

hence, enable fault detection.

 The usage of a filter or a trigger is not mutually exclusive. In particular, a combination

of both methods frequently represents a good solution to reduce the amount of data and to

obtain the required information solely.

3 A modular architecture

The aim of this section is to present the architecture developed to access the bus traffic at

the bit level. In order to save effort and time we reused the existing test and diagnosis tool

previously developed within the STEACS project, see [7] and added an additional queue to

access the bit level information. Figure 2 presents an overview of the monitoring part; the

replay part resembles a similar architecture, however, with a reversed data path. The actual

implementation is based on a COTS FlexRay [8] protocol engine on the top of which

different queuing units are processing different data types in parallel. As soon as a packet

has been successfully computed, it is sent to a Dual Ported RAM and then to a local host for

further processing. Using this modular architecture, a dedicated processing queue for the bit

stream can be easily inserted.

Write queues

State machine

Write DPRAM

State machine

data

timestamp data word

Raw Bit Stream

Processing Unit

Generic

Queuing

Unit

data triggers

Over-sampled

Stream Processing

Unit

DPRAM

control /

status

status

Host

ARM922T

DPRAM

Bus

Arbiter
local bus

Trigger

Unit

Time

base Unit

GPS 1-pps

timestamp

triggers

FlexRay Protocol Engine

Figure 2: Global monitoring architecture of the BusDoctor

The goal of the bit stream unit is to offer a way to access the bit level both at the raw bit

stream and at the over-sampled stream. Therefore, this module consists of three parts: (i) a

raw bit stream and (ii) an over-sampled stream unit to process and convert the serial data to

words and detect the start and stop point of the bit stream. Moreover, (iii) a generic queuing

unit processes the words into packets and forwards them to the DPRAM.

 The main advantages of the raw bit stream unit are its simple architecture and the lower

amount of produced data. Indeed, only one bit is generated for each bit received (sequential

sampling) and therefore the amount of data is comparable to the one generated when

monitoring the bus traffic at the frame level (i.e., payload information without frame header

or trailer). However, its accuracy is limited and information below the bit level, e.g. glitches

or the bit-cell length cannot be assessed anymore. The over-sampling stream unit aims at

improving this limitation and process the data directly at the physical input to provide the

user with the maximal achievable accuracy. However, this is achieved at the cost of

complex architecture and higher amount of produced data. Depending on the packet format,

an increase of 5 to 10 must be considered when compared to the raw bit stream coding.

4 Application to FlexRay

In this section we illustrate the test and diagnosis improvements that can be achievable

when monitoring and injection at the bit level is performed. For the following experiments

we first recorded a fault free bus traffic, which was emanated from a FlexRay based

distributed system, to a file. The bus traffic is divided into “communication cycles” that

represent a repeating medium access scheme according to a configured schedule. For our

experiment, a communication cycle consisted of five frames as illustrated in Figure 3.

Figure 3: Bus traffic organization

Next, the file was modified to inject a fault to each tenth frame with identifier 3. The fault

consisted of a single bit flip. In total, 150 frames were modified to successively alter each

bit of the frame. Finally, the resulting bus traffic was replayed and monitored in parallel at

the raw bit stream level for accurate diagnosis and at the frame level for comparison with a

standard hardware. The results are presented in Table 1.

Table 1: Experiment results

Fault detection Fault diagnosis Number of

bit flip

injected
Standard

controller
BusDoctor

Standard

controller
BusDoctor

Frame structure 38 87% 100% 0% 100%

Medium access 40 100% 100% 0% 100%

Frame content 72 100% 100% 0% 100%

Total 150 96% 100% 0% 100%

During this experiment, three faults location within the frame were identified. The frame

structure represents the additional bit patterns to structure the frame (e.g. frame start/end

sequence, byte start sequence). The medium access part provides information about the

medium access correctness (e.g. cycle counter, frame identifier, CRC), and finally the

frame content holds the transmitted payload. As expected, every bit flip was detected by

our diagnosis tool while few bit flips escaped the standard controller (these bit flips split the

frame into a long glitch and another correct frame tolerated by the controller). The fault

diagnosis capability, however, largely differs between the two modules. While only a few

flags are available for corrupted frames within the standard controller, the BusDoctor tool

provides the user with the whole bit stream. Consequently, accurate tests could be carried

out to identify the corrupted bit.

 Access to the over-sampled stream provided us with additional information about the

length of the bit cells and possible glitches. During this experiment, the bus traffic has been

online interpreted to filter faulty behaviors, which has been then used to trigger bit level

monitoring. This combined use of filter and trigger provided us with (i) exactly the data we

were interested in, (ii) very accurate information (over-sampled stream), and (iii) enabled

long observation times. Over-sampling only the faulty frames required 27 Kbytes, instead

of 9500 Kbytes required to monitor the whole bus traffic with the same accuracy.

5 Conclusion

Accessing the bus traffic at the bit level enables accurate tests and allows better diagnosis

of the communication services. Paradoxically, too much information might overcome the

end user or impair a higher processing overhead and therefore handicap the test procedure.

Consequently, the accuracy required (and therefore the abstraction level accessed) has to be

carefully selected and methods to limit the data volume have to be applied. To that end, the

raw bit stream and over-sampled stream abstraction levels using different sampling

methods were compared. Additionally, trigger and filter mechanisms were presented to

decrease the data volume while keeping the accuracy high.

 A modular and structured architecture was presented to enable access (for both

monitoring and injection/replay) at both the raw bit stream and over-sampled stream. The

flexible implementation enables the user to efficiently switch from one view to the other

according to his requirements. A prototype was integrated to the existing BUSDOCTOR, a

COTS tester node from DECOMSYS. Finally, an experiment illustrated the improvements

of our approach in comparison to a standard hardware. While the fault detection coverage is

equivalent for both methods, diagnosis is greatly improved with the possibility to run

complex algorithms directly on the faulty stream.

6 References

[1] Leen, G; Hefferman, D; “In-Vehicle Networks, Expanding Automotive Electronic Systems”, IEEE

Transaction on Computers, January 2002, pp. 88-93.

[2] Chandra, R; Lefever, R.M.; Joshi, K.R.; Cukier, M.; Sanders, W.H.; “A global-state-triggered fault

injector for distributed system evaluation”, Parallel and Distributed Systems, IEEE Transactions on,

Volume: 15 , Issue: 7 , July 2004, pp. 593 - 605.

[3] Stott, D.T.; Floering, B.; Burke, D.; Kalbarczpk, Z.; Iyer, R.K.; “NFTAPE: a framework for assessing

dependability in distributed systems with lightweight fault injectors”, Computer Performance and

Dependability Symposium, 2000. Proceedings. IEEE International , 27-29 March 2000, pp. 91 – 100.

[4] Carvalho, J.; Portugal, P.; Carvalho, A.; “A framework for dependability evaluation of PROFIBUS

networks”, Industrial Electronics, 2003. ISIE '03. 2003 IEEE International Symposium on, Volume: 1,

9-11 June 2003, pp. 466 – 471.

[5] Bruce, J.W.; Gray, M.A.; Follett, R.F.; “Personal digital assistant (PDA) based I2C bus analysis”,

Consumer Electronics, IEEE Transactions on , Volume: 49 , Issue: 4 , Nov. 2003, pp.1482 – 1487.

[6] Armengaud, E.; Steininger, A.; Horauer, M.; Pallierer, R.; “A Layer Model for the Systematic Test of

Time-Triggered Automotive Communication Systems”, 5th IEEE International Workshop on Factory

Communication Systems, pages 275 – 283, 2004.

[7] Horauer, M.; Rothensteiner, F.; Zauner M.; Armengaud, E.; Steininger, A.; Friedl H.; Pallierer, R.; “An

FPGA based SoC Design for Testing Embedded Automotive Communication Systems employing the

FlexRay Protocol”; Austrochip 2004, pp. 119-125, Villach - Austria, October 2004.

[8] FlexRay Consortium, “FlexRay Communications System Protocol Specification Version 2.0”,

www.flexray.com, 2004.

