
ECOOP06 - Poster Submission

Model Level Validation of Component Based
Software for Distributed Embedded Systems

Dietmar Schreiner and Karl M. Göschka
Vienna University of Technology

Institute of Information Systems, Distributed Systems Group
Argentinierstrasse 8 / 184-1, A-1040 Vienna
{d.schreiner,k.goeschka}@infosys.tuwien.ac.at

July 2006



1 Summary

When building a component based application for distributed embedded sys-
tems, it’s overall behavior depends not only on the contracts applying to the
components and their interfaces, but even more so on explicit as well as
implicit connectors emerging from component composition, deployment and
interaction. Explicit connectors provide additional contracts on resource re-
quirements and information channels. We contribute by showing how to per-
form model level validation of component and contract composition beyond
simple interface matching. Moreover, we discuss a classification of typical
component connectors to simplify application development for distributed
embedded systems. This avoids the need of extensive knowledge of commu-
nication subsystems and the existence of any heavy weight middle-ware.

2 Description

Current embedded applications are no longer simple programs executed on
single electronic control units (ECUs). In fact, embedded systems applica-
tions are nowadays heterogeneous software systems in distributed and very
often safety or mission critical environments. This leads to a dramatic in-
crease of software complexity and consequently to an increase of erroneously
deployed software. To overcome that problem various paradigms from the
classical software engineering process have been adopted to the needs of em-
bedded systems software.

Adoption becomes necessary due to the limited resources in embedded
systems, which would otherwise render many useful concepts from the classic
software engineering domain unusable. The limitations range from that of
processing power over available memory and network-bandwidth up to safety
and real-time issues. In general, embedded applications have to be small,
efficient and extremely reliable.

A widely accepted and adopted software engineering paradigm within the
embedded systems domain is that of component based software engineering
(CBSE). The key concept behind CBSE is to construct an application by
composing small, simple units of execution - the components. When build-
ing a system by connecting components, the point of connection between
them, the connector, becomes a hot-spot of abstraction for any interaction.
In many component systems like Enterprise Java Beans, the CORBA Com-
ponent Model, or DCOM, the rather complex process of distributed, het-
erogeneous interaction is relocated from the individual components into the
component model’s heavy weight implementation to make it transparent for

1



the components themselves.
In embedded systems the usage of heavy-weight middleware is often dis-

advantageous due to the system’s limited resources. Nevertheless, it is a
good idea to keep the complex and error-prone interaction logic separated, if
possible hidden, from the application components. This can be achieved by
introducing coherent and explicit connectors and their contracts in a com-
ponent model. In addition, by using explicit connectors, more precise re-
quirements and provisions regarding the component interconnection become
visible. This additional information allows a detailed computation of emerg-
ing requirements and may be used for model level validation of component
composition.

The poster demonstrates the composition and the deployment of a simple
component based application from the automotive domain using UML 2.0
diagrams.

The used diagrams are:

A component diagram: This component diagram shows the application
components, their connections and all contracts attached to the compo-
nents and their interfaces. In conjunction with its transformed version
and the deployment diagram, this one forms the center of the poster.

A deployment diagram: The deployment diagram shows the components
deployment on two ECUs, connected by one time-driven bus.

A transformed component diagram: This diagram shows the transformed
original component diagram, with connectors impersonated by connector-
components.

We show, how to (i) make connectors explicit by applying a model trans-
formation. We (ii) identify the generated explicit connectors according to
our (iii) classification, which is summarized on the poster as well. By intro-
ducing the explicit connectors, additional contracts emerge for the connector
and the utilized information channels. Finally we demonstrate the relevance
of these connector specific contracts by performing a model level validation
of the transformed composition, (iv) calculating composed contracts.

2


