Explicit Connectors in Component Based
Software Engineering for Distributed Embedded
Systems

Dietmar Schreiner and Karl M. Goschka

Vienna University of Technology
Institute of Information Systems, Distributed Systems Group
Argentinierstrasse 8 / 184-1, A-1040 Vienna
{d.schreiner,k.goeschka}@infosys.tuwien.ac.at

Abstract. The increasing complexity of today’s embedded systems ap-
plications imposes the requirements and constraints of distributed, het-
erogeneous subsystem interaction to software engineers. These require-
ments are well met by the component based software engineering para-
digm: complex software is decomposed into coherent, interacting units of
execution, the so called components. Connectors are a commonly used
abstraction to model the interaction between them. We propose to use
explicit connectors when building distributed embedded systems applica-
tions. Explicit connectors encapsulate the logic of distributed interaction,
hence they provide well defined contracts regarding properties of inter-
component communication. Our approach allows model level validation
of component composition and interaction incorporating communication
related constraints beyond simple interface matching. In addition, by
using explicit connectors, the complexity of application components is
reduced without the need for any heavy weight middleware.

1 Introduction

Currently embedded applications are no longer simple programs executed on
single electronic control units (ECUs). In fact, nowadays embedded systems ap-
plications are heterogeneous software systems, deployed on a wide variety of
hardware platforms and communication subsystems. In addition embedded sys-
tems applications are often used in safety or mission critical environments.

This all lead to a dramatic increase of software complexity and consequently
to an increase of erroneously deployed software. To overcome that problem and
to reduce the overall costs for embedded systems applications, various para-
digms from the classical software engineering process have been adopted to the
needs of the embedded systems domain. Adoption becomes necessary due to
the limited resources in embedded systems, which would otherwise render many
useful concepts from the classic software engineering domain unusable. The limi-
tations range from that of processing power over available memory and network-
bandwidth up to safety and real-time issues. In general, embedded applications
have to be small, efficient and extremely reliable.

1.1 Background

A widely accepted and adopted software engineering paradigm within the embed-
ded systems domain is that of component based software engineering (CBSE).
The key concept behind CBSE is to construct an application by composing small,
simple units of execution - the components. Components are specified by their
interfaces, contracts [8], and their accordance to a specific component model. As
components provide means of exchangeability and reusability, implicit context
dependencies are strictly prohibited.

When building a system by composition, so by connecting components, the
point of connection, the connector, becomes a hot-spot of abstraction for any
interaction. In many component systems like Enterprise Java Beans [18], the
Corba Component Model [14], or DCOM [10], the rather complex process of
distributed, heterogeneous interaction is transferred from the individual compo-
nents into the component model’s heavy weight middleware implementation in
order to make it transparent for the components themselves. In these component
models connectors are abstract model level representations of component inter-
action and are typically not associated with any contractual properties beyond
function signatures within interface specifications.

In embedded systems the application of a heavy-weight middleware is often
disadvantageous due to the systems’ limited resources. Nevertheless, it is a good
idea to keep the complex and error-prone interaction logic separated, if possi-
ble hidden, from the application components. In our approach this is achieved
by introducing coherent and explicit connectors and associated contracts in the
component model. In addition, by using explicit connectors, more precise re-
quirements and provisions regarding the components’ interaction become visi-
ble. These emerging contracts allow a detailed computation of requirements and
may be used for model level validation of component composition.

1.2 Contribution

We demonstrate how to use explicit connectors at model level when building
component based applications for distributed embedded systems. The advan-
tages gained by this approach are threefold: (i) By encapsulating the interac-
tion and communication logic within connectors, the complexity of application
components is reduced. Application components become smaller in size and com-
plexity but more reusable and reliable. (ii) Connectors can be provided off-the-
shelve (OTS) by communication subsystem suppliers. This will also reduce the
development costs of a distributed embedded systems application and increase
its reliability. (iii) Explicit connectors home all interaction and communication
logic. Hence they provide an additional set of contracts that emerge from the
component architecture and the deployment specification. We show how to use
these emerging contracts to improve the validation of component based applica-
tions at model level.

2 Components, Connectors and Contracts

In accordance to the work of [19,9,7,11] we define a component as a (i) trusted
architectural element, an element of execution, representing (ii) software or hard-
ware functionality, with a (iii) well defined usage description. It conforms to a
(iv) component model and can be independently deployed and composed without
modification according to a composition standard.

An interface is a set of exposed services through which components inter-
act. A provided interface exposes a components functionality for usage by other
components while a required interface specifies the need of functionality of other
components. As interfaces are the only points of component interaction, a com-
ponent has to provide at least one interface, but may own multiple, distinct
ones, so called facets. Interfaces specify the dependencies between the services
provided by the component and the services required to fulfill the component’s
task.

® ©

<<contract>> <<contract>>
* Requirements * Requirements
* Provisions * Provisions
Interfaces ,
1 \ //'
! \/’
P
{l ——(| provided services

i

I

<<component>> I o red)
. 4‘,L€ 1 required services

N
\ {.

<<contract>>
* Requirements
* Provisions

®

Fig.1: UML 2.0 notation of a component

Figure 1 shows the notation of a component and its interfaces complying
with the UML 2.0 Superstructure specification [13]. The UML 2.0 notation will
be used for most figures within this paper.

To strengthen the reliability and predictability of component based appli-
cations, guarantees about the behavior of application elements are formalized
in contracts [8, 15]. Contracts specify requirements and provisions of associated
elements. In general a contract consists of two obligations:

1. The client, requiring functionality from another element, has to satisfy the
preconditions of the provider.

2. The provider, that is the supplier of the required functionality, has to fulfill
its postcondition, if the client’s precondition is met.

We distinguish four types of contracts:

1. Component-contracts are associated with components and their instances.
Typical component contracts deal with resource requirements or deployment
restrictions.

2. Interface-contracts specify services and properties of the components’ inter-
faces like function signatures or temporal properties for interface invocations.

3. Connector-contracts are associated to connectors and deal with constraints
related to the used communication channels.

4. Platform-contracts specify properties of platform elements like ECUs or bus
systems regarding provided memory or timing information.

In Figure 1 contracts for the component and each of its interfaces are spec-
ified. The one labeled with 1, is a component-contract, specifying requirements
and provisions of the component itself. The others, labeled with 2, are interface-
contracts, specifying requirements and provisions for interaction on a specific
interface.

To build a valid application in CBSE, components are assembled to form a
composed entity with a new behavior. To assemble means associating related
provided and required interfaces. It is obvious that related interfaces have to
be of the same type, so provide compatible interface-contracts. The connection
between two components is called connector.

<<contract>> <<contract>>
CIFg CIFp
<<contract>> <<contract>>

cA cB

<< component >> @ << component >>
A B

Fig. 2: Simple composition in UML 2.0

An example composition is depicted in Figure 2: two components A and B
are connected to form a composed structure. A requires functionality provided
by B. Therefor B exports that functionality by a provided interface IF denoted
by a ball, A exports the requirement by a required interface IF denoted by
a socket. As the type of A’s required interface is the same as B’s provided

interface, the composition is legal. In addition four very basic contracts are
specified within this figure: CA and CB are component-contracts specifying the
component’s resource requirements. CIFr and CIFp are interface-contracts for
the required and provided interface of A and B. Figure 3 shows the interface
contracts, that are very simple ones but are sufficient for demonstration purpose:
both contracts refer to the same interface (id=0). Both interfaces are of the same
type (type="API”) and contain the same service (id="exampleService”) with
an identical signature. However, the contracts differ in the worst-case-execution-
time (WCET) property (wcet) of the service. As one can easily see, the provided
WCET is less than the requirements, so the depicted composition seems to be
valid.

<contract type="RI" id="CIFR"> <contract type="PI" id="CIFP">
<interface type="API" id="0"> <interface type="API" id="0">
<service id="exampleService"> <service id="exampleService">
<param idx="0" type="void"/> <param idx="0" type="void"/>
<result type="void"/> <result type="void"/>
<wcet t="0.05s"/> <wcet t="0.01s"/>
</service> </service>
</interface> </interface>
</contract> </contract>
(a) CIFR (b) CIFp

Fig. 3: Interface contracts

Connectors as introduced in [17] represent first class architectural entities
embodying component interaction. With increasing application complexity and
distribution, connectors become a key factor in the whole development process.
They encapsulate and therefore abstract the transfer of control and data among
components. In many component models connectors are not mentioned explicitly
as the implementation of the connectors’ functionality resides within component
middleware and is transparent for the application components.

In this paper connectors are considered to be explicit and thereby are granted
a component equivalent status. This is mandatory as resource limited embedded
systems typically lack complex component middleware or even real operating
systems. Although explicit connectors look very similar to components, there
exist two major differences:

1. As pointed out in [2], connectors are physically fragmented. When deploying
two connected components on two different ECUs, the connector between
the application components has to be split into two separate fragments, each
deployed, and therefor colocated, with the related application component.

2. A connector’s life-cycle starts after the specification of the components’ de-
ployment. Before the specification of the application’s deployment schema,

connectors are abstract entities within architectural models. After specifying
the physical component location, the available communication channels be-
tween the components are defined. This information is required to transform
the abstract model entities into real, deployable connector fragments.

3 Using Explicit Connectors

In this section we demonstrate the usage of explicit connectors when building
a component based application. We do this with a very simple application con-
sisting of two connected components. This is of course no real-world application,
but it is sufficient to demonstrate our approach. A more realistic application -
an automotive, speed-aware lock control - has been implemented in the scope of
project COMPASS [6] to proof our concept.

3.1 Component Architecture

The first step in developing a component based application is to define the appli-
cation’s architecture. We do this by specifying a UML 2.0 component diagram.
Figure 2 depicts such a diagram. In addition to the composition of the compo-
nents’ interfaces, the connector’s base type can be specified.

The base type of a connector can be derived by the connector’s communica-
tion style. We identified several typical communication styles like procedure call,
data broadcast, blackboard access or data stream and extended the UML 2.0
syntax for composition diagrams with symbols for explicit connectors. Example
connector symbols are shown in Figure 4. A detailed classification of connector
types is out scope of this paper, but is subject to ongoing research.

o- — >

Synchronous Procedure Call Asynchronous Procedure Call Data Broadcast
Blackboard Access Data Stream

Fig.4: Connector type symbols

For our example we use the application specified in the component diagram
given in Figure 2. The application consists of two components A and B, one syn-
chronous procedure call connector for interface IF and four associated contracts.

3.2 Deployment Specification

The next step in developing the application is to specify the deployment schema.
Figure 5 provides a UML 2.0 deployment diagram: The sample application is dis-
tributed over two ECUs, ECUI and ECUZ, that are connected by a physical bus

BUS. The ECUs and the bus are associated with platform contracts containing
information about provided memory for each ECU or propagation delays on the

bus.
<<contract>: <<contract>:
CECU1 CECU2
ECU1 ECU2 |

£] & |

<<component>> <<component>>
A E

BUS

<<contract>:
CBUS

Fig. 5: Deployment schema

3.3 Transformation

By using the deployment specification, the component architecture can be trans-
formed into a new one, containing concrete explicit connectors, to be more pre-
cise: connector fragments. In addition an adopted deployment scheme is gener-
ated too.

In our example the components A and B are located on different ECUs, that
are connected by the bus BUS. The communication style of the connector is
synchronous procedure call. Therefor the connector consists of two fragments,
which have to be selected from the connector library of the used bus system
and ECU. The transformed composition diagram of the application is denoted
in Figure 6, the transformed deployment schema in Figure 7. Figure 6 shows
that four additional contracts become available within the application model:

— The contracts CCF4 and CCFpg are connector-contracts. These contracts
contain requirements of the connector fragments, similar to component-
contracts.

— CIFp and CIFy are interface-contracts associated with the fragments’ in-
terfaces. The connector’s interface-contract CIF) is calculated by extending
A’s interface-contract CIFp with information provided by the connector-
contracts CCF4, CCFp and the platform-contract of the bus CBUS.

Physical Boundary

<<contract>> <<contract>>
CIFg CIFe
<<contract>> <<contract>>

cA cB

Explicit Connector

=] IF IF ' =]

<< component >> @ i | <<connector >> <<connector >> | ! C: << component >>
A 7 Fragment CFa Fragment CFg > B

<<contract>> <<contract>>
CIFy! <<contract>> <<contract>> CIFg
CCF4 CCFs

Fig. 6: Transformed composition diagram

These emerging contracts become extremely valuable when validating the
constructed application model.

To enable the usage of a general connector library, an additional interface
adaptor is required between the components and the general connector frag-
ments. This adaptor is generated as part of the applied transformation process
and is not shown in our example as it can be treated like an application compo-
nent.

3.4 Validation

Finally the transformed model of the application can be validated. All avail-
able contracts have to be checked. To show the advantage of our approach, we
will choose platform- and connector-contracts that will lead to an invalid ap-
plication, although the constructed model seemed to be a valid composition as
demonstrated in Section 2.

First all component- and connector-contracts have to be checked against
the platform-contracts as specified in the transformed deployment diagram. In
our example we assume, that the total of used resources on each ECU is less
then the provided amount and that no hardware restrictions are violated by the
components and the connector fragments. So the first validation check is passed
successfully.

Next the interface-contracts have to be checked. We have to match the
interface-contract CIFgr of component A with the emerging interface-contract
CIF, of the connector.

To do so, CIF has to be calculated: We have to create a new contract based
on component B’s interface-contract CIFp using information provided by the

<<contract>: <<contract>:
CECU1 CECU2

ECU1 ECU2
<< 1 t>>B << t 1‘>>B
contraci {l {l contrac
CA "] <<component>> <<component>> |o---------""" T CB
<<contract>> | << connector >> <<connector>> | <<contract>>
e :Fragment CFp :FragmentCFg | | S S
CCFa CCFs
T T
BUS

<<contract>:
CBUS

Fig. 7: Transformed deployment diagram

<contract type="P" id="CBUS"> <contract type="C" id="CCF?">
<bus id="0"> <connector type="RPC">
<buscycle_length t="0.1"/> <response time="1x%"/>
<slot_length t="0.05"/> <WCET t="0.01"/>
</bus> </connector>
</contract> </contract>
(a) CBUS (b) CCFB,CCFa

Fig. 8: Platform- and connector-contracts

connector-contracts and the platform-contracts of the communication subsys-
tem. In Figure 8 the platform-contract of the bus and the connector-contracts
for the fragments are specified. The connector-contracts are identical, so we just
show one to save space. The connector fragments add additional execution time
of 0.01 seconds each to the WCET in contract CIFp. As the connector type
is synchronous procedure call, invoking a remote procedure requires a confirma-
tion response containing the result. This implies that we again have to increase
WCET in contract CIFp by the systems response time. That is calculated by
multiplying the connectors response time with the buscycle_length of the bus.
The so calculated emerging contract is given in Figure 9.

As one can see, the provided WCET of 0.13 seconds is higher than the re-
quired WCET of 0.05 seconds. Our sample application turned out to be invalid
under the specified platform and deployment schema.

<contract type="PI" id="CIFP’">
<interface type="API" id="0">
<service id="exampleService">
<param idx="0" type="void"/>
<result type="void"/>
<wcet t="0.13s"/>
</service>
</interface>
</contract>

Fig. 9: Calculated interface contract CIFp

Similar calculations can be applied to different functional and non-functional
properties specified within the model’s contracts.

4 Conclusion and Future Work

In our paper we demonstrated how to use explicit connectors when building
component based applications. Explicit connectors help to reduce the complexity
of application components in absence of a component middleware. Moreover,
the set of all deployed connector fragments within one ECU can be seen as the
custom tailored middleware for that specific ECU.

When using explicit connectors, additional contracts emerge from model
transformation, using deployment information to specify the available communi-
cation channels. This leads to a more precise model level validation of component
interaction in composed software architectures.

Our ongoing research deals with the identification and classification of con-
nector types in automotive embedded systems applications and with the model
level validation of looped composed component architectures.

5 Related Work

To adopt the CORBA Component Model (CCM) [14] to embedded software de-
sign connectors are integrated into CCM in The CORBA Connector Model [16].
Here, connectors are used to mediate interaction between distributed CORBA
components and therefore are limited to CORBA specific interaction and com-
munication styles.

Connectors in general are extensively examined within work [2, 4, 1] related to
the project SOFA - Software Appliances [5]. SOFA defines a component model,
providing hierarchically nested components and connectors as first class architec-
tural entities. The internal structure of connectors is analyzed in Communication
Style Driven Connector Configurations [4] aiming at automatic component com-
position. SOFA defines three types of basic connectors: (i) Procedure Call, (ii)

Event Delivery and (iii) Data Stream. In addition user-defined connectors can be
specified. However, our research is focused on software connectors for embedded
systems and therefore deals with more hardware and system related issues like
e.g. resource usage of connectors.

Another project dealing with component based software engineering is FRAC-
TAL [12]. FRACTAL defines a component model, that also contains connectors.
A binding is defined to be a communication path between component interfaces.
Bindings are classified to be (i) primitive or (ii) composite. A primitive binding
binds one client interface and one server interface, in the same address space. A
composite binding is a communication path between an arbitrary number of dis-
tributed component interfaces and is represented as a set of primitive bindings
and binding components. Binding components are called FRACTAL connectors
and are normal FRACTAL components, whose role is dedicated to communi-
cation [3]. As connectors are of no primary concern in FRACTAL, no further
specification on how to interact is provided. This is contrary to the work pro-
posed within this paper, where connectors play an important role in component
interaction.

6 Acknowledgements

This work has been partially funded by the FIT-IT [embedded systems initiative
of the Austrian Federal Ministry of Transport, Innovation, and Technology] and

managed by Eutema and the Austrian Research Agency FFG within project
COMPASS [6] under contract 809444.

References

1. D. Bélek. Connectors in Software Architectures. PhD thesis, Charles University
Prague, Faculty of Mathematics and Physics; Department of Software Engineering,
Feb. 2002.

2. D. Bélek and F. Plasil. Software connectors and their role in component deploy-
ment. In DAIS, pages 69-84, 2001.

3. E. Bruneton, T. Coupaye, and J.-B. Stefani. The Fractal Component Model. Ob-
jectWeb. http://fractal.objectweb.org/specification/index.html.

4. T. Bures and F. Plasil. Communication style driven connector configurations. In
Lecture Notes in Computer Science, volume 3026, pages 102-116, 2004.

5. Charles University Prague, Department of Software Engineering. SOFA - Software
Appliances. http://nenya.ms.mff.cuni.cz/
projects/sofa/tools/doc/compmodel.html.

6. COMPASS. Component Based Automotive System Software.
http://embsys.technikum-wien.at
/projects/compass/index.html.

7. G. T. Heineman and W. T. Councill, editors. Component-Based Software Engi-
neering. Addison Wesley, 2001.

8. B. Meyer. Applying ”design by contract”. IEEE Computer, 25(10):40-51, 1992.

9. B. Meyer. The grand challenge of trusted components. In ICSFE, pages 660667,
2003.

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

Microsoft Corporation and Redmond, WA. DCOM architcture.
http://msdn.microsoft.com/library/default.asp?
url=/library/en-us/dndcom/html/msdn_dcomtec.asp.

O. Nierstrasz and D. Tsichritzis, editors. Object-Oriented Software Composition.
Object-Oriented Series. Prentice-Hall, Dec. 1995.

ObjectWeb. FRACTAL. http://fractal.objectweb.org/.

OMG. UML 2.0 Superstructure Specification, 2005. http://www.omg.org/cgi-
bin/doc?formal/05-07-04.

OMG. CORBA Component Model Specification Version 4.0, 2006.
http://www.omg.org/docs/formal /06-04-01.pdf.

R. H. Reussner and H. W. Schmidt. Using parameterised contracts to predict
properties of component based software architectures. In S. L. Ivica Crnkovic and
J. Stafford, editors, Workshop on Component-based Software Engineering Proceed-
ings, 2002.

S. Robert, A. Radermacher, V. Seignole, S. Gérard, V. Watine, and F. Terrier.
The CORBA connector model. In SEM, pages 76-82, 2005.

M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging
Discipline. Prentice Hall, 1996.

Sun Microsystems. Enterprise JavaBeans™ ™ Specification 2.1 Final Release 2.
http://java.sun.com/products/ejb/docs.html.

C. Szyperski. Component Software: Beyond Object-Oriented Programming.
Addison-Wesley, Jan. 1998.

