
A MONITORING CONCEPT FOR AN AUTOMOTIVE
DISTRIBUTED NETWORK - THE FLEXRAY EXAMPLE

Eric Armengaud, Andreas Steininger
Vienna University of Technology

Embedded Computing Systems Group E182-2
Treitlstr. 3, A-1040 Vienna

{armengaud, steininger}@ecs.tuwien.ac.at

Martin Horauer Roman Pallierer, Hannes Friedl
University of Applied Sciences Dependable Computer Systems

Technikum Wien DECOMSYS GmbH
Höchstädtplatz 5, A-1200 Vienna Stumpergasse 48/28, A-1060 Vienna

horauer@technikum-wien.at {pallierer, friedl}@decomsys.com

Abstract. This paper discusses the requirements for and presents an im-
plementation of a hardware architecture for monitoring of FlexRay-based
automotive distributed networks. The same principles are used in the re-
verse direction for fault injection and a ”replay” mechanism that allows
re-enacting recorded situations for debugging and fault confinement. The
presented FPGA implementation is tailored for an embedded test and fault
diagnosis and shall enable an assessment of the reliability and dependability
of future distributed automotive networks.

1 Introduction

Electronics is the innovation driver in the automotive domain. The use of electronic
control units (ECUs) and especially their interoperation allow the establishment of
increased and improved functionality in comparison with standalone components (e.g.,
combining speed with steering information).

For non safety-critical communication (power windows, light control) a number of
protocols have become popular, such as LIN, CAN or Byteflight. For safety-critical
and more complex applications (”by-wire”-applications and power-train) an industrial
consortium is establishing a common communication protocol, called FlexRay1. The
introduction of such by-wire systems – which essentially means replacing mechanical
and hydraulic components by electronic components connected by wires without the
provision of a mechanical fallback – will be a substantial innovation step for the auto-
motive industry [1]. However, this will require efficient methods for test and diagnosis
to check the functional integrity of all involved components (plus their inter-operation)
and hence prevent failures.

1http://www.flexray.com



It is the aim of our STEACS2 project to address these challenges and take a first
step towards a solution. Since testing is a prerequisite not only for service and mainte-
nance but during all phases of the design as well, we propose a layer-based approach in
order to model, identify and localize faults originating from different sources. To that
end, we present in this paper an FPGA design suited for monitoring of FlexRay-based
communication networks that provides information and input for a subsequent fault
diagnosis stage with the vision to enable an embedded self-test.

2 System model

We consider a system of several ECUs interconnected and operated as specified by the
FlexRay protocol. A typical FlexRay Bus-System along with the simplified architecture
of a node is illustrated in Fig. 1.

Node A Node B Node DNode C

Star
1

Node E

Star
2

Bus Driver Bus Driver

Protocol engine

Controller Host Interface

Host System CPU, Memory, Network
Interfaces, etc.

FlexRay communication
controller

Physical Layer Interface

Figure 1: FlexRay Bus-System Example and Node Architecture

In this architecture the controller host interface (CHI) appears as a dual-ported
memory block with several additional services (message filtering, network management,
error signaling, etc.) and is used as control- and data-interface between the host system
and the FlexRay protocol engine next to the transmit and receive channels.

As with all layered architectures, every layer hides particular information from the
layers above. E.g. bit-synchronization, CRC-checking, framing, clock ticks, etc., are
handled by the FlexRay communications controller and typically only status informa-
tion is directly accessible by the host processor. Similarly, the physical layer handles and
hides the electrical properties from the controller. However, for fault diagnosis this de-
tailed information can become useful especially when the distributed system is operated
with settings close to the specified limits. Furthermore, the point in time of message
reception is difficult to discern since frames are stored in the CHI for an arbitrarily
long time and the frames themselves incorporate no timestamp. Exact timestamps are
required when the recorded data shall be retransmitted in the same timely order in a
kind of replay fashion in order to re-enact recorded situations; a mechanism strongly
argued for by our OEM partners. The idea herein is to strip the data that stems from
one/several nodes off the recordings. Next, the network is modified to include the nodes
whose data have been removed and the test node. The latter is finally used to re-enact
the modified recordings in order to replay previously monitored behavior for debugging
and thus emulate a realistic environment for the other nodes.

2The STEACS-project received support from the Austrian ”FIT-IT[embedded systems” initiative,
funded by the Austrian Ministry for Traffic, Innovation and Technology (BMVIT) and managed by
the Austrian Industrial Research Promotion Fund (FFF) under grant 807146.
See http://embsys.technikum-wien.at/steacs.html for further information.



3 Requirements Analysis

Monitoring of events in a distributed communication system may be performed at
different levels of abstraction. Monitoring at the bit-level, e.g., is useful to probe for the
actual bus configuration whereas monitoring at the frame-level is required for debugging
of higher level protocols and applications. Without direct monitoring access to different
layers diagnosis capabilities are very limited. Therefore one major aim in the design
of the diagnosis tool was to allow selective monitoring of different event types from
different sources at different layers. For the reconstruction of precedence and causality
the recorded events have to be sorted in temporal order. This further allows re-enacting
a specific situation.

Another important issue is triggering. In general, brute-force monitoring yields a
huge amount of information to be stored and analyzed, while only a small amount is
usually needed for diagnosis. In order to avoid time and resource consuming storage and
post-processing, on-line trigger mechanisms are required to allow for targeting the ob-
servation to the desired interval and for filtering of the relevant information. In addition
to specialized data recording and transmission capabilities, fault injection will become
useful to assess dependability and reliability properties during system development,
requiring several trigger mechanisms as well [3].

The following requirements turned out to be of particular importance for our im-
plementation.

Memory and Data format:

• Identifier: We defined several frame formats to transport all required information
between the FlexRay controller and the host processor. To discern between all
these frames, and frames monitored from other networks (e.g. CAN, LIN, etc.) a
frame identifier shall be used.

• Packet length: A length field at the head of these new/enhanced frames allows
for simpler referring to the follow-up packet, an otherwise burdensome task for
the host software.

• Data rate: The hard+software should be able to monitor the bus at full speed
and at different layers in parallel during test runs that last several hours.

Timestamp:

• Resolution: The granularity of the timestamps shall enable monitoring down to
the bit level. In particular, for low level diagnostics we shall be able to attain an
over-sampling for bits. With a bit-rate ρchan on the communication channel and
a sampling clock Cs an over-sampling ratio Ω can be attained according to

Ω = bCs/ρchanc. (1)

The timestamp should allow an identification of every single sample which trans-
lates into a timestamp granularity requirement of 1/Cs.

• Wrap-around: The width of the time base shall be large enough to keep the
wrap-arounds rather infrequent since their handling incurs additional processing



overhead. With a granularity of 1/Cs and a time base width of b-bits the wrap-
around occurs with a period of Twa according to

Twa = 2b/Cs. (2)

• Synchronization capabilities: For the ”replay” mode or when simultaneously ac-
quired recordings shall be related towards each other regular timestamps and
records of the cluster time and/or an external time base (e.g. GPS) are manda-
tory.

• Chronoscopic time base: In order to guarantee correct temporal ordering and
alignment of captured events potential synchronization activities must not lead
to discontinuities in the time scale.

• Calibration: Records spanning several hours will exhibit drift deviations when em-
ploying ordinary oscillators. A calibration of the (static) frequency error should
be possible in any case; a calibration of frequency drift would be desirable. Per-
forming the calibration a posterior in software is computing intensive, whereas a
hardware solution as presented in [2] involves considerable hardware efforts.

Trigger:

• Trigger events: To support an analysis on different levels of abstraction different
types of events have to be detected by the trigger: Signal edges, a logic state
of signals or buses equaling a predefined reference value, data values matching a
reference or lying within a given range, time conditions, conditions of the com-
munication channel, error conditions, etc. Furthermore, it is desirable to have the
option of formulating combinations of several conditions as the trigger event, like
e.g., ”trigger on (CONDITION A ∧ CONDITION B) ∨ (¬ CONDITION C)”.

• Trigger sequences: An even higher selectivity can be attained, if sequences of
trigger conditions can be applied, like ”trigger on CONDITION A first, and then
on CONDITION B next”. Obviously, this allows a more precise positioning within
the control flow on the bus. Similarly, an event counter for the trigger is very useful
”trigger on CONDITION A 3 times”.

• Trigger position within the record: For most sequences to be observed some unique
event is known such that the trigger event can start the acquisition. For debug-
ging, on the other hand, it will often be the case that the failure must be used as
a trigger event where the bus activities and states before this event are of interest.
As a consequence, both a post-trigger and a pre-trigger are required.

• Trigger response time: Of course, it is highly desirable to have an immediate trig-
ger response, in particular, recording shall start within the same acquisition clock
cycle as the trigger event. Considering the requirement for more complex trigger
conditions like combinations or sequences of events this immediate response is
not realistic. Therefore, a subset of simpler trigger functions shall be available
that guarantee very fast trigger response when necessary while the more complex
trigger functions may be helpful in many other cases.



We have performed this requirement analysis with the FlexRay target in mind in
front of the actual implementation. The problems we encountered turned out quite
generic and, hence, our analysis can be applied to many other embedded distributed
networks.

4 Implementation of the Monitoring Device

For the monitoring hard+software our starting point was to use a COTS FlexRay con-
troller and implement the required modifications. This approach relieved us from imple-
menting the standard FlexRay controller hardware which allowed us to concentrate our
efforts on the monitoring aspects. Furthermore, in this way we avoided compatibility
problems with the standard controllers we use as monitoring target.

The main problem we were facing with this approach was the attainable data rate.
The COTS FlexRay controller architecture has been optimized for the data rates oc-
curring during normal bus operation. According to our monitoring requirements the
implementation must be able to handle multiple data streams in parallel when used as
a monitoring device which means that a much higher data rate had to be handled. This
issue turned out as one of the most critical aspects in our architectural considerations.

According to the strategy outlined above we replaced the controller to host interface
(CHI) of a COTS FlexRay controller implementation as illustrated in Fig. 1 with a large
dual ported RAM interface and added several hardware units – in particular, a time
base and a trigger unit – to the existing FlexRay controller. Fig. 2 shows a block-
diagram of the monitoring hardware implementation without the interfaces required
to configure and program these units, and the host interfaces (e.g. memory, Ethernet
interface, etc.).

Figure 2: Monitoring hardware block-diagram

In principle, after a trigger every event that is recorded using this architecture is
encapsulated in a dedicated frame format optimized for the processing by the host (e.g.



data frames, cluster sync frame, global sync frame, etc.) and stored in a dedicated
queue. Dedicated queues are required because the information to be recorded is usually
generated in parallel. A bus arbiter manages the local bus and when scheduled, copies
the contents of the queues into the dual-ported memory. The dual ported memory is
organized as a FIFO; whenever a certain threshold is reached an interrupt request is
signaled to the host processor. In the respective interrupt service routine the processor
empties the FIFO and stores the relevant information in a large external dynamic
memory bank. Higher level software succinctly processes the stored information and
copies it either to a large flash-disk or streams it via a Ethernet interface to a remote
host for visualization and further processing.

For the replay and fault injection modes a similar architecture is used, although,
the data path is in the reversed direction and some additional units are added (e.g. to
extract the required information from the frames).

As target for the implementation of the presented monitoring ECU we adapted the
Node<ARM> an automotive prototyping platform for FlexRay from Decomsys GmbH3

exploiting Altera’s Excalibur architecture. In particular, the EPA4 device offers an em-
bedded ARM922T processor hardcore with several integrated peripherals and a 400k
FPGA that is used to implement the FlexRay communications controller and the hard-
ware support for monitoring, replay and fault injection. Designed for 10 Mb/s operation
our actual implementation achieves an over-sampling of Ω = 8 and a wrap around pe-
riod of Twa = 53sec. according to Equ. 1 and 2, respectively.

5 Conclusions

We presented several requirements and an overview of our FPGA implementation tai-
lored to support monitoring of FlexRay-based automotive distributed systems. By
replacing the controller host interface of the FlexRay communication controller with a
large dual ported RAM we get access to information otherwise visible only from within
the controller. To capture data along with other information we added a time base
and a trigger unit with several queues. Timestamps are sampled from the time base
and encapsulated into frames with every recorded event. The conditions to initiate
the process of monitoring are derived from a trigger that can be programmed via the
host in various different ways. Similarly, the trigger is used for fault injection and a
”replay” mode in the reverse direction to enable fault confinement and assessment of
the dependability of the distributed automotive system under inspection.

References

[1] Leen G. and Hefferman D.: In-Vehicle Networks, Expanding Automotive Electronic Sys-
tems. IEEE Transaction on Computers, pp. 88-93, January 2002.

[2] Schossmaier K., Schmid U., Horauer M. and Loy D.: Specification and Implementation of
the Universal Time Coordinated Synchronization Unit (UTCSU). Journal of Real-Time
Systems, May 1997, No. 3, Vol. 12, pp. 295-327.

[3] Hsueh M.C., Tsai T.K. and Iyer R.K.: Fault Injection Techniques and Tools. IEEE Trans-
actions on Computer, Vol. 30, No. 4, pp. 75-82, 1997.

3http://www.decomsys.com


