

978-1-4244-1694-3/08/$25.00 ©2008 IEEE

Automated Generation of Explicit Connectors for Component Based
Hardware/Software Interaction in Embedded Real-Time Systems

Wolfgang Forster1 Christof Kutschera2 Andreas Steininger1 Karl M. Göschka1

1Vienna University of Technology
Karlsplatz 13, A-1040 Vienna, Austria

{wolfgang.forster,andreas.steininger,karl.goeschka}@tuwien.ac.at

2 University of Applied Sciences Technikum Vienna
Department of Embedded Systems

Höchstädtplatz 5, A-1200 Vienna, Austria
kutschera@technikum-wien.at

Abstract

The complexity of today’s embedded real-time systems
is continuously growing with high demands on depend-
ability, resource-efficiency, and reusability. Two solution
approaches address these needs: First, in the component
based software engineering (CBSE) paradigm, software is
decomposed into self-contained components with explicit
interactions and context dependencies. Connectors repre-
sent the abstraction of interactions between these compo-
nents. Second, components can be shifted from software
to reconfigurable hardware, typically field programmable
gate arrays (FPGAs), in order to meet real-time constraints.
This paper proposes a component-based concept to support
efficient hardware/software co-design: A hardware com-
ponent together with the hardware/software connector can
seamlessly replace a software component with the same
functionality, while the particularities of the alternative
interaction are encapsulated in the component connector.
Our approach provides for tools that can generate all nec-
essary interaction mechanisms between hardware and soft-
ware components. A proof-of-concept application demon-
strates the advantages of our concept: Rapid change and
comparison of different partitioning decisions due to au-
tomated and faultless generation of the hardware/software
connectors.

Keywords: HW/SW interaction, CBSE, embedded real-

time systems, automated design flow

1. Introduction and Related Work

The importance of embedded real-time systems has rapidly

grown over the last years. This trend is also clearly visible

in our research area, namely automotive embedded systems

domain, especially hard real-time systems for by-wire ap-

plications. State-of-the-art vehicles contain up to 70 elec-

tronic control units (ECUs) [13] and most innovations in

cars are realized in software. Future applications will be

based on standardized architectures like AUTOSAR (AU-

Tomotive Open System ARchitecture) [1, 14], which was

developed by automobile manufacturers and suppliers. Im-

portant drivers for this development are safety, software

reuse and cost reduction due to fewer development cycles.

AUTOSAR proposes a layered architecture of basic soft-

ware modules comprising communication modules, oper-

ating system and modules facilitating the access to micro-

controller peripheral devices as well as a component based

infrastructure for application components.

Our concept to support rapid and faultless hard-

ware/software partitioning is based on the component based

software engineering (CBSE) paradigm, nevertheless with

some few adaptations it can be also applied to existing lay-

ered architectures. CBSE is already a widely accepted and

adopted paradigm in the embedded systems domain to cope

with the increasing complexity. In accordance with the

work of [15, 21, 23] a component is defined as (i) a trusted

software element, (ii) an element of execution, with a (iii)

well defined usage description. It conforms to a (iv) com-

ponent model and can be (v) independently deployed and

composed without modification according to a composition

standard.

The aim of hardware/software partitioning methods in

real-time embedded systems is to achieve an overall solu-

tion that meets all application requirements, which is often

quite challenging for tasks that are very time or resource

critical. The foundation for partitioning is a detailed high-

level description of the complete behavior of an application.

Furthermore accurate estimations of important characteris-

tics are of major importance for the process of optimization

and partitioning. Promising hardware/software partitioning

approaches have been already presented in [3, 4, 7]. The

foundation for the co-design algorithms proposed there is

an independent high-level specification of the complete be-

havior. Established high-level specification languages for

this purpose are SystemC or ESTEREL. A formal verifica-

tion of hardware/software partitioning with SystemC can be

found in [18]. The partitioning process is constraint driven

concerning performance, dependability and cost properties.

Nevertheless the final partitioning decision is based on ex-

pert knowledge and has proven to be very difficult to au-

tomate [24]. A further hardware/software partitioning algo-

rithm concerning hardware area and processor memory con-

straints is presented in [12]. The approach is classified into a

partitioning phase and a scheduling phase. During the parti-

tioning phase the application program is transferred into di-

rected acyclic graphs (DAGs). In the scheduling phase the

reduction of system cost will be reached by tuning the tasks

in hardware and software. Contrary to our approach the par-

titioning optimization is based on tasks and not on the level

of well specified components and their interactions.

A novel hardware/software co-design approach from Al-

tera1 is presented in [19]. It describes the process of Au-
tomated Generation of Hardware Accelerators with Direct
Memory Access from ANSI/ISO Standard C Functions. It

is a methodology that is tightly coupled with an Altera soft
core CPU (used in an FPGA), its tool chain, and its mem-

ory system. A C-to-hardware compiler is used to generate

hardware accelerators with direct CPU memory access from

standard C functions. A major exclusion from this auto-

mated process are recursions and floating-point types. The

HybridThreads Project [17] is a further co-design approach.

It is an embedded real-time operating system, that allows

programmers to run threads simultaneously on the CPU and

in parallel on an FPGA. The thread scheduling mechanism

is also realized in hardware to reduce thread switching over-

heads and jitter. In both approaches the partitioning deci-

sion itself is still based on human expert knowledge.

Our approach extends the principle of CBSE towards

hardware components such that hardware/software parti-

tioning can be performed with a high degree of automa-

tion. This not only reduces the risk of error during the par-

titioning process (by reducing the amount of required hu-

man intervention) but also allows a more systematic treat-

1http://www.altera.com/

<< component >>
 A

<< component >>
B

<< component >>
A

<< connector >>
Fragment CFA

<< component >>
B

Explicit Data Broadcast Connector

<< connector >>
Fragment CFB

Physical Boundary in a Distributed Embedded System

Data
Broadcast
Connector

IA IB

Figure 1. Explicit Data Broadcast Connec-
tor [21]

ment. The partitioning method is platform independent and

requires only a CPU with access to an FPGA. It is possi-

ble to generate interfaces between hardware and software

components automatically as well as interfaces between two

hardware components. Furthermore, components can be

also deployed to hardware in the case that a hardware com-

ponent requires functionality from a software component

— the initiator of a method call is deployed to hardware.

Based on our proof-of-concept application we will discuss

and demonstrate the challenges of supporting efficient hard-

ware/software partitioning.

2. Component Model

A component has to provide at least one interface to

specify the dependencies between the services provided by

the component and the services required to fulfill its task.

An interface is a named set of services provided or required

by a component. Two components can interact during run-

time if their provided and required interfaces are validly as-

sociated. The association is called a connector, which is

the abstraction of any interaction between the connected

components. We distinguish between two different types

of connectors, namely implicit and explicit. Most compo-

nent models cover the process of component interaction in

some kind of middleware, thus the connection has to be

considered as implicit connector. An explicit connector is

an architectural entity that is used to represent component

composition and interaction, whereas the explicit connec-

tor itself can be identified as a communication component.

Furthermore, an explicit connector encapsulates all commu-

nication logic for one specific type of interaction. The use

of explicit connectors is especially important if the CBSE

paradigm is applied to distributed embedded real-time sys-

tems where interaction between components has to be pro-

cessed via communication systems like FlexRay [8, 11].

In [21] the UML 2.0 Superstructure specification [20] is

used and extended for the representation of component di-

<< component >>
 A <SW>

<< component >>
B <SW>

<< component >>
A <SW>

<< connector >>
Fragment SW

<< component >>
B <HW>

Explicit HW/SW Connector

<< connector >>
Fragment HW

Physical HW/SW Boundary (e.g. Addr/Data-Bus, DPRAM, Serial Interface)

I1

I1 I2

Substitute for Component B <SW>

r/w

Figure 2. Explicit Hardware/Software Interac-
tion Concept

agrams that contain explicit connectors. As already men-

tioned above an explicit connector is the representation of

component interactions. However, this fact is only valid for

platform independent models. In platform specific models

an explicit connector has to be transformed into two dis-

tributed fragments of a connector. Both fragments represent

the total functionality of the original connector as shown in

Figure 1. The process of explicit connector transformation

is described in [22]. Independent of the use of the con-

nectors — that can be local or distributed between process-

ing units — component model transformation results in lo-

cal communication interactions of components to the frag-

ments of the explicit connectors, the so-called communi-

cation middleware. Furthermore all local communication

interactions are represented by synchronous (blocking) or

asynchronous (non-blocking) method calls [21] (illustrated

by the transformation of the Data Broadcast Connector to

IA,IB and the explicit connector in Figure 1).

2.1. Hardware/Software Interaction Model

For our concept of automated generation of hard-

ware/software connectors we extend the use of explicit con-

nectors. In [21] the physical boundary between the connec-

tor fragments is a communication system between differ-

ent electronic control units (ECU’s). In our approach the

physical boundary is the physical interface between a cen-

tral processing unit (CPU) or a microcontroller unit (MCU)

to a reconfigurable hardware device. Of course, applying

hardware/software co-design principles implies that corre-

sponding ECU’s are equipped with such a reconfigurable

device. Field programmable gate arrays (FPGA’s) are al-

ready state-of-the-art reconfigurable devices in consumer

electronics and FPGA’s in conjunction with modern MCU

cores are viewed as a promising solution for the problem of

continuously increasing performance requirements of mod-

ern embedded real-time applications.

Figure 2 shows the basic concept of our component

based hardware/software partitioning approach. The real-

ization of component B in software can be replaced by a

hardware implementation of B, if the connector is adopted

accordingly: An explicit connector is introduced of which

one connector fragment has to be realized in hardware and

the other one in software. Both together encapsulate the

physical boundary between an MCU and an FPGA. Exam-

ples for this physical boundary are standard types like ad-

dress/data bus, serial interface, dual ported RAM, or single

wire interface. In Figure 2 interface I1 is independent of the

realization of component B, which is an important property

of our approach. As already stated above, interface I1 can

only consist of synchronous or asynchronous method calls.

For simplification the shown component diagram is only

modeled with a synchronous method call. An asynchronous

call would also contain a path for a callback as shown in

Figure 4. Interface I2 represents the access from the hard-

ware connector fragment to the effective hardware imple-

mentation of the component’s functionality. The simplest

solution for such a connector is a memory access — also

called blackboard connector — which provides the possi-

bility of read and write accesses to the hardware compo-

nent (indicated by the r/w connector in Figure 2). Starting

from a given interface specification our approach enables

the automated generation of all necessary mechanisms for

the replacement of a software component by an equivalent

hardware implementation. Of course it is also possible to

shift more than one component into hardware. To hide the

actual implementation of the interface all specific proper-

ties are encapsulated in the connector fragments of the syn-

chronous and asynchronous method calls — as specified in

the following sections.

2.2. Synchronous Software Connector Frag-
ment

During a synchronous method call the thread of exe-

cution changes from the component with the required in-
terface to the component with the provided interface un-

til the latter has finished its task. As shown in Figure 3

the software fragment of an explicit synchronous hard-

ware/software connector consists of two sub-components:

Parameter Handler: The Parameter Handler Component
converts the parameters of the synchronous method

calls into data elements that can be transferred via the

physical boundary to the hardware and thus triggers

the operation of the hardware module of the compo-

nent. The thread of execution remains at the Parame-
ter Handler Component to check continuously the sta-

tus of the hardware until it has finished the execution.

A read back of the results and a parameter conversion

complete the synchronous method call and the thread

of execution returns to the initially calling component.

<< component >>
SW Abstraction of

Physical Boundary*

<< component >>
Parameter Handler

Write
Interface

Read
Interface

Physical HW/SW
Boundary

SW Fragment of Explicit Synchronous HW/SW Connector

Figure 3. Synchronous Software Connector
Fragment

Software Abstraction of Physical Boundary: The

Software Abstraction of the Physical Boundary Com-
ponent provides a well defined and simple interface

to the hardware devices of an ECU via read and write

accesses.

All components marked with a (*) are of type singleton

and are deployed only once on an ECU even in case that

more than one component has been shifted to hardware.

2.3. Asynchronous Software Connector
Fragment

An asynchronous method call implies the possibility of

more than one thread of execution on a CPU or MCU. Dur-

ing the asynchronous call the thread of execution changes

from the initial calling component to the Request Handler
Component (see Figure 4) and returns immediately. A sec-

ond thread of execution is processed cyclically or triggered

by an interrupt at the software fragment of the connector.

As shown in Figure 4, the software fragment of an explicit

asynchronous hardware/software connector consists of four

sub-components. Additionally an interrupt or timer ser-

vice is needed for the realization of this component, which

is indicated as Timer and Interrupt Services Component.
The sub-components of the asynchronous software frag-

ment are:

Request Handler: The Request Handler Component has

to manage the possibility of multiple asynchronous

method calls. It has to forward method calls to the Pa-
rameter Handler Component via the Method Call In-
terface and will itself be notified about completion of

hardware tasks via the Call Notification Interface. In

the latter case the Request Handler Component has to

inform the initially calling component via the Callback
Interface.

Parameter Handler: Same as described in Section 2.2. In

addition it has to register each method call at the Hard-
ware Status Check Component. In case of a completed

hardware task the Hardware Status Check Component
transfers the results from the hardware to the Param-
eter Handler Component via the Call Status Notifica-
tion Interface. Finally a parameter conversion of the

<< component >>
SW Abstraction of

Physical Boundary*

<< component >>
Request Handler << component >>

Parameter Handler Write
Interface

<< component >>
HW Status Check*

Read
Interface

Physical HW/SW
Boundary

SW Fragment of Explicit
Asynchronous HW/SW Connector

Method
Call

Call
Notification

<< component >>
Timer and Interrupt

Services*

Call
Registration

Call Status
Notification

Trigger Status
Check

Callback
Interface

Provided
Interface

Figure 4. Asynchronous Software Connector
Fragment

hardware results and a notification of the Request Han-
dler Component are necessary.

Software Abstraction of Physical Boundary: Same as

described in Section 2.2.

Hardware Status Check: The Hardware Status Check
Component has to observe the status of all active hard-

ware tasks that have been registered via the Call Regis-
tration Interface. The activation of the hardware status

check has to be initiated by a periodically scheduled

task of the operating system or by an interrupt service.

The latter can even be triggered by the hardware part

of the component itself. In case of a completed hard-

ware task the Hardware Status Check Component has

to read back the results via the Software Abstraction
of Physical Boundary Component and transfer them to

the Parameter Handler Component.

2.4. Hardware Connector Fragment

The hardware connector fragment of an explicit hard-

ware/software partitioning connector is equal for both syn-

chronous and asynchronous method calls. As shown in Fig-

ure 5 it consists of two sub-components, whereas the inter-

action in-between is always of type “blackboard” with the

possibility of read and write accesses.

Hardware Abstraction of Physical Boundary: The

Hardware Abstraction of Physical Boundary Com-
ponent is the counterpart to the Software Abstraction
of Physical Boundary Component and provides a

well defined and simple interface for read and write

accesses.

Hardware Component Handler: The Hardware Compo-
nent Handler has to manage the possibility of multiple

HW Fragment of Explicit HW/SW Connector

<< component >>
HW Abstraction of

Physical Boundary*

<< component >>
HW Component

Handler*
Physical HW/SW

Boundary r/wr/w

Figure 5. Hardware Connector Fragment

explicit hardware/software connectors and thus mul-

tiple realizations of hardware components. All read

and write accesses have to be redirected to the corre-

sponding hardware realization of a component. Both

the Hardware Component Handler and the Hardware
Abstraction of Physical Boundary Component are of

type singleton and are deployed only once in the recon-

figurable hardware during the component model trans-

formation process.

All considerations up to now have been made under

the assumption that the initial calling component is imple-

mented in software. If the initial calling component of an

interaction is realized in hardware (and the called compo-

nent in software), the software fragments of the explicit con-

nectors have to be slightly modified. In the case of a syn-

chronous method call the Parameter Handler Component
of Figure 3 has to be activated by a periodically scheduled

task of the operating system or by an interrupt service to

check the status of the hardware component and to initiate

the call. The interface of the software fragment is changed

from a provided to a required interface. In the case of an

asynchronous method call the assembly of the software con-

nector fragment in Figure 4 can remain unmodified, except

the direction of the provided and the callback interface have

to be changed.

3. Hardware/Software Interaction

The grand challenge of hardware/software co-design is

the design partitioning decision. A widely known approach

for this purpose is POLIS [4, 24] from the University of

California, Berkeley. The high-level system specification

is based on existing languages, e.g. ESTEREL [5] or Sys-

temC [16]. Design partitioning is a process on system level

and includes the hardware/software partitioning, the tar-

get architecture selection and the scheduler configuration.

These decisions are based on expert knowledge in system

design and are very difficult to automate [24]. Consequently

POLIS can be seen as a supporting tool, the complex deci-

sion of hardware/software partitioning itself is still a task for

a human engineer and can be supported by consideration of

measures and metrics for real-time system components as

proposed in [10].

As already mentioned existing hardware/software parti-

tioning approaches are based on the high-level specification

of a certain functionality to produce modules (or compo-

nents) that can be either executed in a software or hard-

ware environment. Our concept extends this approach and

closes the interfacing gap if hardware components are de-

ployed: We focus on the automated generation of all nec-

essary interaction mechanisms between hardware and soft-

ware. According to our Hardware/Software Interaction
Model only synchronous (blocking) or asynchronous (non-

blocking) method calls have to be considered for interaction

between a hardware component and the corresponding con-

nector fragment. Thus a simple and generic hardware in-

terface has to be introduced to support the process of auto-

mated connector generation. We propose a hardware inter-

face — marked as I2 in Figure 2 —that contains a (i) control

register, a (ii) memory for input parameters and a (iii) mem-

ory for output parameters for each component method. This

hardware interface can be implemented as a simple memory

based interface, containing: (i) data bus, (ii) address bus,

(iii) access enable signal and (iv) read/write control signal.
To support the automated generation of hardware/software

connector fragments we have defined the following inter-

face design attributes:

1. Definition of the hardware component architecture

(e.g. 16 bit data bus and 6 bit address bus).

2. Control and status information bits for each method of

the component interface in the control register of the

hardware implementation:

• start method call

• abort method call

• method call active

• method call ready

• parameter mismatch

3. Definition of input and output parameter width and

memory allocation, which is especially important if a

parameter of a method is defined as a pointer in the

interface specification.

The resulting attributes of a hardware component inter-

face — as listed above — and the software interface spec-

ification are the foundation for the automated connector

fragment generation. The software connector fragment will

have the same interface as the general software implemen-

tation of a dedicated component. From other components’

point of view there is no difference between the interface of

a software or a hardware realization of a component.

4. Implementation Aspects

To verify our concept of automated generation of the

necessary hardware/software interaction mechanisms we

<< component >>
 Data Transfer

Application <SW>

<< component >>
Transceiver Driver
Channel A <SW>

I1

<< component >>
 I/O Driver

Channel B <HW>

I2

I3

I4

<< component >>
 I/O Driver

Channel A <HW>

<< component >>
Transceiver Driver
Channel B <HW>

Figure 6. Deployed Component Model for
ECU 1

<< component >>
SW Abstraction of

Physical Boundary*

<< component >>
Parameter Handler
Transceiver Driver

Write
Interface

Read
Interface

Physical HW/SW
Boundary

SW Fragment of Explicit Synchronous HW/SW Connector
for Transceiver Driver Channel B

<< component >>
Parameter Handler

I/O Driver

<< component >>
Transceiver Driver
Channel A <SW>

<< component >>
 Data Transfer

Application <SW>

SW Fragment of Explicit Synchronous HW/SW Connector
for IO Driver Channel A

I1

I2

I3

Figure 7. SW Connector Fragments ECU 1

have implemented a prototype proof-of-concept applica-

tion. The functionality of this application is very sim-

ple: Copying data packets from one ECU to another

via a FlexRay communication system. Additionally the

transceiver driver devices of both FlexRay communication

channels have to be controlled. Figure 6 shows the appli-

cation that was deployed to ECU 1. Each transceiver driver

component controls an external FlexRay transceiver device

via an input/output (I/O) driver component and checks its

status information. The components Data Transfer Appli-
cation and Transceiver Driver Channel A have been de-

ployed as software components, whereas the components

Transceiver Driver Channel B, I/O Driver Channel A and

I/O Driver Channel B have been realized in hardware.

This application has been chosen because of the low-

speed interface of the transceiver driver devices, which re-

sult in additional scheduling overheads to fulfill the pre-

cise timing requirements. In our prototype implementation

we compare the resource usage of a software and a hard-

ware implementation of the AUTOSAR FlexRay Transceiver
Driver Module [2]. Figure 7 illustrates the deployment of

the software components and the software connector frag-

ments of ECU 1 after the component model transforma-

tion in consideration of the proposed hardware/software

partitioning approach. The component specifications of

Transceiver Driver Channel B and I/O Driver Channel A
define only synchronous method calls. Consequently, it was

necessary to generate synchronous software connector frag-

ments. Figure 8 illustrates the hardware components and

<< component >>
HW Abstraction of

Physical Boundary*

<< component >>
HW Component

Handler*
Physical HW/SW

Boundary

r/w

r/w

<< component >>
 I/O Driver

Channel B <HW>

<< component >>
 I/O Driver

Channel A <HW>

<< component >>
Transceiver Driver
Channel B <HW>

r/w

HW Fragment of Explicit HW/SW Connector
for IO Driver Channel A

I4HW Fragment of Explicit HW/SW Connector
for Transceiver Driver Channel B

Figure 8. HW Connector Fragments ECU 1

the hardware connector fragments of ECU 1. The inter-

face between Transceiver Driver Channel B and I/O Driver
Channel B — marked as I4 in Figure 8 — is a simple hard-

ware/hardware interface and has been manually optimized

to a setting and resetting of external FPGA pins. Automated

generation and design of hardware/hardware component in-

terfaces is also part of our research and has been already

published in [9].

4.1. Transceiver Driver Component Bench-
mark

The main focus of benchmarking has been set to the

hardware and software realization of the transceiver driver

component. According to [10] we selected the perfor-

mance metrics (i) RAM Usage, (ii) ROM Usage, (iii) Worst
Observed Execution TIME (WOET) and (iv) Average Ob-
served Execution Time (AOET) as significant properties for

the hardware/software partitioning benchmark. Table 1 il-

lustrates the resource usage of the transceiver driver compo-

nents that have been implemented in software and hardware.

The properties concerning the hardware implementation in-

clude the hardware realization of the FlexRay transceiver

driver as well as the required hardware and software con-

nector fragments. The benchmark of the transceiver driver

component has been executed on an ALTERA EPXA4 de-

vice which has the following features:

• 166 MHz ARM922T 32 bit RISC CPU

• APEX20KE FPGA with 16640 logic elements and

26kByte internal RAM

According to Table 1, the hardware realization of the

FlexRay transceiver driver together with the hardware con-

nector fragment requires about 1.6 percent of the FPGA

logic cells (258 of totally 16640 logic cells). The FPGA

device on ECU 1 has already been equipped to embed a

FlexRay communication controller. Thus the small hard-

ware realization of a FlexRay transceiver driver could be

FlexRay Transceiver Driver RAM [byte] ROM [byte] FPGA Logic Cells FPGA RAM [byte]

SW Implementation 16 2101 - -

HW Implementation 0 576 258 34

Table 1. Resource Usage of AUTOSAR FlexRay Transceiver Driver Component

FrTrcv GetTransceiverWUReason AOET [μs] WOET [μs]

SW Implementation 210.0 303.6

HW Implementation 4.3 4.6

Table 2. Execution Times of AUTOSAR FlexRay Transceiver Driver Method
FrTrcv GetTransceiverWUReason

FrTrcv GetVersion AOET [μs] WOET [μs]

SW Implementation 0.6 0.7

HW Implementation 2.8 2.9

Table 3. Execution Times of AUTOSAR
FlexRay Transceiver Driver Method
FrTrcv GetVersion

integrated in the remaining unused logic cells with low ef-

fort. The advantage of the transceiver driver shift from

software to hardware can be recognized if the most com-

plex method of the transceiver driver is investigated in

more detail. The method FrTrcv GetTransceiverWUReason
checks the status of a FlexRay transceiver driver device con-

cerning physical bus wake-up reasons. The average and

worst observed execution times (AOET and WOET) of Ta-

ble 2 represent the duration of the synchronous (blocking)

FrTrcv GetTransceiverWUReason method call on the AL-

TERA EPXA4 platform. The tremendous advantage of the

hardware implementation can be explained by investiga-

tion how the wake-up status information is read out from

the transceiver device. The software implementation has to

be scheduled to control the low-speed transceiver interface

via I/O pins for the status readout. The alternative hard-

ware implementation executes the readout cyclically in a

second thread of execution and only provides the informa-

tion during the method call. Nevertheless we have also in-

vestigated the communication overhead caused by the hard-

ware/software connector fragments. It becomes visible if

a simple method like FrTrcv GetVersion is investigated in

more detail, which provides information about the vendor

and the version of the component. Table 3 illustrates the

communication overhead of a hardware implementation in

case of very simple method calls. The software and hard-

ware connector fragments cause an execution time over-

head that let the hardware implementation be slower than

the software implementation. In general the communica-

tion overhead depends on the physical hardware/software

interface, the clock frequencies of CPU and FPGA, and the

number of parameters that have to be transferred. Thus

a human engineer has to perform a trade-off for the hard-

ware/software partitioning which can be supported by com-

ponent measures and metrics as proposed in [10]. The

proof-of-concept implementation verifies our concept of au-

tomated and thus rapid and faultless generation of all nec-

essary interaction mechanisms between hardware and soft-

ware components.

5. Conclusion

Today’s complex embedded real-time system applica-

tions demand new approaches to fulfill system requirements

concerning dependability, resource-efficiency, reusability,

and real-time properties. Our approach extends the con-

cept of component based software engineering (CBSE)

to support automated and thus rapid and faultless hard-

ware/software partitioning. A hardware component — real-

ized in a field programmable gate array (FPGA) — together

with the connector fragments in hardware and software re-

place a software component. Due to the well defined imple-

mentation methodology of a hardware component interface

we provide for a tool that supports a flexible automated gen-

eration of hardware/software connectors. The final hard-

ware/software partitioning decision is still based on human

expert knowledge but our approach especially supports the

modification and evaluation of different partitioning deci-

sions. The proof-of-concept implementation demonstrates

the functionality and advantages of our approach: Auto-

mated and rapid generation of hardware/software connec-

tors as well as simple comparisons of different partitioning

decisions.

6. Acknowledgment

This work has been partially funded by the FIT-IT [em-

bedded systems initiative of the Austrian Federal Ministry

of Transport, Innovation, and Technology] and managed

by Eutema and the Austrian Research Agency FFG within

project COMPASS[6] under contract 809444.

We would especially like to thank Martin Zauner from

the University of Applied Sciences Technikum Vienna for

supporting us in getting experiences with the ESTEREL de-

sign flow.

References

[1] AUTOSAR. Automotive Open System Architecture.

http://www.autosar.org.

[2] AUTOSAR. Specification of FlexRay Transceiver Driver
V1.0.1. http://www.autosar.org.

[3] Jakob Axelsson. Hardware/software codesign for automo-

tive applications: Challenges of the architectural level. In

ISORC, page 121. IEEE Computer Society, 2001.

[4] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurec-

ska, L. Lavagno, C. Passerone, A. Sangiovanni-Vincentelli,

E. Sentovich, K. Suzuki, and B. Tabbara. Hardware-
Software Co-Design of Embedded Systems: The Polis Ap-
proach. Kluwer Academic Publishers, 1997.

[5] G. Berry. The Foundations of Esterel. MIT Press, 2000.

Editors: G. Plotkin, C. Stirling and M. Tofte.

[6] COMPASS. Component Based Automotive System Software.

http://www.infosys.tuwien.ac.at/compass.

[7] Martyn Edwards and Benjamin Fozard. Rapid prototyping

of mixed hardware and software systems. In DSD, pages

118–125. IEEE Computer Society, 2002.

[8] FlexRay. FlexRay Specification. http://www.flexray.com.

[9] Wolfgang Forster and Eric Armengaud. A novel interconnec-

tion approach for globally asynchronous locally synchronous

circuits. In Austrochip 2007, pages 107–114.

[10] Wolfgang Forster, Christof Kutschera, Dietmar Schreiner,

and Karl M. Goschka. A unified benchmarking process for

components in automotive embedded systems software. In

ISORC 2007, pages 41–45. IEEE Computer Society, 2007.

[11] T. Führer, F. Hartwich, R. Hugel, and H. Weiler. FlexRay –

The Communication System for Future Control Systems in

Vehicles. In Proceedings of the SAE 2003 World Congress &
Exhibition, Detroit, MI, USA, March 2003. Society of Auto-

motive Engineers.

[12] Ying Guan, Yu-Ting Hung, and Rong-Guey Chang. Efficient

hardware/software partitioning approach for embedded mul-

tiprocessor systems. In International Symposium on VLSI
Design, Automation and Test. IEEE, 2006.

[13] P. Hansen. New s-class mercedes: Pioneering electronics.

The Hansen Report on Automotive Electronics, 18(8):1–2,

October 2005.

[14] H. Heinecke. AUTomotive Open System ARchitecture

An Industry-Wide Initiative to Manage the Complexity of

Emerging Automotive E/E-Architectures. In Proceedings of
the Convergence International Congress & Exposition On
Transportation Electronics, Detroit, MI, USA, 2004.

[15] George T. Heineman and William T. Councill, editors.

Component-Based Software Engineering. Addison Wesley,

2001.

[16] IEEE Standards Association. Open
SystemC Language Reference Manual.
http://standards.ieee.org/getieee/1666/index.html.

[17] Information and Telecommunication Technology Center -

University of Kansas. Hthreads Innovative Computing So-
lutions. http://www.ittc.ku.edu/hybridthreads/.

[18] Daniel Kroening and Natasha Sharygina. Formal verification

of SystemC by automatic hardware/software partitioning. In

MEMOCODE, pages 101–110. IEEE, 2005.

[19] David J. Lau, Orion Pritchard, and Philippe Molson. Auto-

mated generation of hardware accelerators with direct mem-

ory access from ANSI/ISO standard C functions. In FCCM,

pages 45–56. IEEE Computer Society, 2006.

[20] OMG. UML 2.0 Superstructure Specification.

http://www.omg.org/cgi-bin/doc?formal/05-07-04.

[21] Dietmar Schreiner and Karl M. Göschka. Explicit connec-

tors in component based software engineering for distributed

embedded systems. In SOFSEM 2007: Theory and Practice
of Computer Science, Proceedings, volume 4362 / 2007 of

LNCS, pages 923–934. LNCS, Springer, Jan 2007.

[22] Dietmar Schreiner and Karl M. Göschka. Synthesizing com-

munication middleware from explicit connectors in compo-

nent based distributed architectures. In Proceedings of the
6th International Symposium on Software Composition (SC
2007), LNCS. Springer, 2007. to appear.

[23] Clemens Szyperski. Component Software: Beyond Object-
Oriented Programming. Addison-Wesley, January 1998.

[24] University of California, Berkeley. POLIS - A Framework
for Hardware-Software Co-Design of Embedded Systems.

http://embedded.eecs.berkeley.edu/research/hsc/.

