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Abstract. Test and diagnosis of communication services is a pre-requisite for 

the validation of reliable distributed communication. In-depth observability and 

controllability of the bus traffic enables access to information typically filtered 

out by dedicated hardware. Given a fixed time interval, however, higher 

accuracy implies larger volumes of data that increase the test complexity and 

paradoxically constrain the test activity. In this paper we analyze the trade-offs 

between accuracy and data volume and present solutions to enable efficient test 

and detailed diagnosis of serial communication protocols. These trade-offs are 

illustrated using experiments conducted with the FlexRay protocol. 

1 Introduction 

Nowadays, modern cars are forming highly complex distributed systems with up to 70 

Electronic Control Units (ECU) connected to each other. Higher connectivity enables 

coordination between these ECUs resulting in a comprehensive view of the environment, 

hence, permitting efficient local processing (e.g. brake assistance). This in turn, provides 

the basis for dependable applications required for X-by-Wire [1]. A drawback of these 

systems, however, is their complexity and the difficulty to efficiently test the whole system. 

Although each node can be tested in isolation, the proper function of the system relies on 

the correct interoperation between all ECUs. Since test efforts are known to rise more than 

linearly with system complexity a systematic method is required providing a good test 

coverage. Within our STEACS project
1
 particular emphasis is set on the communication 

network that presents the crucial part of these distributed systems.  

 Frequently, observation is based on some form of packet filtering using a high level 

view of the communication, see [2, 3] and usually implements a dedicated hardware to 

automatically interpret the bus traffic. Although these approaches save host processing 

resources, they inhibit user-specific, accurate tests of the communication medium due to the 
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substantial data reduction. Bus access at the bit level is desirable in order to obtain accurate 

information for tests, since it enables: 

1. Observability and controllability next to the physical interface of the communication 

controller hardware, thus, enabling “black box” test methods.  

2. An accurate characterization of bit streams that is not (fully) supported by standard 

hardware (e.g. symbols used for signaling at the physical layer, erroneous frames, etc.).  

3. Access to events that are otherwise removed at higher levels (e.g. glitches). 

However, a fundamental drawback of accessing the bus traffic at the bit level is the large 

amount of data that needs to be transferred and processed. Furthermore, constraints in 

automotive embedded systems (e.g. low costs, robustness, etc.) prohibit the field-usage of 

COTS development tools as e.g. logic analyzers or pattern generators. Other approaches 

have been presented to test the lower layers of field bus systems, e.g. [4, 5]. They provide 

means to insert and detect a pre-defined subset of faults; however, the user has no access to 

the bit stream itself to enable more sophisticated processing. 

2 Rationale 

A fundamental problem of testing distributed communication systems is the requirement to 

maximize the accuracy of the tests although the data volume must be minimized. To that 

end, the following items need to be considered: 

• Sampling frequency 

• Data format (e.g. to include an identifier, a timestamp, etc.) 

• Trigger and filter mechanisms 

2.1 Sampling frequency 

Both data accuracy and data amount are directly related to the sampling frequency. While 

accessing the bus at a lower abstraction level provides higher accuracy, it usually produces 

larger amount of data. Therefore, it is important to choose the relevant level of abstraction. 

To that aim, a fine grained layer model has been presented in [6] and two abstraction levels 

are highlighted: 

• Over-sampled stream: This abstraction level represents the waveform at the bus 

transceiver interface and constitutes the highest accuracy accessible in the digital domain. It 

enables detection of symptoms below the bit level, e.g., glitches, line delays, jitter or bit 

length variation due to its continuous time scale. However, it requires a high sampling 

frequency. 

• Raw bit stream: This abstraction level is the interface between the physical layer and 

the data link layer. Herein, the information is made up of bits with a fixed length. Thus, the 

use of a standard clock is acceptable, which results in a low data volume compared to the 

“over-sampled stream”.  

 The main advantage of the “raw bit stream” abstraction level is to present a concise 

view of the bus traffic: each bit represents a bit cell actively transmitted. However, the 

accuracy is limited and information below the data link layer is already abstracted. In 

contrast, the over-sampled stream enables a more accurate diagnosis at the cost of a data 

volume increased by a factor five to ten. Additionally, access to this abstraction level is 

mandatory for “black box” tests of the hardware where direct access to its physical 

interfaces is required. Figure 1 depicts an example consisting of a raw bit stream and a 6 

times over-sampled stream. 
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Figure 1: Example: bit stream versus over-sampled stream  

2.2 Data format  

The characteristic of a serial communication protocol is to transfer complex information 

over a single wire; the single bit information in itself becomes meaningful only in context 

with the whole bit stream representing the complex information. Consequently, bandwidth 

can be saved when grouping bits into streams. The structure overhead – mandatory for 

monitoring – is then limited to one tag per stream instead of one per bit. 

 Moreover, the sampling method applied has a direct impact on the data volume 

generated. Sequential sampling produces a data amount proportional to the acquisition 

accuracy but independent of the bus traffic. This method is preferable when the events to 

monitor are changing with a frequency close to the sample clock (e.g. raw bit stream) 

because no additional timing information has to be stored. Transitional sampling produces 

a data amount proportional to the bus activity but not (linearly) proportional to the 

acquisition accuracy. This method is more efficient when the sampling clock is much 

higher than the events to be monitored (e.g. over-sampled stream). If no glitches occur, one 

can expect the logic values of the samples to remain constant throughout the whole bit cell, 

and therefore produce less entries compared to the sequential sampling. 

2.3 Triggering and filtering  

Whereas a trigger is a mechanism to control tool activation during a predefined time 

window, filter (or converter) methods are based on data transformation or interpretation. 

Defining a trigger means defining a time window for which the tool should be activated and 

therefore defining two points in time respectively to start and stop the measurement. A 

trigger can be continuous when the user is accessing the entire bus traffic and the start and 

stop conditions are defined by the beginning and end of system operation. An absolute 

condition is defined before the experiment is started (typically according to a time base). A 

relative condition, in contrast, is derived from the experiment itself (e.g. trigger on a frame, 

an error, etc.). Due to the possible cyclic nature, trigger mechanisms might result to filter-

like operation. 

 Parallel to the trigger, several filter modes can be defined. The first one is direct access, 

when the entire bus traffic (without filtering) is accessed. The second one is transformation, 

where the data format is converted to a more advantageous format or where specific (high 

level) information is extracted. Finally, knowledge about the correct behavior (i.e. rules the 

bus traffic should comply to) can be transferred to the tool to achieve interpretation and, 

hence, enable fault detection.  

 The usage of a filter or a trigger is not mutually exclusive. In particular, a combination 

of both methods frequently represents a good solution to reduce the amount of data and to 

obtain the required information solely.  



3 A modular architecture 

The aim of this section is to present the architecture developed to access the bus traffic at 

the bit level. In order to save effort and time we reused the existing test and diagnosis tool 

previously developed within the STEACS project, see [7] and added an additional queue to 

access the bit level information. Figure 2 presents an overview of the monitoring part; the 

replay part resembles a similar architecture, however, with a reversed data path. The actual 

implementation is based on a COTS FlexRay [8] protocol engine on the top of which 

different queuing units are processing different data types in parallel. As soon as a packet 

has been successfully computed, it is sent to a Dual Ported RAM and then to a local host for 

further processing. Using this modular architecture, a dedicated processing queue for the bit 

stream can be easily inserted.  
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Figure 2: Global monitoring architecture of the BusDoctor 

The goal of the bit stream unit is to offer a way to access the bit level both at the raw bit 

stream and at the over-sampled stream. Therefore, this module consists of three parts: (i) a 

raw bit stream and (ii) an over-sampled stream unit to process and convert the serial data to 

words and detect the start and stop point of the bit stream. Moreover, (iii) a generic queuing 

unit processes the words into packets and forwards them to the DPRAM. 

  The main advantages of the raw bit stream unit are its simple architecture and the lower 

amount of produced data. Indeed, only one bit is generated for each bit received (sequential 

sampling) and therefore the amount of data is comparable to the one generated when 

monitoring the bus traffic at the frame level (i.e., payload information without frame header 

or trailer). However, its accuracy is limited and information below the bit level, e.g. glitches 

or the bit-cell length cannot be assessed anymore. The over-sampling stream unit aims at 

improving this limitation and process the data directly at the physical input to provide the 

user with the maximal achievable accuracy. However, this is achieved at the cost of 

complex architecture and higher amount of produced data. Depending on the packet format, 

an increase of 5 to 10 must be considered when compared to the raw bit stream coding.  

 



4 Application to FlexRay 

In this section we illustrate the test and diagnosis improvements that can be achievable 

when monitoring and injection at the bit level is performed. For the following experiments 

we first recorded a fault free bus traffic, which was emanated from a FlexRay based 

distributed system, to a file. The bus traffic is divided into “communication cycles” that 

represent a repeating medium access scheme according to a configured schedule. For our 

experiment, a communication cycle consisted of five frames as illustrated in Figure 3.  

 

 

Figure 3: Bus traffic organization 

Next, the file was modified to inject a fault to each tenth frame with identifier 3. The fault 

consisted of a single bit flip. In total, 150 frames were modified to successively alter each 

bit of the frame. Finally, the resulting bus traffic was replayed and monitored in parallel at 

the raw bit stream level for accurate diagnosis and at the frame level for comparison with a 

standard hardware. The results are presented in Table 1. 

Table 1: Experiment results 

Fault detection Fault diagnosis  Number of 

bit flip 

injected 
Standard 

controller 
BusDoctor 

Standard 

controller 
BusDoctor 

Frame structure 38 87% 100% 0% 100% 

Medium access  40 100% 100% 0% 100% 

Frame content 72 100% 100% 0% 100% 

Total 150 96% 100% 0% 100% 

 

During this experiment, three faults location within the frame were identified. The frame 

structure represents the additional bit patterns to structure the frame (e.g. frame start/end 

sequence, byte start sequence). The medium access part provides information about the 

medium access correctness (e.g. cycle counter, frame identifier, CRC), and finally the 

frame content holds the transmitted payload. As expected, every bit flip was detected by 

our diagnosis tool while few bit flips escaped the standard controller (these bit flips split the 

frame into a long glitch and another correct frame tolerated by the controller). The fault 

diagnosis capability, however, largely differs between the two modules. While only a few 

flags are available for corrupted frames within the standard controller, the BusDoctor tool 

provides the user with the whole bit stream. Consequently, accurate tests could be carried 

out to identify the corrupted bit. 

 Access to the over-sampled stream provided us with additional information about the 

length of the bit cells and possible glitches. During this experiment, the bus traffic has been 

online interpreted to filter faulty behaviors, which has been then used to trigger bit level 

monitoring. This combined use of filter and trigger provided us with (i) exactly the data we 

were interested in, (ii) very accurate information (over-sampled stream), and (iii) enabled 



long observation times.  Over-sampling only the faulty frames required 27 Kbytes, instead 

of 9500 Kbytes required to monitor the whole bus traffic with the same accuracy. 

5 Conclusion 

Accessing the bus traffic at the bit level enables accurate tests and allows better diagnosis 

of the communication services. Paradoxically, too much information might overcome the 

end user or impair a higher processing overhead and therefore handicap the test procedure. 

Consequently, the accuracy required (and therefore the abstraction level accessed) has to be 

carefully selected and methods to limit the data volume have to be applied. To that end, the 

raw bit stream and over-sampled stream abstraction levels using different sampling 

methods were compared. Additionally, trigger and filter mechanisms were presented to 

decrease the data volume while keeping the accuracy high. 

 A modular and structured architecture was presented to enable access (for both 

monitoring and injection/replay) at both the raw bit stream and over-sampled stream. The 

flexible implementation enables the user to efficiently switch from one view to the other 

according to his requirements. A prototype was integrated to the existing BUSDOCTOR, a 

COTS tester node from DECOMSYS. Finally, an experiment illustrated the improvements 

of our approach in comparison to a standard hardware. While the fault detection coverage is 

equivalent for both methods, diagnosis is greatly improved with the possibility to run 

complex algorithms directly on the faulty stream.  
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