
An Efficient Test and Diagnosis Environment for Communication Controllers

Eric Armengaud, Andreas Steininger Martin Horauer
Vienna University of Technology University of Applied Sciences Technikum Wien

Embedded Computing Systems Group E182-2 Dept. of Embedded Systems
Treitlstr. 3, A-1040 Vienna Ḧochsẗadtplatz 5, A-1200 Vienna

{armengaud, steininger}@ecs.tuwien.ac.at horauer@technikum-wien.at

Abstract

Testing is of utmost importance at several development
stages of electronic systems; this is especially true for
tightly coupled distributed embedded systems. This paper
presents a test environment that allows to log bus-traffic of
an automotive cluster relying on the emerging FlexRay bus
protocol. While a real-life cluster allows for fast test pattern
application, only limited insight can be shed onto the in-
ternals of the nodes for diagnosis. Our approach allows to
efficiently switch between hardware and simulation by map-
ping the logged real-life data to a HDL simulation testbench
for the system-under-test. This allows us to gain deeper
insights and eventually reveal the causes of the faults ob-
served and recorded on the real hardware.

1 Introduction

Electronics, nowadays, is the driving factor for almost all
innovations in the automotive domain. To manage the traffic
of these emerging distributed embedded systems an indus-
trial consortium of leading automotive and electronic OEM
suppliers introduced the FlexRay protocol, see [1]. Relying
on both the time- and event-triggered paradigms, FlexRay
promises reliability and fault-tolerance aspects with the
bandwidth to serve the needs of a communication backbone
and the flexibility for the coupling of sensor/actuator sys-
tems required for future automotive solutions.

Since FlexRay will be introduced for safety-critical ap-
plications, e.g.X-by-wiresystems, where a failure can lead
to severe consequences, means for the evaluation of depend-
ability properties are required. Clearly, testing is essential
in order to evaluate whether the system is correctly imple-
mented and will react as expected in its future field envi-
ronment. However, while methods for testing of the com-
puting nodes themselves on the one side and the bus on the
other side do exist, a unified, accurate and systematic test
approach on the system level is required that does not only
consider the function of these singular components in iso-
lation. Experience shows that problems with interaction of
“fault-free” components are becoming increasingly relevant
in practice. The problem is further aggravated by the large
number of new product variants.

This paper presents a method for the efficient verification
and diagnosis of communication controller hardware that

was developed in the course of our STEACS1 project. In
particular, our structured method enables fast and efficient
switching between a physical prototype cluster and a HDL
simulation model. This is of utmost importance since the
physical prototype on one hand permits the validation of
hardware models using fast and extensive quantitative tests,
while on the other hand the HDL simulator provides de-
tailed insight into the module in selected problem cases and
thus enables accurate diagnosis.

Sec. 2 details the setup of our system under test and the
environment we have developed for prototype tests. Next,
in Sec. 3 we present our test environment for the HDL simu-
lation and explain the efficient mapping we created between
the hardware and simulation environments. In Sec. 4 we
present some experimental results conducted with our setup
before we conclude our paper in Sec. 5.

2 Test Environment - Prototype

Our system-under-test (SUT) is a COTS FlexRay cluster
running a dedicated application, cf. Fig. 1. To enable re-
mote debugging and testing, we further attached two cus-
tomized tester nodes termed BusDoctor to the FlexRay bus.
This embedded test solution provides capabilities for mon-
itoring FlexRay bus-traffic on one hand and allows to inject
stimuli into the data stream on the other hand. In particular,
our FPGA-based solution employed in the BusDoctor nodes
allows to record and/or manipulate data at different levels of
abstraction (e.g. by handling encoded/decoded bits next to
the physical layer or entire frames at the data link layer).

Each of these two embedded testers is controlled and
configured by a remote host using a standard Ethernet con-
nection. In particular, when monitoring is activated the host
creates a logfile with a trace of the bus traffic at the abstrac-
tion levels of interest. Similarly, via the replay functionality
it is possible to inject stimuli stored in a logfile directly into
the ongoing bus traffic. Notice that a bus traffic scenario can
be completely described by such a trace in a logfile. Hereby,
our FPGA implementation extracts relevant information to
decide at which particular layer the traffic shall be inserted

1The STEACS-project received support from the Austrian ”FIT-
IT[embedded systems” initiative, funded by the Austrian Ministry for Traf-
fic, Innovation and Technology (BMVIT) and managed by the Austrian
Research Promotion Agency (FFG) under grant 807146.
See http://embsys.technikum-wien.at/steacs.html for further information.



and when this shall be done. The latter trigger functionality
is essential when valid data is to be inserted into the time-
triggered portion of the bus traffic and hence needs to be
aligned appropriately.

Finally, a central tester controls the hosts in turn, config-
ures and controls the system-under-test, and allows to start
and stop the experiments. Additionally, it provides tools for
automatic test reporting and statistical analysis. Further-
more the central tester may provide a “BDFileGenerator”
(cf. [2]) to artificially generate a logfile instead of recording
it, and a “LogChanger” to alter an existing logfile, which for
example can be used to inject faults in order to activate and
test fault tolerance mechanisms.

FlexRay Demo Cluster

FlexRay Bus

UDP (TCP) Connection

BusDoctor

SSH Server

Tester

SSH Connection

SUT

Telnet Connection

Figure 1: Prototype Test Environment

The BusDoctor’s internal architecture is basically an
SoC solution implemented on an Altera Excalibur FPGA.
The FPGA resembles a hardwired processor stripe cen-
tered around an ARM processor core with several interfaces
(UART, memory interfaces, etc.). The remaining config-
urable FPGA resources host our monitoring and injection
hardware solution. The latter implements the FlexRay pro-
tocol stack and provides “by-paths” to enable the recording
of incoming data streams and to inject data into the outgoing
data-streams at different levels of abstraction, respectively.
All recorded and injected data are encapsulated in simple,
dedicated frames that are transferred to the ARM processor
via a DPRAM interface. A dedicated bus arbiter controls
the interface to/from the monitoring and injection modules
towards the DPRAM, see [4]. An RTAI Linux operating
system firmware executing on top of the ARM processor
handles the transfer to/from the DPRAM onwards either to
large flash disks and/or a remote host via a standard Ether-
net interface employing the TCP/IP protocol, cf. 2.

3 Test Environment - HDL Simulator

The modified FlexRay controller that forms the core of
the BusDoctor’s hardware functionality is implemented in
VHDL. Therefore, a COTS HDL simulator has been used
to test and debug the design. The main problem we faced
was to develop a model that provides a realistic and repre-
sentative environment of the FlexRay bus on one side and
the host on the other side. For the purpose of testing the
FlexRay controller portion the interface to the host could
be moved down to the configuration and data interface (see
Fig. 2), thus reducing the simulation complexity. (By doing
this we in fact assumed the hardwired ARM core to be fault
free at this point.)

FlexRay 
Protocol Engine

Configuration Interface & Data Interface (DPRAM)

Monitoring 
Units

Replay Units

Timer

FlexRay Bus

VHDL Model of the 
modified FlexRay 

controller

Physical 
layer

RXD TXD RXD TXD

ARM CPU Model
Bus Traffic 

Logfile

Bus Traffic 
generator

Bus Traffic 
Logfile

Test Environment

Physical 
layer

Figure 2: Simulation Test Environment

Consequently, we developed simulation models for the
host side (ARM CPU and configuration and data interface)
and for the FlexRay side (physical layer and bus traffic gen-
erator). The ARM CPU model could quite conveniently be
reduced to its memory access for configuration and con-
trol of the VHDL design. In addition, a function to transfer
the data between a logfile and the VHDL model was de-
signed. This (1) provides a well defined bound between
configuration and data, and (2) eases the generation of sce-
narios by the use of automated tools. On the FlexRay side, a
bus traffic generator module was developed to stimulate the
FlexRay bus. To make the tedious process of test pattern
generation more efficient, we have developed a converter
that allows us to feed this generator from a bus traffic log-
file.

During the development of the BusDoctor we set empha-
sis on an efficient data encapsulation. This led us to a strict
separation between control information and data. Data val-
ues are stored in a logfile and describe the information ex-
changed at the communication medium completely defining



an application scenario that can be transparently used at ev-
ery stage for verification. In particular, a bus traffic logfile
consists of the complete description of the bus traffic behav-
ior. The communication scenario is divided into packets,
each consisting of an identifier, a packet length descriptor, a
timestamp and the actual packet contents, see also [3]. The
packet identifier uniquely describes the considered channel
and abstraction level. Next, the length information is useful
when packets have to be filtered out. The timestamp de-
picts the starting point of the packet, and finally the packet
content describes the transmitted message with a specified
granularity. Tab. 1 shows an example of a bus traffic logfile:
The first packet illustrates a packet at the frame contents
level and a second one at the bit level.

Identifier: “Frame level identifier channel A”
Length: length of the frame in bytes (0 –28)

Timestamp: 32 bit timestamp; granularity 40 ns
Content: data payload

Identifier: “Bit level identifier channel B”
Length: length of the frame in bytes (0 –216)

Timestamp: 32 bit timestamp; granularity 40 ns
Content: sampled binary values

... ...

Table 1: Example of a bus traffic logfile

Within the STEACS project we developed different tools
to generate new bus traffic scenarios where the resulting
trace can be freely used either for simulation purposes or
for direct tests on a physical prototype cluster. This com-
mon scenario description builds a very comfortable bridge
between simulation and prototype test. Indeed, situations
captured with the BusDoctor hardware can be easily trans-
ferred to the simulation environment for closer analysis as
required for debugging, and in the reverse direction, simu-
lated behaviors can be easily validated in hardware as well.
This common interface consequently enables efficient inter-
action between prototype tests (fast and quantitative tests)
and simulation (more accurate tests that are useful for de-
tailed offline debugging).

4 Test Application

To illustrate the usefulness of our approach we conducted
several test campaigns on the FlexRay protocol. The
bus traffic for this communication protocol is divided into
“communication cycles” that represent a repeating medium
access scheme according to a configured schedule. A com-
munication cycle is further divided into a static part and a
dynamic part to enable both static TDMA-based and dy-
namic arbitrated bus communication within one single com-
munication cycle. More information is available in the
FlexRay protocol specification [1].

The aims of our campaigns were (1) to test the error
detection mechanisms available in every standard FlexRay
communication controller according to the FlexRay proto-
col specification, see [1], and (2) to test the additional ser-

vices provided by the BusDoctor hardware for efficient de-
bugging. Four flags are defined within the FlexRay speci-
fication, while our BusDoctor implements 16 flags in order
to provide more accurate fault diagnosis. Tab. 2 lists the
flags that are available both within a standard communica-
tion controller and our BusDoctor, respectively.

Standard FlexRay controller
vSS!ValidFrame indicates the validity of a frame
vSS!SyntaxError signals a syntax error: e.g. a

coding error; an erroneous frame
start or end sequence

vSS!ContentError reports a frame content error: e.g.
an erroneous frame identifier or
a wrong cycle length

vSS!BViolation indicates a boundary violation

BusDoctor
CODERR Coding Error
TSSVIOL Transmit Start Sequence Error
HCRCERR Header CRC Error
FCRCERR Frame CRC Error
FESERR Frame End Sequence Error
SYMB Symbol
VCE Valid Communication Element
BVIOL Boundary Violation
SWVIOL Symbol Window Violation
NITVIOL Network Idle Time Violation
SOVERR Slot Overbooked Error
NERR Null Frame Error
SSERR Sync or Start-up flag Error
FIDERR Frame Identifier Error
CCERR Communication Cycle Error
SPLERR Static Payload Length Error

Table 2: Fault Detection Flags overview

For the generation of the bus traffic scenario logfile we
engineered two solutions; (1) using the BusDoctor to record
bus-traffic or (2) using the “BDFileGenerator” tool to ef-
ficiently generate artificial, specification conformous bus-
traffic. Afterwards, these logfiles can be easily altered by
means of our “LogChanger” to violate certain conditions
and thus stimulate/emulate faults.

The presented test campaign consisted of 15 experiments
where each one consisted of 3.000 to 5.000 communication
cycles and, hence, represented 9 to 15 seconds of bus traf-
fic. For every experiment we injected something between
46 and 1092 deviations. A dedicated test application was
developed to analyze the monitored bus traffic and report
the error flags. Additionally, the test flags were made visi-
ble at external pins for the standard FlexRay controller im-
plementation as well. Tab. 3 summarizes the test campaign
and the obtained results.

As can be seen in Table 3 all error flags from the listing
in Table 2 were activated at least once both for the stan-
dard FlexRay communication controller and the BusDoc-
tor. The first five experiments aimed at altering the frame
structure (defined bit sequences acting as delimiters or pro-



Exp. # of deviations # of cycles Description FlexRay status BusDoctor status
1 234 5000 Byte Start Sequence error vSS!SyntaxError CODERR
2 234 5000 Transmit Start Sequence error vSS!SyntaxError TSSVIOL
3 234 5000 Header CRC error vSS!SyntaxError HCRCERR
4 234 5000 Frame CRC error vSS!SyntaxError FCRCERR
5 234 5000 Frame End Sequence error vSS!SyntaxError FESERR
6 1092 5000 Boundary violation (pos. offset) vSS!BViolation BVIOL
7 468 5000 Boundary violation (neg. offset) vSS!BViolation BVIOL
8 46 3000 Symbol Window Violation vSS!BViolation SWVIOL
9 46 3000 Network Idle Time Violation vSS!BViolation NITVIOL
10 78 5000 Several frames within a slot vSS!BViolation SOVERR
11 78 5000 Null frames within dynamic slots vSS!ContentError NERR
12 156 5000 Sync or startup bit in dynamic slotsvSS!ContentError SSERR
13 78 5000 Frame Identifier error vSS!ContentError FIDERR
14 46 3000 Cycle counter error vSS!ContentError CCERR
15 234 5000 Static Payload Length error vSS!ContentError SPLERR

Table 3: Test Campaign Summary

tection within the frame) to produce syntax errors. Then,
the goal of experiments 6 to 10 was to produce boundary
violations in the time domain, i.e. to shift communication
elements above the boundaries predefined by the commu-
nication schedule. Finally, experiments 11 to 15 aimed at
altering frame contents to produce errors at higher protocol
layers (such as, e.g., frame identifier mismatch). Our Bus-
Doctor provided us with more accurate fault diagnosis due
to the larger number of status flags available.

The whole campaign lasted approximately 5 minutes in
hardware and can be easily repeated to verify a new chip
implementation. In our case this campaign permitted us to
identify and fix a problem in the implementation of the fault
detection mechanisms of the BusDoctor. The presented test
environment enabled us to directly re-use the bus traffic for
the HDL simulation. Thus, the fault could be easily traced
and fixed.

5 Conclusion

This paper presented a test environment that allows to cap-
ture real-life bus-traffic of a distributed automotive cluster
with the help of dedicated diagnosis nodes. Typically, the
logged data can be (1) used for replay to enable debugging
with the cluster at hand and (2) applied to a HDL simula-
tion model to gain deeper insights on the effects that caused
an error. Optionally, this logfile can be artificially gener-
ated and/or modified. The strength of our approach is to
allow fast application of test patterns in hardware while at
the same time facilitating diagnosis by means of simulation.

References

[1] Flexray Communications Systems - Protocol Specification
Version 2.0. FlexRay Consortium, 2004.

[2] E. Armengaud, A. Steininger, and M. Horauer. Efficient
Stimulus Generation for Testing Embedded Distributed Sys-
tems – The FlexRay Example.10th IEEE International Con-

ference on Emerging Technologies and Factory Automation
(ETFA05), September 2005. (to appear).

[3] E. Armengaud, A. Steininger, M. Horauer, R. Pallierer, and
H. Friedl. A Monitoring Concept for an Automotive Dis-
tributed Network - The FlexRay Example.7th IEEE Work-
shop on Design & Diagnostics of Electronic Circuits & Sys-
tems (DDECS’04), pages 173–178, April 2004.

[4] M. Horauer, F. Rothensteiner, M. Zauner, E. Armengaud,
A. Steininger, H. Friedl, and R. Pallierer. An FPGA based
SoC Design for Testing Embedded Automotive Communica-
tion Systems employing the FlexRay Protocol.Proceedings
of the Austrochip 2004 Conference, pages 119–125, Septem-
ber 2004.


