
An FPGA based SoC Design for Testing Embedded Automotive Communication
Systems employing the FlexRay Protocol

Martin Horauer, Florian Rothensteiner, Martin Zauner
University of Applied Sciences Technikum Wien

Höchsẗadtplatz 5, A-1200 Vienna
{horauer, rothensteiner, zauner}@technikum-wien.at

Eric Armengaud, Andreas Steininger Hannes Friedl, Roman Pallierer
Vienna University of Technology Dependable Computer Systems

Embedded Computing Systems Group E182-2 DECOMSYS GmbH
Treitlstr. 3, A-1040 Vienna Stumpergasse 48/28, A-1060 Vienna

{armengaud, steininger}@ecs.tuwien.ac.at {friedl, pallierer}@decomsys.com

Abstract
This paper presents an implementation of a System-on-Chip
solution for monitoring the communication subsystem of
FlexRay-based automotive distributed networks. The same
principles are used in the reverse direction for a ”replay”
mechanism that allows re-enacting recorded situations for de-
bugging and fault confinement. Next to an overview of our re-
alization, we present some informal details of a set of rules to
provide temporal ordering of multiple packets that are gener-
ated in parallel from different monitoring sources. Altogether,
the presented FPGA implementation is tailored for an embed-
ded test and fault diagnosis and shall enable an assessment of
the reliability and dependability of future distributed automo-
tive networks.

1 Introduction

A very promising candidate for future automotive, distributed
electronic control systems termed FlexRay1 is presently de-
veloped by an industrial consortium of several key players
in the automotive and electronic market, cf. [6, 5]. Relying
on both the time- and event-triggered paradigms this commu-
nication protocol combines reliability and fault-tolerance as-
pects with the bandwidth to serve the needs of a communica-
tion backbone and for the coupling of sensor/actuator systems
required for future X-by-wire solutions.

For the development, operation, service and maintenance
of such a distributed system facilities for test and replay will
be required in order to enable monitoring, debugging and fault
diagnosis respectively. Furthermore, some means for fault in-
jection will be required to asses the reliability of the system
under inspection.

1http://www.flexray.com

It is the aim of our STEACS2 project to address these chal-
lenges and take a first step towards a solution. To that end, we
present in this paper an FPGA-based SoC design suited for
monitoring and replay of FlexRay-based communication net-
works that provides information and input for a subsequent
fault diagnosis stage with the vision to enable an embedded
self-test.

Our paper is organized as follows: First, we present the
system architecture under consideration in Sec. 2. Next, we
describe the architecture of our tester node followed by some
interesting details of our test and replay hardware in Sec. 4.
Finally we conclude our paper with some directions for future
enhancements and developments.

2 System Architecture

Fig. 1 illustrates a small distributed FlexRay system consist-
ing of several nodes connected with each other either via the
help of star-couplers and/or by a linear bus system. In gen-
eral, in FlexRay it is possible to have both static TDMA-based
and dynamic arbitrated bus communication within one single
communication cycle. In addition, every node is equipped
with two channels that can be used in a redundant or non-
redundant fashion. Based on such a system, our approach is
to add a dedicated tester node that allows monitoring and re-
play of communication patterns at several levels of abstraction
from within the communication controller. Assuming single
faults and a properly functional tester, it will be possible to
pin-point the source of most faults that are detected within the

2The STEACS-project received support from the Austrian ”FIT-
IT[embedded systems” initiative, funded by the Austrian Ministry for Traffic,
Innovation and Technology (BMVIT) and managed by the Austrian Industrial
Research Promotion Fund (FFF) under grant 807146.
See http://embsys.technikum-wien.at/steacs.html for further information.



Node A Node B Node C

Star
1

Tester

Star
2

Node D

Figure 1: An example for a considered system architecture

recorded data-stream. This works well for the sending path of
remote nodes since their is typically a one-to-one mapping of
functional abstraction levels in the receiving path of our tester
node. However for the receiving path of the remote nodes a
stimulus/response mechanism with a loop-back must be facil-
itated beforehand during system design [1] or with the help of
some software agents [4] since the data end-point is usually
the application at the remote node.

3 Node Architecture

In order to speed-up the development process of the tester
node we adopted a COTS FlexRay node termed<NodeARM>
from DECOMSYS3, see [2]. This device is built using an Al-
tera Excalibur device resembling a hardwired processor stripe
including an ARM processor core, a UART, several memories
and interfaces, and a large FPGA block. The latter hosts the
communications controller that we modified and adopted to
our needs as illustrated in Fig. 2.

In particular, we removed the controller to host interface
from the standard node and replaced it with a timer, sev-
eral units for monitoring, replay and fault injection and, two
DPRAM blocks and a configuration interface to couple these
units with the host processor. The free-running timer provides
the time-base for time-stamping of events, e.g., when frames
are received or, when pre-defined states are detected (e.g. the
beginning of a new communication cycle). With a resolution
of 25ns even single bits on the bus lines can be over-sampled
— FlexRay supports bus speeds up to 10Mb/s — a feature
that can become useful when e.g. the operating speed of the
bus is unknown.

Monitoring can be activated at different levels of abstrac-
tion within the receive path of the communication controller
in parallel, e.g. after decoding the received serial bitstream,
after the calculation of the checksums or, after the frame pro-
cessing, etc. To that end, we have developed several encap-
sulated, stand-alone modules that perform these mechanisms.
In this way providing a high degree of flexibility we can easily
plug-in or un-plug modules as required.

The idea of the ”replay” mechanism is to capture and record
a faulty behavior of the system, to further isolate data of the

3http://www.decomsys.com

affected node(s) by eventually adapting the relevant recorded
data and to re-enact the situation in order to debug and possi-
bly determine the cause of the misbehavior. Depending on the
temporal exactness of the replay, however, certain restriction
need to be obeyed. E.g., when the tester node re-enacts only
the behavior of a minority of nodes the remaining nodes will
dominate the distributed clock synchronization and, hence,
dictate the temporal instances when replay of recorded frames
is invoked. In practice, however, we assume that in frequent
cases the tester node will re-enactn − 1 out of n nodes —
meaning that all nodes except the tester and the node under
test are removed from the cluster — and thus dictate the tem-
poral events.

The monitoring, replay and fault injection modules trans-
port the data to/from the ARM host processor via two FIFOs
implemented with the help of two dual-ported RAM blocks
located within the Excalibur processor stripe. All data is en-
capsulated in dedicated frames consisting of an identifier, a
packet size field, a 32-bit wide timestamp and the actual con-
tent (i.e. bus-frames, status information, etc.). Apart from
the data, the configuration and control information is directly
managed with the help of a set of dedicated configuration in-
terface registers.

The embedded software executing on the ARM processor
core consists of a set of Linux RTAI tasks that manage the
data transfer and, provide triggering and filtering. The data
is either stored on a large flash disk or, transferred and stored
via a Fast-Ethernet connection to/from a remote host com-
puter. The latter handles the graphical presentation and pro-
vides means for post-processing.

FlexRay
Protocol Engine

Configuration Interface & Data Interface (DPRAM)

10 BaseT/100 BaseTx

Monitoring
UnitsReplay Units

Timer

FlexRay Bus

Altera Excalibur

PL PL

R T R T

Fast Ethernet Controller DRAMFlash Disk

Memory
Controller,
UART, etc.

IP-Module &
Flash Disk
Interfaces

ARM 922T
Processor Core

Figure 2: Tester Node Hardware Architecture



4 Test and Replay Hardware

Central to our tester hardware are the modules for frame mon-
itoring and replay. These units are each one built using two
alternating queues that can hold one maximum sized packet.
With the help of a state machine the received packets are
re-arranged; i.e., the FlexRay controller uses 16 bits/transfer
whereas the host processor operates on 32 bit wide bound-
aries. Furthermore, a packet identifier and the (re-)calculated
size field are added in front of the received data followed by a
timestamp that marks the point in time when the information
is generated.

Next to units for frame monitoring and replay we have
presently implemented modules to record the synchronized
cluster time, status information and to allow for an ID-
preview using the same architecture. In particular, the syn-
chronized cluster time is usually maintained within the dis-
tributed FlexRay controllers with the help of a clock synchro-
nization algorithm that uses the information about the begin-
ning of the static timeslots of the TDMA bus schedule to cor-
rect the local clock. Thus, by monitoring the cluster time it is
possible to determine the behavior of the system time and to
synchronize the timestamps taken from the local free-running
timer. Similarly, the status information provides a ”health”
indicator, whether several mechanisms within the controller
provided correct output from the given input data, e.g., if the
receive checksum was valid. Finally, an ID-preview packet
provides information about the identifiers that were seen on
the bus; in that way, the post-processing software gains some
knowledge about the nodes that were active without scanning
the entire data-log an otherwise although simple but time con-
suming task.

The principal simplified structure of these modules is out-
lined in Fig. 3 for the receive path, see also [3]. Every module
can be activated by a programmable trigger and, when one
entire event is stored in one queue access to the DPRAM is
arbitrated. When programmable thresholds within the FIFO
are reached after data has been transferred from the queues to
the DPRAM an interrupt request to the ARM processor is sig-
naled to indicate that a sector of the FIFO can be read-out. So
called ”dirty bits” are used to distinguish between regions that
contain valid or no data. In case of an overflow — i.e. when
the processor is not able to service the interrupt requests in
time — the monitoring process is stopped and an overflow
interrupt is signalled.

A fundamental requirement for the presentation of the data
to the user, the post-processing and a subsequent replay is the
correcttemporal orderof packets. This requirement becomes
an issue when the timestamps are drawn at the start of packets,
since data can be recorded from the two channels in parallel
and, data for monitoring is generated and recorded simulta-
neously at different levels of abstraction. For pure monitor-
ing this requirement could be relaxed when timestamps would
be drawn at the end of packets instead; this, however, is not

Host
ARM922T

DPRAM

Bus Arbiter
with

Temporal Order

En En En

local bus

da
ta

 fr
am

es

cl
us

te
r s

yn
c

st
at

us
in

fo
rm

at
io

n

Trigger
Unit

Timer timestamp

triggers

FlexRay Protocol Engine

Figure 3: Monitoring Hardware

useful for the replay of recorded packets. In particular, for a
timely replay it is evident to draw and insert the timestamp
at the start of a packet since the replay hardware compares
the timestamp value with the actual time in order to decide
when the packet shall be sent. Furthermore, note that usually
(i) one cannot exactly deduce the start of the packet from a
timestamp drawn at the end of a packet due to variable in-
ternal processing delays and (ii ) even if one would relax this
precision requirement an additional computational overhead
must be considered to re-arrange the packets for the replay.

a1

b1 b2 b3

t

Channel A:

Channel B:

Figure 4: Temporal Order

Fig. 4 illustrates an example where different sized packets
are received simultaneously on both channels as it can be the
case primarily during the dynamic part of the communication
cycles. The horizontal bar represents the length of the vari-
ous packets while the vertical bar at the start of every packet
marks the point in time when the actual timestamp is drawn
and inserted. Here packeta1 is the first in the temporal order,
however, the following packetsb1 and b2 are both entirely
received before packeta1 is entirely processed. To provide
these packets in their temporal order to the application and
for subsequent replay the following solutions seem feasible:



1. The packets are copied in the sequence of their comple-
tion to the DPRAM, i.e.b1, b2, a1 andb3. In this case the
temporal order can be established in software while/after
recording, however, in these cases a substantial delay and
overhead penalty for the additional computation needs to
be tolerated.

2. The packets are copied in the sequence of their temporal
order to the DPRAM, i.e.a1, b1, b2 andb3. Herein two
different approaches can be used:

(a) Shorter packets with a later timestamp and an ear-
lier completion time are queued by the hardware
until the first packets are entirely processed.

(b) The packets are written in their temporal order to
the DPRAM. This approach requires knowledge
about the temporal order and the size of the pack-
ets, e.g. packetsb1 andb2 are written before packet
a1, however, to address locations following those
of a1.

Since for our given application the embedded processor was
already heavily loaded, we decided to tackle this temporal or-
der requirement in hardware with approach 2(b). Note that
approach 2(a) would consume an excessive amount of FPGA
internal storage elements due to the possible overlapping of
packets for a worst-case scenario.

For an implementation following the temporal order of
timestamps and the packet length need to be stored. The bus
arbiter simply grants access in the order of requests, however,
address generation for the DPRAM write operations needs ad-
justments to guarantee proper temporal order of packets in
memory. The clear advantage of this approach is lower us-
age of storage elements within the monitoring modules since
access to the DPRAM is requested as soon as the packet has
been completely received. This advantage, however, comes
at the expense of a complex addressing mechanism. For
our implementation we used a table approach to manage the
temporal order and the address generation for writing to the
DPRAM with the following set of rules:

Table Entry E1a: In a first step a global count value that rep-
resents the highest registered temporal order value is in-
cremented:temporal order = temporal order + 1

Table Entry E1b: Next, the resulting value is stored as tem-
poral order valuetoi with i ∈ 1 . . . n, where n is
the number of monitoring modules andi is the associ-
ated row for the particular monitoring module:toi =
temporal order

Table Entry E2a: When the packet length field becomes
available it is written to the columnpli in the same row.

Table Entry E2b: In addition, the address offset is calculated
and written to columnoffi using the formula:

offi = (offtoi−1 + pltoi−1)%DPRAM Size.

In particular this means that the row with a temporal
order value by one less than that of the current row is
searched. From this row the valid offset and the packet
length values are added and stored as address offset value
for the current row. The modulo operation simply ac-
counts for the finite size of the DPRAM.

For the boundary conditions it is required to correctly ini-
tialize the offset value, i.e.off0 = 0 before the first packet
is registered. In addition, the packet length and offset values
of the last removed row must be kept for the case when only
one further rowk is in use; in order to be able to correctly
calculate the offset value for rowk afterwards.

Whenever a packet is ready to be transferred to the DPRAM
it requests the bus from the arbiter and the packet contents are
written to the address offset stored in its associated column
offi. Furthermore, the following rules apply:

Table Removal R1a:First, rows holding a temporal order
value greater than the one to be removed are decre-
mented by one, i.e.:toj = toj − 1 ∀toj > toi and
j ∈ 1 . . . n, wheren is the number of rows in the table.

Table Removal R1b:Next, the temporal order value of the
affected row is cleared, i.e.:toi = 0.

Table Removal R1c:Finally, the global temporal order
value must be decremented:temporal order =
temporal order − 1.

Using these set of rules the bus arbiter must simply generate
addresses ranging fromoffi up tooffi +pli when the packet
associated with rowi is transferred. Furthermore, the hard-
ware has to track alast written pointer in order to avoid
generation of interrupt requests before an entire sector of the
FIFO has been filled.

Data
Extraction

Host
ARM922T

DPRAM

FlexRay Protocol Engine

Bus Injection
Module

Channel A

Bus Injection
Module

Channel B

Timer

Figure 5: Replay Hardware



Finally, Fig. 5 illustrates the architecture of the replay unit.
Central to this unit is a data extraction module that decides
whether, where and when to forward data frames from the
DPRAM to the ”injection modules”. In asynchronous mode,
i.e. when the tester dictates the clock synchronization, a frame
is forwarded when the timestamp value within the according
data field matches the current value of the timer. The latter is
the same as used for data monitoring. In synchronous mode
this decision is made, when the timestamp matches with the
slot identifier and the cycle count value of the bus schedule.
The injection modules in turn resemble a similar architecture
as used for the monitoring modules. In particular, they are
built from two queues and a state machine that handles the
transfer with the FlexRay protocol engine.

5 Conclusion

In this paper we presented an overview of our FPGA-based
SoC implementation tailored to support monitoring and re-
play of FlexRay-based automotive distributed systems. By
replacing the controller host interface of the FlexRay commu-
nication controller with a large dual ported RAM and some
monitoring and replay modules we get access to information
otherwise visible only from within the controller. To capture
data along with other information we added a time base and
a trigger unit with several queues. Timestamps are sampled
from the time base and encapsulated into frames with every
recorded event. The conditions to initiate the process of mon-
itoring are derived from a trigger that can be programmed via
the host. Data is transferred to the host in the correct tem-
poral order by using an address re-write mechanism that was
implemented with a set of rules. Similarly to monitoring, a
replay mode was implemented in the reverse direction using
the same architectural approach to enable fault confinement.

In a next step we want to add some fault injection func-
tionality in order to assess the dependability of the distributed
automotive system under inspection.

References

[1] E. Armengaud, A. Steininger, M. Horauer, and R. Pallierer. A
Layer Model for the Systematic Test of Time-Triggered Auto-
motive Communication Systems.5th IEEE International Work-
shop on Factory Communication Systems (WFCS’04), Septem-
ber 2004. (to appear).

[2] E. Armengaud, A. Steininger, M. Horauer, and R. Pallierer. De-
sign Trade-offs for Systematic Tests of Embedded Communi-
cation Systems.Supplemental Volume of the International Con-
ference on Dependable Systems and Networks (DSN’04), pages
118–119, June 2004.

[3] E. Armengaud, A. Steininger, M. Horauer, R. Pallierer, and
H. Friedl. A Monitoring Concept for an Automotive Dis-
tributed Network - The FlexRay Example.7th IEEE Work-

shop on Design & Diagnostics of Electronic Circuits & Systems
(DDECS’04), pages 173–178, April 2004.

[4] T. Galla, K. Hummel, and R. Pallierer. Software implemented
fault injection for safety-critical distributed systems by means
of mobile agents.Proc. of the Hawaii International Conference
on System Sciences (HICSS-37), January 2004.

[5] G. Leen and D. Hefferman. In-Vehicle Networks, Expanding
Automotive Electronic Systems.IEEE Transaction on Comput-
ers, pages 88–93, January 2002.

[6] R. Mores, G. Hay, R. Belschner, J. Berwanger, C. Ebner,
S. Fluhrer, E. Fuchs, B. Hedenetz, W. Kuffner, A. Krüger,
P. Lohrmann, D. Millinger, M. Peller, J. Ruh, A. Schedl, and
M. Sprachmann. FlexRay - The Communication System for
Advanced Automotive Control Systems.Society of Automotive
Engineers (SAE) 2001 World Congress, March 2001.


