A Novel Interconnection Approach for
Globally Asynchronous Locally Synchronous Circuits

Wolfgang Forster
Vienna University of Technology
Distributed Systems Group E184-1
Argentinierstr. 8, 1040 Vienna, Austria
w.forster @infosys.tuwien.ac.at

Abstract

This paper introduces a new methodology to solve the
interfacing problem in Globally Asynchronous Locally
Synchronous (GALS) design approaches. We present a
generic high-speed and delay-insensitive connector based
on asynchronous four state logic (FSL). The advantages
of this approach are following: First, it provides flexibility
in the time domain since the data transfer is based on lo-
cal handshakes and does not depend anymore on a global
clock signal. Consequently, it removes timing constraints
and even enables local optimizations. Second, this ap-
proach only requires a small number of interfacing sig-
nals, thus reducing the routing resources needed between
data source and sink. Furthermore, the proposed archi-
tecture does not require customized delay lines and thus
suits well for both ASIC and FPGA platforms. A modi-
fied FlexRay bus analyzer tool has been used to illustrate
the advantages of our approach: High-speed and delay-
insensitive data communication between different clock
domains.

1 Introduction

System-on-chip (SoC) is state-of-the-art in today’s dig-
ital design technologies. Several functional modules from
different vendors — so called intellectual property (IP)
module — are integrated to a whole system into a sin-
gle ASIC or FPGA. This trend is similar to purchase sev-
eral IC’s and integrate them on a printed circuit board
(PCB) — just one level lower. In both cases one of
the most challenging problems is the interconnection of
the independent modules. Hence, the different interface
specifications require translators, the different clock do-
mains require synchronization stages, and consequently
the rapidly growing number of integrated modules are re-
quiring a rapidly growing number of individual solutions
to properly handle the communication.

Globally Asynchronous Locally Synchronous (GALS)
design techniques [2, 8, 11] have been introduced in this
context. Those enable the integration of several synchro-
nous islands which are communicating using asynchro-
nous connectors. This approach combines the advantages
of both design methodologies: Each module is a synchro-
nous module on its own that can be efficiently synthe-
sized with existing design tools and design flows, while

Eric Armengaud
Vienna University of Technology
Embedded Computing Systems Group E182-2
Treitlstr. 3, 1040 Vienna, Austria
armengaud @ecs.tuwien.ac.at

asynchronous communication techniques [6] are used for
the long distance communication between the individual
clock domains. The synchronization problem at the inter-
face of the IP modules is usually solved by a two-stage
synchronizer. An alternative approach to minimize the
transfer duration is to stretch the clock of the interfacing
clock domains. The latter approach has been already dis-
cussed in detail in [12, 13, 16] and requires the following
system properties on each clock domain: (a) The clock
must be generated from an internal delay line, and (b) it
must be possible to stretch the clock cycle — so called
a gated clock. Both requirements cannot be fulfilled if a
module in the system depends on clock quality proper-
ties, like clock drift rate or duty cycle. Furthermore, the
process of system constraining, synthesis, and place and
route for FPGA targets is complex since customized gates

such as delay lines are required.

With these limitations in mind, we propose a novel
methodology based on the principle of asynchronous
pipelines for the asynchronous communication between
Our motivation is to provide a
generic connector with a simple and flexible interface in
order to minimize the connection effort between any two
given synchronous modules. Moreover, our approach is
independent from the different clock domains and pro-
vides a delay-insensitive communication scheme, thus re-
moving any timing constraints and enabling high-speed
Furthermore, we
limit the number of signals that have to be routed over the
chip, thus saving routing resources. Finally, we propose
an architecture that can be easily implemented for both
ASIC and FPGA platforms and does not need dedicated

synchronous modules.

intra- and inter-chip communication.

gates such as customized delay lines.

The theoretical discussion is illustrated with a practi-
cal use case. We will show how our existing FlexRay bus
analyzer [7] can be enhanced with the SPEAR microcon-
troller [4], using our asynchronous connector for data ex-
change. The motivation for this enhancement is to give
our bus analyzer the capability to compute online complex
scenarios and more especially to interact with the distrib-

uted FlexRay clock synchronization mechanism [1].

This document is organized as follows: Section 2 pro-
vides the basics on asynchronous logic design. The novel
concept for asynchronous interaction in GALS systems is
introduced in Section 3. Section 4 describes the architec-
ture of our tester node. The evaluation of our solution is

presented in Section 5. Section 6 concludes this work.

2 Asynchronous logic design
2.1 Clock-gating schemes for GALS

Nowadays, almost every digital system is built based
on synchronous design techniques. All activities are trig-
gered by one (or a few) global control signal — a so
called global clock. The designer can concentrate on the
logic function of the application and automatic tools deter-
mine the maximum acceptable clock frequency. Hardware
components in synchronous schemes are developed to ful-
fill certain timing requirements and thus designed to work
with a specific clock frequency. The interaction of such
components results in synchronization problems, which
become very extensive in case of arbitrary clock frequen-
cies between the different components.

The main concern of the Globally Asynchronous Lo-
cally Synchronous (GALS) approach is to solve the syn-
chronization problem between different locally synchro-
nous modules. In accordance to the work of [2, 8, 12, 13]
we have identified the following requirements:

1. Delay-insensitive interconnection between sub-
systems to support long distance communication in
SoC architectures

2. Simple interfaces between a synchronous sub-system
and the asynchronous interconnection logic to avoid
additional interface wrappers

3. Minimization of the number of interconnection sig-
nals in order to reduce the synthesis effort and to save
routing resources

4. Avoidance of metastability during data takeover from
one clock domain to another one

Existing GALS approaches are an adequate solution to
meet the first and second requirement. The third require-
ment highlights the trade-off between data transfer rate
and costs in terms of routing resources. Hence, increas-
ing the number of interconnection signals improves the
data transfer rate but requires more routing resources. The
problem of metastability during data takeover is usually
prevented by stretching the clock cycle of both involved
clocks. This gated-clock approach, however, cannot be
applied for modules with high demands concerning clock
accuracy and clock duty cycle.

A promising solution for optimizing the connectors are
asynchronous design techniques, which are based on the
principle of local handshakes between sink and source
pairs. The absence of a global clock eliminates the
problem of frequency based data synchronization and al-
lows all components to operate at their specific clock fre-
quency. It exist different realizations of asynchronous de-
sign principles: Delay-Insensitive (DI) [14], Quasi-Delay-
Insensitive (QDI) [9], Speed-Independent (SI) and Self-
Timed (ST) circuits [17]. Notice that asynchronous ap-
proaches are not mandatorily free from timing constraints.
QDI, SI and ST approaches all require (local) timing as-
sumptions and can fail if these assumptions are violated.

FSL logical state | g P1
LOW (0%) 0,0 | O.D
HIGH (1) 1.1 | (1,0

Table 1. FSL encoding scheme [5]

2.2 Four state logic

Delay-insensitive circuits seem to be the most suited
for asynchronous connectors since they do not require
timing information and thus provide the most flexibility
on the time domain. We have focused here on Four State
Logic (FSL) [5, 10], where the information when the data
is consistent and valid is encoded in the data itself. The
sink indicates the consumption of data to the source by
changing the value of an acknowledge signal (FSL is de-
fined as a two-phase-protocol).

In FSL a dual rail coding is used, which means that two
signal rails are necessary to represent a logical *1” or *0’.
This resource overhead is also used to add a phase infor-
mation. A logical 1’ or 0’ has two representations, one
in phase 0 (¢) and another one in phase 1 (¢1). Table 1
illustrates this FSL encoding scheme. During data trans-
mission a new bit is indicated by a change of the coding
phase. Notice that exactly one transition is required to
change from one phase to the other, independent from the
data information. This removes the risk of glitches within
the asynchronous circuit. If all bits of a data word are in
©o, the whole data word is valid and consistent and can be
consumed by a sink. The acknowledgement of the con-
sumption triggers the source to change the phase to ¢,
and to transmit the new data word. Only when all bits of
the data word have changed to ; at the sink the new data
can be consumed again. An example of such data waves
is given in Figure 1.

Al o0] ol 00 [ol

A
::> c

FsL i> B[o0 ol | 00 ol
BN| GATE
ﬁ> < < <

Cl o0 [o | 90 el

Figure 1. Flow of data-waves in FSL [5]

The most relevant problem of implementing FSL in
state-of-the-art FPGA technologies is the increase of stan-
dard logic elements while increasing the size of a data
width. A phase detector of a 16 bit vector needs to detect
and compare the phase of each bit. Only when the phases
of all bits are equal the data element is consistent and can
be consumed. Consequently the resource consumption in-
creases proportional to n - log(n) whereas n represents the
size of the vector to decode.

3 The asynchronous connector
3.1 The connector interface

Figure 2 shows the basic concept of our asynchro-
nous connector, which is separated into three major parts:
The asynchronous source pipeline, the asynchronous sink
pipeline and the serial connection, which could be reduced
to solely three wires.

Asynchronous Connector

clk_source clk_sink

reset_source|

fsl_data (1 .. 0) | reset_sink

Asynchronous
Pipeline

Asynchronous

start_source Pipeline _ i ackn_sink

data_in (n-1..0)

ready_source:
- A
-

Source fsl_ackn Sink

data_out (m-1..0)

ready_sink’

clk_source [I
start_source

data_in —DATA)
ready_source |
fsl_data @0)__ol Jo0XoIXe0Xe1 X0 o1 o0Xel 00
fsl_ackn
osk LT LT Lo LT LT LT
ready_sink L
data_out X DATA |8

ackn_sink

[L

Figure 2. Asynchronous connector block diagram

The waveform illustrates the interface: Each commu-
nication partner has to provide the individual clock and
reset signals. A data transfer can be initiated by setting
start_source and providing the data to data_in for only one
clock cycle of clock_source. The end of the transmission
will be automatically signalled by ready_source until a
new transfer is initiated. The corresponding receiver of the
data transfer will be notified by ready_sink, while data_out
will be valid as long as ready_sink is set. Setting ackn_sink
for only one clock cycle on the receiver’s side will re-
initialize the sink pipeline for the next transfer. A two-
stage synchronizer is used to synchronize ready_source
and ready_sink to the corresponding clock domain.

Concerning the interface design, any arbitrary data
width can be selected if data_in and data_out have the
same dimension. Otherwise, the data width of data_in can
be selected independently from the data width of data_out
with the only restriction that the width of both must be an
even number. Nevertheless it is possible to simply convert
from one typical interface to another without additional
design effort (e.g. from 32 bit to 16 bit or vice versa). The
adaption of the interface width is implicitly handled by
the start_source - ready_source and ready_sink - ackn_sink
mechanisms.

3.2 Four-state-logic latch
An asynchronous pipeline is a simple serial composi-

tion of several Four State Logic (FSL) latches. This el-
ement is used to store the state of an asynchronous FSL

coded bit — which is the counterpart to a register in syn-
chronous circuits. The structure of such an FSL latch is
shown in Figure 3. Data_in and data_out are the FSL-
coded input and output signals of the latch. The informa-
tion about the phase currently stored in the FSL latch is
indicated via the done output. The ackn input represents
the phase information of the following asynchronous ele-
ment. Notice that for our asynchronous pipeline data_out
of latch (n) is connected to data_in of latch (n+1) and the
phase information done of latch (n+1) directly drives the
control signal ackn of latch (n). Takeover of new data is

Latch cell |—

set reset
| e |
| |
| I |
| Latch cell |
data_in | | data_out
| (4 |
| Latch cell |
. _— |
| |
| xor] Dor]
! o_in » Latch | ©o_out :
: cTrL [€ |
Latch

: Enable T I ackn
| |
| |
| |
done | |
4 |
| |
| |
|

Figure 3. FSL latch [5]

based on the principle of consecutive source-sink pairs.
New data can be stored in an FSL latch if two conditions
are satisfied:

1. The actual stored data is different from the input data
(p-out unequal p_in)

2. The consecutive asynchronous element has already
consumed the actual data (¢_out equal ackn)

3.3 Asynchronous pipeline

The core function of our concept is the asynchronous
pipeline — as used in our source and sink pipeline. An
illustration of operation with four stages is presented in
Figure 4 to picture the data flow.

At the top of the figure, FSL Latch 0, 1, 2 have an al-
ternative phase information while FSL Latch 2 and 3 have
the same phase information. This indicates that latch 3 has
already took over the data from latch 2. Since new data is
provided on the input of FSL Latch 2 — this is indicated
by phase information ¢; — the latch condition for FSL
Latch 2 is fulfilled and the data from FSL Latch 1 will be
taken over. This is shown in the second part of the figure.
Now, FSL Latch I and 2 have the same phase information.
Consequently, FSL Latch 1 will take over the information
of FSL Latch 0, and so on.

Asynchronous SINK Pipeline

—> e e —Pp

“——— o o «——

FSL
Latch

(m-2) | ¢

FSL
Latch
(m-1)

)

)

RESET (m-1..0)

Asynchronous SOURCE Pipeline INITIALIZATION

| Jo] 1 1

00" L

L~ FsL | FSL X ® ¢ > psL FSL ‘ | FsL > FSL
} Latch Latch Latch Latch I Latch Latch
| © ¢) &0 o] 02| (n-1) |~ 3 (0) (1)
| ! !

i JReset J J J i i JReset J

! 1 1

| | |

} | |

“—— o o <«

J Reset

)

> FsL FSL > ¢ ¢ > g FSL
Latch Latch Latch Latch
0) | (1) (n-2) | ¢ (n-1) | ¢

FSL
Latch

)

|

(1)

«——— o o «—

J Reset

)

(n-2)

FSL
Latch
(1)

—> e e —)p

“— o o «——

FSL
Latch

(m-2) | ¢

FSL
Latch
(m-1)

J Reset

)

)

)

I

I

I

I

I

I

I »
3 0 |
|

|

|

|

I

I

I

I

RESET (m-1..0)

> FsL > FsL > ¢ ¢ > g > FsL
Latch Latch Latch Latch
0) ¢ < <

(n-1)

FSL
Latch

>
<€

)

FSL
Latch
(1)

—> e e —p

“«—— o o «——

FSL
Latch
(m-2)

FSL
Latch
(m-1)

J Reset

)

)

)

|

I
I
I
I
I
I
I
|)
3
|
|
I
I
I
I

RESET (m-1..0)

Figure 5. Asynchronous data transfer

Current States

> FsL FSL FSL ¥l FSL >
Latch Latch Latch Latch
< 0) |¢ (1) @ | B) |
\\
N
Data takeover FSL Latch(2) AN
AN
'y
> FsL FSL FSL ¥l FSL >
Latch Latch Latch Latch
< 0) |¢ M e (2) |¢ @) |
\\
\\
Data takeover FSL Latch\(1)
'y
> FsL > FsL > FsL > FsL [X
Latch Latch Latch Latch
< 0) | M ¢ @ | B) e

Figure 4. Elastic pipeline

This principle is called elastic pipeline [15] and is used
as fundamental principle for our delay-insensitive asyn-
chronous connector. Notice that system progression is

triggered by the local handshake and does not rely on any
timing assumption. Consequently, the effective asynchro-
nous data transmission can be even faster than only one
bit per cycle of source or sink clock in case of a favor-
able routing. Moreover, correct data transmission is also
not invalidated in case of long or varying delays. Thus
this mechanism is not only suited for intra-chip communi-
cation but for inter-chip communication as well, and more
generally for systems where delays can not be guaranteed.

3.4 Initialization and data transfer

We have seen that system progression is based on the
different FSL phases. Therefore, attention has to be paid
to the initialization of the pipeline before each transfer.
Figure 5 illustrates the data transfer flow between source
and sink pipeline. During power-up both pipelines have
to be initialized using reset_source and reset_sink (Fig-
ure 5, initialization). To initiate a data transfer the source
pipeline is initialized with alternating FSL phase informa-
tion (1 - o - 1 - Yo - ..) and the corresponding data
that was provided from the synchronous sub-system (Fig-
ure 5, preset before transmission). A prerequisite for the
operation is that the first latch — FSL Latch (n-1) —is ini-
tialized with ¢; and the whole sink pipeline is initialized

Interface to CPU

(Wrapper to CPU)
FPGA
platform Control & status
@ bus analyzer
v Data interface
== (monitoring)
COM DIP = =¥% ER A=
module module
@ FR Packet FR Status @
mOdUIe mOdUIe
FR Inout Monitoring
== - npu it
Data interface SPEAR unts
(replay)

Time Control Unit Receiver

FlexRay
Protocol Engine

FlexRay
@ programming connector

@ replay connector

interface

@ receiver connector

@ monitoring connector

Figure 6. Tester node’s architecture

with .

The alternating phases of the source pipeline will be
transferred to the sink on the principle that has been al-
ready shown in Figure 4. The ackn signal of the last sink
pipeline latch — FSL Latch (m-1) — is fixed to phase
information g, which stops the data transfer if the first
phase @7 reaches this latch. The sink pipeline will recog-
nize the transfer as completed if all sink latches have al-
ternating phase information (starting with ¢, Figure 5:
transmission ready). If the transferred data has been con-
sumed by the receiving synchronous sub-system the sink
pipeline will be re-initialized — via ackn_sink — for the
next transfer by setting all sink latches to . On the other
hand, the source pipeline will recognize the completed
transfer if all latches of the source pipeline have phase in-
formation ¢g. The next transfer can again be initiated by
initialization of the source pipeline with alternating phase
information.

3.5 Interface requirements

The physical connection between the source and the
sink pipeline is using a delay-insensitive communication
scheme. Nevertheless, to guarantee correct operation of
our asynchronous connector a few local timing constraints
have to be met:

Source pipeline preset: The interconnection delay be-
tween the source pipeline latches has to be less than
one clk_source cycle to guarantee the correct preset
of new data.

Sink pipeline reset: The interconnection delay between
the sink pipeline latches has to be less than
one clk_sink cycle to guarantee the correct re-
initialization of the sink pipeline.

Sink pipeline ready: The interconnection delay between
a sink pipeline latch and the corresponding
data_out(m-1..0) port has to be less than one clk_sink
cycle to guarantee the correct data takeover into the
sink clock domain.

These requirements describe the interface between the
asynchronous connector and the synchronous modules. It
physically binds the source pipeline to the initiator of the
transfer and the sink pipeline to the corresponding receiv-
ing sub-system. Notice that these requirements are local
and related to the corresponding clock domain. There are
no timing requirements between the different clock do-
mains or for the asynchronous pipeline itself.

4 Tester node’s system architecture

In order to illustrate the benefits of our approach, we
have instantiated our asynchronous connector into a state-
of-the-art FlexRay bus analyzer tool. This section pro-
vides an overview of the resulting system architecture (see
Figure 6). It basically consists of different monitoring
units delivering data from the different sources (e.g. CAN,
LIN, digital or analog input). These data are ordered in the
data interface (monitoring) and further sent to the host

through the wrapper. An opposite architecture (data in-
terface (replay)) is provided for the transmission of data.
The interface to the FlexRay bus uses a FlexRay proto-
col engine. More information concerning our prototype is
available in [7].

The tester node enhancement is achieved by the inte-
gration of the SPEAR microcontroller for the processing
of complex stimulus. The motivation for this IP is first to
be platform independent (in contrary to Altera’s NIOS! or
Xilinx’s Microblaze?). Moreover, we need real-time prop-
erties to guarantee the computation of the next stimulus it-
eration before the next communication cycle starts. This is
provided by using an instruction set of constant execution
time. Finally, we are in a prototyping phase and require
a flexible, extendable computing unit. One main concept
of SPEAR is the support of Hardware Extension Modules,
which provides an environment to easily add new modules
to this core. The integration is supported in hardware by
well defined interfaces and in software by simple module
access using memory mapping.

The SPEAR core requires four dedicated connections
to our bus analyzer (in gray in Figure 6). The first one
(programming connector) goes from the CPU to the COM
module to load the program to execute. The second
one, the replay connector, transfers the generated FlexRay
packets together with a 25 ns accurate timestamp to the re-
play unit. This timestamp precisely defines the transmis-
sion time of the frame. The third dedicated interface, the
receiver connector, is concerned with gathering the time
differences between the tester node’s time base and the re-
ceived frames. This input is required to further compute
the stimulus for the next communication cycle. Finally,
the monitoring connector is used to notify the user from
the SPEAR status.

In order to minimize the programming time of the
SPEAR core the programming connector is implemented
as a dual clock FIFO. The replay connector uses our asyn-
chronous concept with a 16 bits to 16 bits interface. Since
the packets to transmit are larger than 16 bits (between
128 bits and 2176 bits), several successive accesses are
required. The receiver and monitoring connectors are im-
plemented as 32 bits to 16 bits (respectively 16 bits to 16
bits) asynchronous connectors.

5 Evaluation
5.1 Setup

The quality of a connection can be principally mea-
sured in terms of data transfer rate versus resources re-
quired. Some other “soft skills” such as development and
integration effort, or presence of (timing) constraints can
be taken into account, too. The aim of this section is to
compare our asynchronous connector to other synchro-
nous approaches. To that aim, we have developed a se-
rial and a parallel connector based on the synchronous de-
velopment scheme. The three modules provide the same
interface (see Section 3) in order to facilitate the compar-

Thttp://www.altera.com/
Zhttp://www.xilinx.com

ison. The implementation of a serial and a parallel con-
nector highlights the trade-off between high-performance
parallel and resource saving serial interfaces.

The synchronous serial connector requires two control
signals (data available and acknowledge) and one data sig-
nal for transmission. It requires a two-stage synchronizer
for each control signal to properly cross the clock do-
mains. Consequently, the transmission time for a N bit
vector is:

Tsync,serial = N- [2 . TC’SOW‘CS +2- TC +2- Ec]
+Tp7‘eset + Treadout (1)

sink

Tc.oure. and T, are the clock periods from source
and sink. T}, is the interconnect delay between these two
clock domains, and finally T},;.cse¢ and T'cqdowt TEPresents
the additional delay to store (respectively readout) the data
in the connector. The term [2-T¢,,,... +2-Tc.,, . +2-Ti]
represents the duration to transmit a bit from one clock do-
main to another. Two clock periods of each clock domain
are required to synchronize the control signals (data avail-
able and acknowledge). Additionally the interconnect de-
lay in both directions is necessary to transmit these control
signals. The advantage of this serial connector is the low
interconnection resource that is required (only three wires
between source and sink part of the connector). More-
over, it provides a flexible interface definition since the
source and sink part might implement different data width
(the width of a transmitted signal can be adapted using the
start_source — ready_source and ready_sink — ackn_sink
control signals).

The synchronous parallel connector (equivalent to a
dual clock FIFO) uses the same transmission scheme as
the serial one with the one difference that NV bits (instead
of one) are transmitted in parallel. This naturally increases
the required interconnect resources to N + 2 wires and de-
creases the transmission time to:

sink

Tsync,parallel = 2. ZWCS(,UNe + 2- Tcsmk- + 2- ﬂc
+Tpreset + T’r‘eadout (2)

Our asynchronous serial interface combines the advan-
tages of serial connection (low interconnect resources:
only three interconnect wires) and asynchronous design
(delay-insensitivity). The latter property is particularly
interesting for interconnections. Hence, proper operation
does not depend on any timing assumptions or any global
clock signal. The transmission time only depends on the
capacity of our elastic pipeline to transmit a bit, which
in turn depends on the FSL latch delay (7..;;) and the
maximum interconnect delay between two successive FSL
latches (17,,;.). The transmission time then is:

Tasync,serial =N- [Tcell + Tmic]
+Tp7‘eset + Treadout (3)

In synchronous circuits the maximum clock frequency
is determined by the longest path between any two reg-
isters of the whole module. In contrary, the transmis-
sion time of our asynchronous pipeline approach depends

[Connector | Asynchronous Serial [

Synchronous Serial

[Synchronous Parallel]

Data Width LC Duration | Signals TR LC | Duration | Signals TR LC | Duration | Signals TR
[bit] [l [ns] [[MBit/s] |] [ns]] [MBit/s] |] [ns] [l [MBit/s]

8 131 177 3 15.07 49 1200 3 2.22 27 230 10 3.48

16 261 285 3 18.71 87 2300 3 2.32 43 230 18 3.86

32 519 505 3 21.12 162 4480 3 2.38 75 230 34 4.09

64 1036 880 3 24.24 312 9050 3 2.36 139 230 64 4.35

Table 2. Connector implementation properties

only on the effective path between two successive FSL
latches. Consequently asynchronous transmission can be
faster than one bit per clock period (as it is in serial syn-
chronous schemes). Moreover, the pipeline architecture
can be efficiently used by the place and route tool to mini-
mize the average interconnect delay. Furthermore, the de-
lay insensitivity provides higher robustness against long
or variable delays. It makes then our approach very in-
teresting for long distance intra-chip as well as inter-chip
communication.

5.2 Results

This section deals with the comparison of our proposed
asynchronous connector and the standard synchronous ap-
proaches previously described. We focus here on the re-
source usage and data transfer rate. For that, we have im-
plemented the three connectors using an Altera Cyclonell
EP2C70 FPGA3. Each of these connectors has been de-
signed with different interface data width (8, 16, 32 and
64 bits). We have identified the following properties as
relevant measures for our comparison:

o Usage of FPGA logic cells of each connector (LC)

e Duration of the whole data transfer from source to
sink (Duration)

e Number of interconnection signals (Signals)

Further we have introduced a new metric that considers
these properties: Transfer rate per interconnect signal
(TR). This metric represents the maximum number of bits
per second that can be transferred via a single wire of a
given connector. The unit of the TR is bit per second
[Bit/s].

Data_width
TR = - -
Duration - Signals

“)

Table 2 shows the results of our evaluation regarding
the different data widths and types of connectors. The
clock frequencies of source and sink have been set to 30
and 66 MHz. The evaluation points out that our proposed
asynchronous connector is the most effective concerning
the transfer rate per interconnection signal.

Concerning the asynchronous connector, an increasing
data width leads to an increasing TR because the pure
asynchronous transmission gets more impact on the whole
transmission. The delay overhead consisting of synchro-
nizing the data at the interface is proportionally reduced

3http://www.altera.com

with an increasing data width. Hence, the source and sink
clocks only influence the preset and readout of the trans-
ferred data.

As expected, the synchronous parallel and serial con-
nectors provide approximately the same TR. This can be
explained by the communication scheme: the transmis-
sion of one bit is triggered by the clock signal and can not
be locally optimized such as our asynchronous connector.
Then, the principal difference between synchronous serial
or parallel scheme is the number of wires used between
source and sink. The number of bits transmitted per wire
stays approximately the same. Notice that the delay over-
head for a serial communication is higher since the control
signals have to be activated for each bit and not only once
for the whole transfer (parallel scheme). This explains the
slight difference between parallel and serial TR.

The outstanding deficit of the asynchronous connector
is the high number of logic cells required. This is caused
by the implementation into a standard FPGA that does not
provide optimized cells for FSL design. Nevertheless, if
the usage of logic cells is taken into account in our com-
parison a very interesting fact becomes observable. Thus

we have related TR to the corresponding number of logic

cells (LC) for each connector, and this relation % has

always nearly the same value for each connector per ded-
icated data width. This highlights the fact that the three
properties are tightly related, and the designer has to de-
cide which attribute is more relevant for its implementa-
tion. We actually believe that the actual trend is set to
the minimization of transfer duration and number of inter-
connection signals, thus making our approach particularly
interesting. The number of logic elements is not playing a
significant role due to the fast increasing number of tran-
sistors per chip. Even low cost FPGAs are already avail-
able with an huge number of logic cells (e.g. 70k or 120k
logic cells).

5.3 The FlexRay bus analyzer

The implementation of the asynchronous connector in
our tester node has permitted the efficient connection be-
tween the SPEAR core and the bus analyzer. First, ef-
ficient in term of integration and testing effort since the
different clock domains and data width are naturally sup-
ported by our connector. Second, efficient in terms of in-
terconnect resources and on resulting timings. We could
not notice any worsening of maximal frequency achiev-
able. Finally, efficient in terms of data transfer rate since
the requested data arrived on time.

6 Conclusion

The decision of using a technology or a design method
instead of another one mainly depends on the parameter(s)
we want to optimize. In case of connectors, the focus
is usually set to the transmission quality. This term ad-
dresses transmission rate and also resource requirements.
Additional (non measurable) parameters such as presence
of timing constraints or flexibility in the interface imple-
mentation can be taken into account, too.

In this paper we have presented an asynchronous,
delay-insensitive approach for connecting two indepen-
dent synchronous modules. The main advantages of this
approach are (i) the maximization of the data transfer rate
per interconnect wire and (ii) the absence of timing con-
straints with respect to the clock domains. The proposed
asynchronous connector thus well suits both for high-
speed intra-chip communication and for inter-chip com-
munication.

Future work is going towards the development of a
generic configurable asynchronous connector that sup-
ports both serial and parallel transmission. This mixed
approach should provide a new configuration opportunity
for a system designer to adjust the trade-off between data
transfer rate and resource requirements.

7 Acknowledgements

This work has been partially funded by the FIT-IT [em-
bedded systems initiative of the Austrian Federal Ministry
of Transport, Innovation, and Technology] and managed
by Eutema and the Austrian Research Agency FFG within
projects COMPASS [3] (contract 809444) and ExTraCT
(contract 810834).

We would especially like to thank Martin Delvai and
Peter Tummeltshammer for valuable support and interest-
ing discussions during integration of the SPEAR micro-
controller.

References

[1] Flexray Communications Systems — Proto-
col Specification Version 2.1, available at
http://www.flexray.com. FlexRay Consortium,
2005.

[2] Daniel M. Chapiro. Globally-Asynchronous Locally-
Synchronous Systems. PhD thesis, Stanford Univer-
sity, October 1984.

[3] COMPASS. Component Based Automotive System
Software. http://www.infosys.tuwien.ac.at/compass.

[4] Martin Delvai. SPEAR Handbuch. Technical report,
Treitlstr. 3/3/182-1, 1040 Vienna, Austria, 2002.

[5] Martin Delvai and Andreas Steininger. Asynchro-
nous logic design - from concepts to implementa-
tion. In The 3rd International Conference on Cyber-
netics and Information Technologies, Systems and
Applications, pages 81-86, 2006.

[6] Scott Hauck. Asynchronous design methodologies:
An overview. Proceedings of the IEEE, 83(1):69-93,
January 1995.

[7] M. Horauer, F. Rothensteiner, M. Zauner, E. Ar-
mengaud, A. Steininger, H. Friedl, and R. Pallierer.
An FPGA based SoC Design for Testing Embedded
Automotive Communication Systems employing the
FlexRay Protocol. In Proceedings of the Austrochip
2004 Conference, pages 119-125, September 2004.

[8] Xin Jia and Ranga Vemuri. Using GALS archi-
tecture to reduce the impact of long wire delay on
FPGA performance. In Ting-Ao Tang, editor, ASP-
DAC, pages 1260-1263. ACM Press, 2005.

[9] A.J.Martin. The limitations to delay-insensitivity in
asynchronous circuits. Technical report, California
Institute of Technology, 1990.

[10] Anthony J. McAuley. Four state asynchronous archi-
tectures. IEEE Trans. Computers, 41(2):129-142,
1992.

[11] Jens Muttersbach, Thomas Villiger, and Wolfgang
Fichtner. Practical design of globally-asynchronous
locally-synchronous systems. In Proc. International
Symposium on Advanced Research in Asynchronous
Circuits and Systems, pages 52—59, April 2000.

[12] Jens Muttersbach, Thomas Villiger, Hubert Kaeslin,
Norbert Felber, and Wolfgang Fichtner. Globally-
asynchronous locally-synchronous architectures to
simplify the design of on-CHIP systems. In Proc.
12th International ASIC/SOC Conference, pages
317-321, September 1999.

[13] Mehrdad Najibi, Kamran Saleh, Mohsen Naderi,
Hossein Pedram, and Mehdi Sedighi. Prototyping
globally asynchronous locally synchronous circuits
on commercial synchronous FPGAs. In [EEE In-
ternational Workshop on Rapid System Prototyping,
pages 63—69. IEEE Computer Society, 2005.

[14] Jens Sparso and Steve Furber. Principles of Asyn-
chronous Circuit Design - A Systems Perspective.
Kluwer Academic Publishers, Norwell, MA, USA,
2001.

[15] I. E. Sutherland. Micropipelines (the turing award
lecture). Comm.A.C.M., 32(6):720-738, June 1989.

[16] George S. Taylor, Simon W. Moore, Robert D.
Mullins, and Peter Robinson. Point to point GALS
interconnect. In ASYNC, pages 69-75. IEEE Com-
puter Society, 2002.

[17] Hiroaki Terada, Souichi Miyata, and Makoto Iwata.
DDMP’s: Self-timed super-pipelined data-driven
multimedia processors. Proceedings of the IEEE,
87(2):282-296, February 1999.

