

GAISLER

GRLIB IP Library User’s Manual

Version 1.3.1 - B4135, August 2013

Copyright Aeroflex Gaisler, 2013

AEROFLEX GAISLER 2 GRLIB

Table of contents

1 Introduction... 5
1.1 Overview ...5

1.2 Library organization ..5

1.3 On-chip bus ...5

1.4 Distributed address decoding ..5

1.5 Interrupt steering ...6

1.6 Plug&Play capability...6

1.7 Portability ..6

1.8 Available IP cores..7

1.9 Licensing ...7

2 Installation... 8
2.1 Installation ...8

2.2 Upgrading..8

2.3 Directory organization...8

2.4 Host platform support..9
2.4.1 Linux ...9
2.4.2 Windows with Cygwin..9

3 LEON3 quick-start guide.. 10
3.1 Introduction ...10

3.2 Overview ...10

3.3 Configuration...10

3.4 Simulation ...11

3.5 Synthesis and place&route ..12

3.6 Simulation of post-synthesis netlist...13

3.7 Board re-programming..13

3.8 Running applications on target..13

3.9 Flash PROM programming ...14

4 Implementation flow ... 15
4.1 Introduction ...15

4.2 Using Makefiles and generating scripts...15

4.3 Simulating a design ...17
4.3.1 Overview...17
4.3.2 GRLIB_SIMULATOR environment variable...17

4.4 Synthesis and place&route ..18

4.5 Skipping unused libraries, directories and files...18

4.6 Encrypted RTL ..20

4.7 Tool-specific usage ..21
4.7.1 GNU VHDL (GHDL) ...21
4.7.2 Cadence ncsim ..22
4.7.3 Mentor ModelSim...23
4.7.4 Aldec Active-HDL ..24
4.7.5 Aldec ALINT ..25
4.7.6 Aldec Riviera ..26
4.7.7 Symphony-EDA Sonata ..27
4.7.8 Synthesis with Synplify ..28
4.7.9 Synthesis with Mentor Precision...29
4.7.10 Actel Designer...30
4.7.11 Actel Libero ..31
4.7.12 Altera Quartus...32

AEROFLEX GAISLER 3 GRLIB

4.7.13 Xilinx ISE ...33
4.7.14 Xilinx PlanAhead..35
4.7.15 Xilinx Vivado ..36
4.7.16 Lattice ISP Tools ...37
4.7.17 Synthesis with Synopsys Design Compiler ..38
4.7.18 Synthesis with Cadence RTL Compiler ..38
4.7.19 eASIC eTools ..39

4.8 XGrlib graphical implementation tool ..40
4.8.1 Introduction...40
4.8.2 Simulation ...40
4.8.3 Synthesis ...41
4.8.4 Place & Route ...41
4.8.5 Additional functions..41

5 GRLIB Design concept... 42
5.1 Introduction ...42

5.2 AMBA AHB on-chip bus ..42
5.2.1 General ..42
5.2.2 AHB master interface..43
5.2.3 AHB slave interface ..44
5.2.4 AHB bus control ...44
5.2.5 AHB bus index control..45
5.2.6 Support for wide AHB data buses...45

5.3 AHB plug&play configuration ..47
5.3.1 General ..47
5.3.2 Device identification ...48
5.3.3 Address decoding..49
5.3.4 Cacheability ..50
5.3.5 Interrupt steering...50

5.4 AMBA APB on-chip bus...52
5.4.1 General ..52
5.4.2 APB slave interface...53
5.4.3 AHB/APB bridge ..54
5.4.4 APB bus index control ..54

5.5 APB plug&play configuration...55
5.5.1 General ..55
5.5.2 Device identification ...55
5.5.3 Address decoding..55
5.5.4 Interrupt steering...56

5.6 GRLIB configuration package...56

5.7 Technology mapping ...57
5.7.1 General ..57
5.7.2 Memory blocks ...58
5.7.3 Pads ...59

5.8 Scan test support..60
5.8.1 Overview...60
5.8.2 GRLIB support..60
5.8.3 Usage for existing cores..60
5.8.4 Usage for new cores..60

6 GRLIB Design examples .. 62
6.1 Introduction ...62

6.2 NetCard ...62

6.3 LEON3MP...67

7 Using netlists... 69
7.1 Introduction ...69

AEROFLEX GAISLER 4 GRLIB

7.2 Mapped VHDL..69

7.3 Xilinx netlist files ..69

7.4 Altera netlists...69

7.5 Known limitations ...69

8 Extending GRLIB ... 70
8.1 Introduction ...70

8.2 GRLIB organisation ..70

8.3 Adding an AMBA IP core to GRLIB..71
8.3.1 Example of adding an existing AMBA AHB slave IP core71
8.3.2 AHB Plug&play configuration..72
8.3.3 Example of creating an APB slave IP core ...73
8.3.4 APB plug&play configuration ..74

8.4 Using verilog code...75

8.5 Adding portabilty support for new target technologies ...75
8.5.1 General ..75
8.5.2 Adding a new technology..75
8.5.3 Encapsulation..76
8.5.4 Memories ..76
8.5.5 Pads ...78
8.5.6 Clock generators ...78

8.6 Extending the xconfig GUI configuration ...78
8.6.1 Introduction...78
8.6.2 IP core xconfig files...78
8.6.3 xconfig menu entries ...79
8.6.4 Adding new xconfig entries ..80
8.6.5 Other uses and limitations...82

AEROFLEX GAISLER 5 GRLIB

1 Introduction

1.1 Overview

The GRLIB IP Library is an integrated set of reusable IP cores, designed forsystem-on-chip(SOC)
development. The IP cores are centered around a common on-chip bus, and use a coherent method for
simulation and synthesis. The library is vendor independent, with support for different CAD tools and
target technologies. A unique plug&play method is used to configure and connect the IP cores with-
out the need to modify any global resources.

1.2 Library organization

GRLIB is organized around VHDL libraries, where each major IP (or IP vendor) is assigned a unique
library name. Using separate libraries avoids name clashes between IP cores and hides unnecessary
implementation details from the end user. Each VHDL library typically contains a number of pack-
ages, declaring the exported IP cores and their interface types. Simulation and synthesis scripts are
created automatically by a global makefile. Adding and removing of libraries and packages can be
made without modifying any global files, ensuring that modification of one vendor’s library will not
affect other vendors. A few global libraries are provided to define shared data structures and utility
functions.

GRLIB provides automatic script generators for the Modelsim, Ncsim, Aldec, Sonata and GHDL
simulators, and the Synopsys, Synplify, Cadence, Mentor, Actel, Altera, Lattice, eASIC and Xilinx
implementation tools. Support for other CAD tools can be easily be added.

1.3 On-chip bus

The GRLIB is designed to be ‘bus-centric’, i.e. it is assumed that most of the IP cores will be con-
nected through an on-chip bus. The AMBA-2.0 AHB/APB bus has been selected as the common on-
chip bus, due to its market dominance (ARM processors) and because it is well documented and can
be used for free without license restrictions. The figure below shows an example of a LEON3 system
designed with GRLIB:

1.4 Distributed address decoding

Adding an IP core to the AHB bus is unfortunately not as straight-forward as just connecting the bus
signals. The address decoding of AHB is centralized, and a shared address decoder and bus multi-
plexer must be modified each time an IP core is added or removed. To avoid dependencies on a global

Processor

AMBA AHB

Timers IrqCtrl

AMBA APB

8/32-bits memory bus

USBLEON3
Serial

Dbg Link

AHB
Controller

Memory
Controller

AHB/APB
Bridge

I/O portUART

32-bit I/O port

JTAG
Dbg Link

RS232 JTAG

RS232

Spacewire
Link

LVDS

PCI

PCI

WDOG

Ethernet
MAC

PHY

PS/2VGA

Video PS/2 IF

LEON3 Template Design

DAC

CAN 2.0
Link

CAN

SRAM SDRAMPROM I/O

USB PHY

AEROFLEX GAISLER 6 GRLIB

resource, distributed address decoding has been added to the GRLIB cores and AMBA AHB/APB
controllers.

1.5 Interrupt steering

GRLIB provides a unified interrupt handling scheme by adding 32 interrupt signals to the AHB and
APB buses. An AMBA module can drive any of the interrupts, and the unit that implements the inter-
rupt controller can monitor the combined interrupt vector and generate the appropriate processor
interrupt. In this way, interrupts can be generated regardless of which processor or interrupt controller
is being used in the system, and does not need to be explicitly routed to a global resource. The scheme
allows interrupts to be shared by several cores and resolved by software.

1.6 Plug&Play capability

A broad interpretation of the term ‘plug&play’ is the capability to detect the system hardware config-
uration through software. Such capability makes it possible to use software application or operating
systems which automatically configure themselves to match the underlying hardware. This greatly
simplifies the development of software applications, since they do not need to be customized for each
particular hardware configuration.

In GRLIB, the plug&play information consists of three items: a unique IP core ID, AHB/APB mem-
ory mapping, and used interrupt vector. This information is sent as a constant vector to the bus arbiter/
decoder, where it is mapped on a small read-only area in the top of the address space. Any AHB mas-
ter can read the system configuration using standard bus cycles, and a plug&play operating system
can be supported.

To provide the plug&play information from the AMBA units in a harmonized way, a configuration
record for AMBA devices has been defined (figure 1). The configuration record consists of 8 32-bit
words, where four contain configuration words defining the core type and interrupt routing, and four
contain so called ‘bank address registers’ (BAR), defining the memory mapping.

Figure 1.AMBA configuration record

The configuration word for each device includes a vendor ID, device ID, version number, and inter-
rupt routing information. A configuration type indicator is provided to allow for future evolvement of
the configuration word. The BARs contain the start address for an area allocated to the device, a mask
defining the size of the area, information whether the area is cacheable or pre-fetchable, and a type
declaration identifying the area as an AHB memory bank, AHB I/O bank or APB I/O bank. The con-
figuration record can contain up to four BARs and the core can thus be mapped on up to four distinct
address areas.

1.7 Portability

GRLIB is designed to be technology independent, and easily implemented on both ASIC and FPGA
technologies. Portability support is provided for components such as single-port RAM, two-port
RAM, dual-port RAM, single-port ROM, clock generators and pads. The portability is implemented
by means of virtual components with a VHDL generic to select the target technology. In the architec-
ture of the component, VHDL generate statements are used to instantiate the corresponding macro
cell from the selected technology library. For RAM cells, generics are also used to specify the address
and data widths, and the number of ports.

ADDR C/P MASK TYPE

31 20 19 16 15 4 3 0

Bank address register (BAR)

Configuration word

VENDOR ID DEVICE ID VERSION IRQ

31 24 23 12 11 5 4 0

CT

10 9

AEROFLEX GAISLER 7 GRLIB

1.8 Available IP cores

Please see the GRLIB IP Core User’s Manual for a list of IP cores included in the library.

1.9 Licensing

The main infra-structure of GRLIB is released in open-source under the GNU GPL license. This
means that designs based on the GPL version of GRLIB must be distributed in full source code under
the same license. For commercial applications where source-code distribution is not desirable or pos-
sible, Aeroflex Gaisler offers low-cost commercial IP licenses. Contact sales@gaisler.com for more
information or visit http://www.gaisler.com/.

http://www.gaisler.com/
http://www.gaisler.com/

AEROFLEX GAISLER 8 GRLIB

2 Installation

2.1 Installation

GRLIB is distributed as a gzipped tar-file and can be installed in any location on the host system:
gunzip -c grlib-gpl-1.1.0-bxxxx.tar.gz | tar xf -

or

unzip grlib-gpl-1.1.0-bxxxx.zip

NOTE: Do NOT use unzip on the .tar.gz file, this will corrupt the files during extraction!

The distribution has the following file hierarchy:
bin various scripts and tool support files

boards support files for FPGA prototyping boards

designs template designs

doc documentation

lib VHDL libraries

netlists Vendor specific mapped netlists

software software utilities and test benches

verification test benches

GRLIB uses the GNU ‘make’ utility to generate scripts and to compile and synthesis designs. It must
therefore be installed on a unix system or in a ‘unix-like’ environment. Tested hosts systems are
Linux and Windows with Cygwin.

2.2 Upgrading

When migrating from earlier GRLIB releases the steps below should be followed in order to minimze
the number of possible conflicts when upgraing:

• The new package should be extracted in its own directory. Do not overwrite the existing GRLIB tree with
the new package.

• Added designs and IP cores should be copied into the new tree.

• All existing scripts (file lists) should be removed and then re-generated using the appropriate make targets in
the new GRLIB tree.

2.3 Directory organization

GRLIB is organized around VHDL libraries, where each IP vendor is assigned a unique library name.
Each vendor is also assigned a unique subdirectory under grlib/lib in which all vendor-specific source
files and scripts are contained. The vendor-specific directory can contain subdirectories, to allow for
further partitioning between IP cores etc.

The basic directories delivered with GRLIB under grlib-1.0.x/lib are:
grlib packages with common data types and functions

gaisler Aeroflex Gaisler’s components and utilities

tech/* target technology libraries for gate level simulation

techmap wrappers for technology mapping of marco cells (RAM, pads)

work components and packages in the VHDL work library

Other vendor-specific directories are also delivered with GRLIB, but are not necessary for the under-
standing of the design concept. Libraries and IP cores are described in detail in separate documenta-
tion.

AEROFLEX GAISLER 9 GRLIB

2.4 Host platform support

GRLIB is design to work with a large variety of hosts. The paragraphs below outline the hosts tested
by Aeroflex Gaisler. Other unix-based hosts are likely to work but are not tested. As a baseline, the
following host software must be installed for the GRLIB configuration scripts to work:

• Bash shell

• GNU make

• GCC

• Tcl/Tk-8.4

• patch utility

• X Windows graphical system (required for Tcl/Tk on Cygwin and Linux)

2.4.1 Linux

The make utility and associated scripts should work on most linux distribution. GRLIB is primarily
developed on Linux hosts, and GNU/Linux is the preferred platform.

2.4.2 Windows with Cygwin

The make utility and associated scripts will work, although somewhat slow. Note that GCC and the
make utility must be selected during the Cygwin installation.

Cygwin troubleshooting:

• Some versions of Cygwin are known to fail due to a broken ‘make’ utility. In this case, try to use
a different version of Cygwin or update to a newer make.

• Make sure that the paths to tools are set-up properly. For instance, for Xilinx ISE tools theXILINX
environment variable must point at the installation of ISE. This can be checked in the Cygwin shell
by typingecho $XILINX , which should lead to a print-out matching the Xilinx ISE installation.
Example:c:\Xilinx\13.2\ISE_DS\ISE (path depends on ISE version and selected installation point)
can be set from the Cygwin shell with the command:
export XILINX=c:\\Xilinx\\13.2\\ISE_DS\\ISE
• Paths to the EDA tools must be included in the PATH variable. It must be possible to invoke the
tools by ussing their command on the Cygwin command line. For Xilinx tools, this can be tested by
issuing a command such aspar, which should result in the help text for Xilinx’s place&route tool to
be printed. If this does not work then thePATH variable must be set. Examples:
export PATH=$PATH:$XILINX/bin/nt
or
export PATH=$PATH:/cygdrive/Xilinx/13.2/ISE_DS/ISE/bin/nt
• In order to run the graphical configuration tools that come with GRLIB you may also need to
install an X server (xorg-server, xinit packages in X11 category). Another option is to install Tcl/Tk
packages from another provider, such as ActiveState.

• With Cygwin’s X server installed, the server should be started via the start menus’sCygwin-X >
XWin Server. With the default setting this will bring up a terminal window with the proper initializa-
tion of theDISPLAY variable. In other terminal windows, theDISPLAY variable can be set with
export DISPLAY=:0 .

• In casemake xconfig fails, try removing the file lconfig.tk from the template design directory.
Then issuemake distclean followed bymake xconfig.
• It is recommended to extract the GRLIB file tree in your Cygwin user’s home directory. Other-
wise files may be generated in the wrong format (binary vs. text). Seehttp://cygwin.com/cygwin-ug-
net/using-textbinary.html for additional information.

• Tools, such as ModelSim, may generate Makefiles that contain paths with the character ‘:’ in
them. This will then lead to build failures. The GRLIB scripts attempt to detect and patch the gener-
ated Makefiles to avoid these failures. If you encounter errors such as“*** No rule to make target
..” then please send the filemake.work from the template design directory together with the error
output to support@gaisler.com. (NOTE: generating scripts under MSYS may not work and is NO
supported).

• For error errors involving fork, please see http://cygwin.com/faq-nochunks.html#faq.using.fixing-
fork-failures.

http://cygwin.com/cygwin-ug-net/using-textbinary.html
http://cygwin.com/cygwin-ug-net/using-textbinary.html
http://cygwin.com/faq-nochunks.html#faq.using.fixing-fork-failures
http://cygwin.com/faq-nochunks.html#faq.using.fixing-fork-failures

AEROFLEX GAISLER 10 GRLIB

3 LEON3 quick-start guide

3.1 Introduction

This chapter will provide a simple quick-start guide on how to implement a LEON3 system using
GRLIB, and how to download and run software on the target system. Refer to chapters 4 - 7 for a
deeper understanding of the GRLIB organization.

3.2 Overview

Implementing a leon3 system is typically done using one of the template designs on the designs direc-
tory. For this tutorial, we will use the LEON3 template design for the GR-XC3S-1500 board. Imple-
mentation is typically done in three basic steps:

• Configuration of the design using xconfig

• Simulation of design and test bench

• Synthesis and place&route

The template design is located indesigns/leon3-gr-xc3s-1500 , and is based on three files:

• config.vhd - a VHDL package containing design configuration parameters. Automatically generated by the
xconfig GUI tool.

• leon3mp.vhd - contains the top level entity and instantiates all on-chip IP cores. It uses config.vhd to config-
ure the instantiated IP cores.

• testbench.vhd - test bench with external memory, emulating the GR-XC3S-1500 board.

Each core in the template design is configurable using VHDL generics. The value of these generics is
assigned from the constants declared in config.vhd, created with the xconfig GUI tool.

3.3 Configuration

Change directory to designs/leon3-gr-xc3s-1500, and issue the command ‘make xconfig’ in a bash
shell (linux) or cygwin shell (windows). This will launch the xconfig GUI tool that can be used to
modify the leon3 template design. When the configuration is saved and xconfig is exited, the con-
fig.vhd is automatically updated with the selected configuration.

Processor

AMBA AHB

Timers IrqCtrl

AMBA APB

8/32-bits memory bus

USBLEON3
Serial

Dbg Link

AHB
Controller

Memory
Controller

AHB/APB
Bridge

I/O portUART

16-bit I/O port

JTAG
Dbg Link

RS232 JTAG

RS232

Spacewire
Link

LVDS

WDOG

Ethernet
MAC

PHY

PS/2VGA

Video PS/2 IF

LEON3 GR-XC3S-1500 Template Design

DAC

CAN 2.0
Link

CAN

SDRAMPROM I/O

USB PHY

AEROFLEX GAISLER 11 GRLIB

3.4 Simulation

The template design can be simulated in a test bench that emulates the prototype board. The test
bench includes external PROM and SDRAM which are pre-loaded with a test program. The test pro-
gram will execute on the LEON3 processor, and tests various functionality in the design. The test pro-
gram will print diagnostics on the simulator console during the execution.

The following command should be give to compile and simulate the template design and test bench
using Mentor ModelSim/QuestaSim:

make vsim
vsim testbench

Make targets also exist for other simulators. See documentation of tools in this document or issue
make help to view a list of available targets.

Some designs require that the environment variable GRLIB_SIMULATOR is set to the simulator to
use in order for all parts of the design to be built correctly (in particular template designs for Xilinx
devices that make use of the Xilinx MIG). Refer to the design’s README.txt file and section 4.3 of
this document for additional information.

A typical simulation log can be seen below.
$ vsim testbench

VSIM 1> run -a
LEON3 GR-XC3S-1500 Demonstration design
GRLIB Version 1.0.15, build 2183
Target technology: spartan3 , memory library: spartan3
ahbctrl: AHB arbiter/multiplexer rev 1
ahbctrl: Common I/O area disabled
ahbctrl: AHB masters: 4, AHB slaves: 8
ahbctrl: Configuration area at 0xfffff000, 4 kbyte
ahbctrl: mst0: Gaisler Research Leon3 SPARC V8 Processor
ahbctrl: mst1: Gaisler Research JTAG Debug Link
ahbctrl: mst2: Gaisler Research SpaceWire Serial Link
ahbctrl: mst3: Gaisler Research SpaceWire Serial Link
ahbctrl: slv0: European Space Agency Leon2 Memory Controller
ahbctrl: memory at 0x00000000, size 512 Mbyte, cacheable, prefetch
ahbctrl: memory at 0x20000000, size 512 Mbyte
ahbctrl: memory at 0x40000000, size 1024 Mbyte, cacheable, prefetch
ahbctrl: slv1: Gaisler Research AHB/APB Bridge
ahbctrl: memory at 0x80000000, size 1 Mbyte
ahbctrl: slv2: Gaisler Research Leon3 Debug Support Unit
ahbctrl: memory at 0x90000000, size 256 Mbyte
apbctrl: APB Bridge at 0x80000000 rev 1
apbctrl: slv0: European Space Agency Leon2 Memory Controller
apbctrl: I/O ports at 0x80000000, size 256 byte
apbctrl: slv1: Gaisler Research Generic UART
apbctrl: I/O ports at 0x80000100, size 256 byte
apbctrl: slv2: Gaisler Research Multi-processor Interrupt Ctrl.
apbctrl: I/O ports at 0x80000200, size 256 byte
apbctrl: slv3: Gaisler Research Modular Timer Unit
apbctrl: I/O ports at 0x80000300, size 256 byte
apbctrl: slv8: Gaisler Research General Purpose I/O port
apbctrl: I/O ports at 0x80000800, size 256 byte
apbctrl: slv12: Gaisler Research SpaceWire Serial Link
apbctrl: I/O ports at 0x80000c00, size 256 byte
apbctrl: slv13: Gaisler Research SpaceWire Serial Link
apbctrl: I/O ports at 0x80000d00, size 256 byte
grspw13: Spacewire link rev 0, AHB fifos 2x64 bytes, rx fifo 16 bytes, irq 11
grspw12: Spacewire link rev 0, AHB fifos 2x64 bytes, rx fifo 16 bytes, irq 10
grgpio8: 18-bit GPIO Unit rev 0
gptimer3: GR Timer Unit rev 0, 8-bit scaler, 2 32-bit timers, irq 8
irqmp: Multi-processor Interrupt Controller rev 3, #cpu 1
apbuart1: Generic UART rev 1, fifo 1, irq 2
ahbjtag AHB Debug JTAG rev 0
dsu3_2: LEON3 Debug support unit + AHB Trace Buffer, 2 kbytes
leon3_0: LEON3 SPARC V8 processor rev 0

AEROFLEX GAISLER 12 GRLIB

leon3_0: icache 1*8 kbyte, dcache 1*4 kbyte
clkgen_spartan3e: spartan3/e sdram/pci clock generator, version 1
clkgen_spartan3e: Frequency 50000 KHz, DCM divisor 4/5
#
**** GRLIB system test starting ****
Leon3 SPARC V8 Processor
CPU#0 register file
CPU#0 multiplier
CPU#0 radix-2 divider
CPU#0 floating-point unit
CPU#0 cache system
Multi-processor Interrupt Ctrl.
Generic UART
Modular Timer Unit
timer 1
timer 2
chain mode
Test passed, halting with IU error mode
** Failure: *** IU in error mode, simulation halted ***
Time: 1104788 ns Iteration: 0 Process: /testbench/iuerr File: testbench.vhd
Stopped at testbench.vhd line 338
VSIM 2>

The test program executed by the test bench consists of two parts, a simple prom boot loader (prom.S)
and the test program itself (systest.c). Both parts can be re-compiled using themake softcommand.
This requires that the BCC tool-chain is installed on the host computer. The BCC tool-chain by
default includes AMBA plug&play scanning routines that are able to scan over AHB bridges. This is
seldom required for system tests and simulation time can be decreased by assigning the environment
variableLDFLAGS=-qnoambappbefore running make soft. This setting will become the default in a
future release of the library.

Note that the simulation is terminated by generating a VHDL failure, which is the only way of stop-
ping the simulation from inside the model. An error message is then printed:
Test passed, halting with IU error mode
** Failure: *** IU in error mode, simulation halted ***
Time: 1104788 ns Iteration: 0 Process: /testbench/iuerr File: testbench.vhd
Stopped at testbench.vhd line 338

This error can be ignored.

3.5 Synthesis and place&route

The template design can be synthesized with either Synplify, Precision or ISE/XST. Synthesis can be
done in batch or interactively. To use synplify in batch mode, use the command:
make synplify

To use synplify interactively, use:

make synplify-launch

The corresponding command for ISE are:
make ise-map

and

make ise-launch

To perform place&route for a netlist generated with synplify, use:
make ise-synp

For a netlist generated with XST, use:
make ise

In both cases, the final programming file will be called ‘leon3mp.bit’. See the GRLIB User’s Manual
chapter 3 for details on simulation and synthesis script files.

AEROFLEX GAISLER 13 GRLIB

3.6 Simulation of post-synthesis netlist

If desired, it is possible to simulate the synthesized netlist in the test bench. The synplify synthesis
tool generates a VHDL netlist in the file synplify/leon3mp.vhm. To re-run the test bench with the
netlist, do as follows:
vcom synplify/leon3mp.vhm
vsim -c testbench
vsim> run -all

3.7 Board re-programming

The GR-XC3S-1500 FPGA configuration PROMs can be programmed from the shell window with
the following command:
make ise-prog-prom

For interactive programming, use Xilinx Impact software. See the GR-XC3S-1500 Manual for details
on which configuration PROMs to specify.

A pre-compiled FPGA bit file is provided in the bitfiles directory, and the board can be re-pro-
grammed with this bit file using:
make ise-prog-prom-ref

3.8 Running applications on target

To download and debug applications on the target board, GRMON debug monitor is used. GRMON
can be connected to the target using RS232, JTAG, ethernet or USB. The most convenient way is
probably to use JTAG. GRMON can the Xilinx parallel port cable programming cable and or the Plat-
from USB cable. See the GRMON manual for details. To connect using the parallel port cable, do:
grmon -jtag -u

This should print the configuration of the target board:

initialising
 detected frequency: 40 MHz

 Component Vendor
 LEON3 SPARC V8 Processor Gaisler Research
 AHB Debug UART Gaisler Research
 AHB Debug JTAG TAP Gaisler Research
 SVGA frame buffer Gaisler Research
 GR Ethernet MAC Gaisler Research
 AHB ROM Gaisler Research
 AHB/APB Bridge Gaisler Research
 LEON3 Debug Support Unit Gaisler Research
 DDR266 Controller Gaisler Research
 Generic APB UART Gaisler Research
 Multi-processor Interrupt Ctrl Gaisler Research
 Modular Timer Unit Gaisler Research
 Keyboard PS/2 interface Gaisler Research
 Keyboard PS/2 interface Gaisler Research

To download an application, use the ‘load’ command. To run it, use ‘run’ :
load stanford.exe
run

The console output will occur in the grmon window if grmon was started with -u, otherwise it will be
send to the RS232 connector of the board.

AEROFLEX GAISLER 14 GRLIB

3.9 Flash PROM programming

The GR-XC3S-1500 board has a 64 Mbit (8Mx8) Intel flash PROM for LEON3 application software.
A PROM image is typically created with the sparc-elf-mkprom utility provided with the BCC tool
chain. The suitable mkprom parameters for the GR-XC3S-1500 board are:
sparc-elf-mkprom -romws 4 -freq 40 -col 9 -nosram -sdram 64 -msoft-float -baud 38400

Note that the -freq option should reflect the selected processor frequency, which depends on the clock
generator settings. If the processor includes an FPU, the -msoft-float switch can be omitted.

Once the PROM image has been created, the on-board flash PROM can be programmed through
GRMON. The procedure is described in the GRMON manual, below is the required GRMON com-
mand sequence:
flash erase all
flash load prom.out

AEROFLEX GAISLER 15 GRLIB

4 Implementation flow

4.1 Introduction

The following sections will describe how simulation and synthesis is performed using the GRLIB
make system. It is recommended to try out the various commands on one of the template designs,
such as designs/leon3mp.

4.2 Using Makefiles and generating scripts

GRLIB consists of a set of VHDL libraries from which IP cores are instantiated into a local design.
GRLIB is designed to reside in a global location and to be used in read-only mode. All compilation,
simulation and synthesis is done in a local design directory, using tool-specific scripts. The GRLIB IP
cores (components) are instantiated in the local design by the inclusion of various GRLIB packages,
declaring the components and associated data types.

A design typically contains of one or more VHDL files, and a local makefile:
bash$ ls -g mydesign

-rw-r--r-- 1 users 1776 May 25 10:37 Makefile

-rw-r--r-- 1 users 12406 May 25 10:46 mydesign.vhd

The GRLIB files are accessed through the environment variable GRLIB. This variable can either be
set in the local shell or in a local makefile, since the ‘make’ utility is used to automate various com-
mon tasks. A GRLIB-specific makefile is located in bin/Makefile. To avoid having to specify the
GRLIB makefile using the -f option, the local makefile should includes the GRLIB makefile:
GRLIB=../../grlib

include $(GRLIB)/bin/Makefile

Running ‘make help’ with this makefile will print a short menu:
$ make help

 interactive targets:

 make avhdl-launch : start active-hdl gui mode
 make riviera-launch : start riviera
 make vsim-launch : start modelsim
 make ncsim-launch : compile design using ncsim
 make sonata-launch : compile design using sonata
 make actel-launch-synp : start Actel Designer for current project
 make ise-launch : start ISE project navigator for XST project
 make ise-launch-synp : start ISE project navigator for synplify project
 make quartus-launch : start Quartus for current project
 make quartus-launch-synp : start Quartus for synplify project
 make synplify-launch : start synplify
 make vivado-launch : start Vivado project navigator
 make planAhead-launch : start PlanAhead project navigator
 make xgrlib : start grlib GUI

 batch targets:

 make avhdl : compile design using active-hdl gui mode
 make vsimsa : compile design using active-hdl batch mode
 make riviera : compile design using riviera
 make sonata : compile design using sonata
 make vsim : compile design using modelsim
 make ncsim : compile design using ncsim
 make ghdl : compile design using GHDL
 make actel : synthesize with synplify, place&route Actel Designer
 make ise : synthesize and place&route with Xilinx ISE
 make ise-map : synthesize design using Xilinx XST
 make ise-prec : synthesize with precision, place&route with Xilinx ISE
 make ise-synp : synthesize with synplify, place&route with Xilinx ISE
 make isp-synp : synthesize with synplify, place&route with ISPLever
 make quartus : synthesize and place&route using Quartus
 make quartus-map : synthesize design using Quartus
 make quartus-synp : synthesize with synplify, place&route with Quartus
 make precision : synthesize design using precision
 make synplify : synthesize design using synplify
 make scripts : generate compile scripts only
 make vivado : synthesize and place&route with Xilinx Vivado
 make planAhead : synthesize and place&route with Xilinx PlanAhead
 make clean : remove all temporary files except scripts
 make distclean : remove all temporary files

AEROFLEX GAISLER 16 GRLIB

Generating tool-specific compile scripts can be done as follows:
$ make scripts
$ ls compile.*
compile.dc compile.ncsim compile.synp compile.vsim compile.xst compile.ghdl

The local makefile is primarily used to generate tool-specific compile scripts and project files, but can
also be used to compile and synthesize the current design. To do this, additional settings in the make-
file are needed. The makefile in the design template grlib/designs/leon3mp can be seen as an example:
$ cd grlib/designs/leon3mp
$ cat Makefile
GRLIB=../..
TOP=leon3mp
BOARD=gr-pci-xc2v
include $(GRLIB)/boards/$(BOARD)/Makefile.inc
DEVICE=$(PART)-$(PACKAGE)$(SPEED)
UCF=$(GRLIB)/boards/$(BOARD)/$(TOP).ucf
QSF=$(BOARD).qsf
EFFORT=1
VHDLSYNFILES=config.vhd leon3mp.vhd
VHDLSIMFILES=testbench.vhd
SIMTOP=testbench
SDCFILE=$(GRLIB)/boards/$(BOARD)/default.sdc
BITGEN=$(GRLIB)/boards/$(BOARD)/default.ut
CLEAN=local-clean
include $(GRLIB)/bin/Makefile

The table below summarizes the common (target independent) ‘make’ targets:

Simulation, synthesis and place&route of GRLIB designs can also be done using a graphical tool
called xgrlib . This tool is described further in chapter “XGrlib graphical implementation tool” on
page 40.

TABLE 1. Common make targets

Make target Description

scripts Generate GRLIB compile scripts for all supported tools

xconfig Run the graphic configuration tool (leon3 designs)

clean Remove all temporary files except scripts and project files

distclean Remove all temporary files

xgrlib Run the graphical implementation tool (see “XGrlib graphical imple-
mentation tool” on page 40)

AEROFLEX GAISLER 17 GRLIB

4.3 Simulating a design

4.3.1 Overview

The ‘make scripts’ command will generate compile scripts and/or project files for the Model/Questa-
Sim, Riviera, NCsim, Xilinx and gHDL simulators. This is done by scanning GRLIB for simulation
files according to the method described in “GRLIB organisation” on page 70. These scripts are then
used by further make targets to build and update a GRLIB-based design and its test bench. The local
makefile should set the VHDLSYNFILES to contain all synthesizable VHDL files of the local design.
Likewise, the VHDLSIMFILES variable should be set to contain all local design files to be used for
simulation only. The variable TOP should be set to the name of the top level design entity, and the
variable SIMTOP should be set to the name of the top level simulation entity (e.g. the test bench).
VHDLSYNFILES=config.vhd ahbrom.vhd leon3mp.vhd

VHDLSIMFILES=testbench.vhd

TOP=leon3mp

SIMTOP=testbench

The variables must be set before the GRLIB makefile is included, as in the example above.

All local design files are compiled into the VHDL work library, while the GRLIB cores are compiled
into their respective VHDL libraries.

The following simulators are currently supported by GRLIB:

4.3.2 GRLIB_SIMULATOR environment variable

Some designs (including Xilinx 7-series designs and designs that use the Xilinx MIG or other compo-
nents that require installation of special libraries such as SecureIP or SIMPRIMS) require that exter-
nal tools are invoked in order to build the simulation libraries. In this case, the GRLIB infrastructure
must be made aware of which simulator that will be used. This is done by setting the
GRLIB_SIMULATOR variable. Table 3 lists allowed values for GRLIB_SIMULATOR.

The default value for GRLIB_SIMULATOR isXilinx.

TABLE 2. Supported simulators

Simulator Comments

GNU VHDL (GHDL) version 0.25, VHDL only

Aldec Active-HDL batch and GUI

Aldec Riviera batch and GUI

Mentor Modelsim version version 6.1e or later

Cadence NcSim IUS-5.8-sp3 and later

Synphony-EDA Sonata verison 3.1 or later, VHDL only

Xilinx ISIM ISE-13 or later

TABLE 3. GRLIB_SIMULATOR values

Value Comment

ALDEC Aldec Riviera Pro or Aldec ActiveHDL

ModelSim Mentor ModelSim SE or QuestaSim

ModelSim-PE ModelSim PE

ModelSim-SE Alias for ModelSim

Xilinx Xilinx XSim/ISim

AEROFLEX GAISLER 18 GRLIB

4.4 Synthesis and place&route

The make scripts command will scan the GRLIB files and generate compile and project files for all
supported synthesis tools. For this to work, a number of variables must be set in the local makefile:
TOP=leon3mp
TECHNOLOGY=virtex2
PART=xc2v3000
PACKAGE=fg676
SPEED=-4
VHDLSYNFILES=config.vhd ahbrom.vhd leon3mp.vhd
SDCFILE=
XSTOPT=-resource_sharing no
DEVICE=xc2v3000-fg676-4
UCF=default.ucf
EFFORT=std
BITGEN=default.ut

The TOP variable should be set to the top level entity name to be synthesized. TECHNOLOGY,
PART, PACKAGE and SPEED should indicate the target device parameters. VHDLSYNFILES
should be set to all local design files that should be used for synthesis. SDCFILE should be set to the
(optional) Synplify constraints file, while XSTOPT should indicate additional XST synthesis options.
The UCF variable should indicate the Xilinx constraint file, while QSF should indicate the Quartus
constraint file. The EFFORT variable indicates the Xilinx place&route effort and the BITGEN vari-
able defines the input script for Xilinx bitfile generation.

The technology related variables are often defined in a makefile include file in the board support pack-
ages under GRLIB/boards. When a supported board is targeted, the local makefile can include the
board include file to make the design more portable:
BOARD=gr-pci-xc2v
include $(GRLIB)/boards/$(BOARD)/Makefile.inc
SDCFILE=$(GRLIB)/boards/$(BOARD)/$(TOP).sdc
UCF=$(GRLIB)/boards/$(BOARD)/$(TOP).ucf
DEVICE=$(PART)-$(PACKAGE)-$(SPEED)

The following synthesis tools are currently supported by GRLIB:

Note that the batch targets for invoking the synthesis tools typically do not depend on the complete
file list. If one of the local design files is modified then the tool will typically be re-run on the whole
design. If a design file in a GRLIB library is modified then it may be necessary to run the command
‘make distclean’ to remove the currently generated files in order to resynthesize the full design using
the batch targets.

4.5 Skipping unused libraries, directories and files

GRLIB contains a large amount of files, and creating scripts and compiling models might take some
time. To speed up this process, it is possible to skip whole libraries, directories or individual files from
being included in the tool scripts. Skipping VHDL libraries is done by defining the constant LIBSKIP
in the Makefile of the current design, before the inclusion of the GRLIB global Makefile.

TABLE 4. Supported synthesis and place&route tools

Syntesis and place&route tool Recommended version

Actel Designer/Libero version 9.1, 10.1

Altera Quartus version 10, 12

Cadence RTLC version 6.1

Lattice Diamond version 1.3

Mentor Leonardo Precision 2011a.61 and later

Synopsys DC 2010.12

Synplify 2012.09

Xilinx ISE/XST version 13.2, 13.4, 14.5

Xilinx Vivado 2013.1

Xilinx PlanAhead version 14.5

AEROFLEX GAISLER 19 GRLIB

To skip a directory in a library, variable DIRSKIP should be used. All directories with the defined
names will be excluded when the tool scripts are built. In this way, cores which are not used in the
current design can be excluded from the scripts. To skip an individual file, the variable FILESKIP
should be set to the file(s) that should be skipped. Below is an example from the leon3-digilent-
xc3s1000 template design. All target technology libraries except unisim (Xilinx) are skipped, as well
as cores such as PCI, DDR and Spacewire. Care has to be taken to skip all dependent directories when
a library is skipped.

LIBSKIP = core1553bbc core1553brm core1553brt gr1553 corePCIF \

tmtc openchip micron hynix cypress ihp opencores spw

DIRSKIP = b1553 pcif leon2 leon2ft crypto satcan pci leon3ft ambatest \

spacewire ddr can usb ata

FILESKIP = grcan.vhd

include $(GRLIB)/bin/Makefile

By default, all technology cells and mapping wrappers are included in the scripts and later compiled.
To select only one or a sub-set of technologies, the variable TECHLIBS can be set in the makefile:
TECHLIBS = unisim

The table below shows which libraries should added to TECHLIBS for each supported technology.

Note that some technologies are not availble in the GPL version. Contact Aeroflex Gaisler for details.

TABLE 5. TECHLIB settings for various target technologies

Technology TECHLIBS defines

Xilinx (All) unisim

Altera Stratix-II altera altera_mf stratixii

Altera Cyclone-III altera altera_mf cycloneiii

Altera Stratix-III altera altera_mf stratixiii

Altera others altera altera_mf

Actel Axcelerator axcelerator

Actel Axcelerator DSP axcelerator

Actel Proasic3/e3/3l proasic3/proasic3e/proasic3l

Actel Fusion fusion

Lattice ec

Quicklogic eclipsee

Atmel ATC18 atc18 virage

Atmel ATC18RHA atc18rha_cell

eASIC 90 nm nextreme

eASIC 45 nm nextreme2

IHP 0.25 ihp25

IHP 0.25 RH sgb25vrh

Aeroflex 0.25 RH ut025crh

Aeroflex 0.13 RH ut130hbd

Ramon 0.18 RH rh_lib18t

UMC 0.18 um umc18

UMC 0.18 um DARE dare

TSMC 90 nm tsmc90

AEROFLEX GAISLER 20 GRLIB

4.6 Encrypted RTL

GRLIB supports encrypted script generation to include encrypted RTL files. The information in this
section is applicable if you have purchased GRLIB IP cores that are delivered as encrypted RTL. The
open source (GPL) release of GRLIB does not include any encrypted RTL.

There are several different solutions for IP protection available from the EDA vendors. Standardisa-
tion work is ongoing but at the time of writing it is not possible to generate one encrypted RTL file
that can be used with tools from all vendors. Because of this, encrypted RTL is delivered in several
versions. All versions contain the same RTL but in different containers to be used with a specific EDA
tool.

Currently the GRLIB script generation supports IP protection (encrypted RTL) for the following
tools:

Cadence tools supporting Cadence IP protection (proprietary and IEEE-P1735)

Mentor Graphics tools with support for IEEE-P1735 (ModelSim version 6.6+, latest Precision)

Synopsys Design Compiler with support for IEEE-P1735

Synopsys Synplify with support for IEEE-P1735

Xilinx ISE and Vivado

Please contact Aeroflex Gaisler to ensure that your EDA tools are capable of working with GRLIB
and encrypted RTL. Specify which tools you will use at the time of order when placing an order for IP
cores that are delivered as encrypted RTL.

The RTL source is not available for viewing and simulator views are restricted when using compo-
nents that are delivered as encrypted RTL.

AEROFLEX GAISLER 21 GRLIB

4.7 Tool-specific usage

4.7.1 GNU VHDL (GHDL)

GHDL is the GNU VHDL compiler/simulator, available from http://ghdl.free.fr/. It is used mainly on
linux hosts, although a port to windows/cygwin has recently been reported.

The complete GRLIB as well as the local design are compiled bymake ghdl. The simulation models
will be stored locally in a sub-directory (./gnu). A ghdl.path file will be created automatically, con-
taining the proper VHDL library mapping definitions. A sub-sequent invocation ofmake ghdl will re-
analyze any outdated files in the WORK library using a makefile created with ‘ghdl --gen-makefile’.
GRLIB files will not be re-analyzed without amake ghdl-clean first.

GHDL creates an executable with the name of the SIMTOP variable. Simulation is started by directly
executing the created binary:
$./testbench

TABLE 6. GHDL make targets

Make target Description

ghdl Compile or re-analyze local design

ghdl-clean Remove compiled models and temporary files

ghdl-run Run test bench in batchmode

TABLE 7. GHDL scripts and files

File Description

compile.ghdl Compile script for GRLIB files

make.ghdl Makefile to rebuild local design

gnu Directory with compiled models

SIMTOP Executable simulation model of test bench

AEROFLEX GAISLER 22 GRLIB

4.7.2 Cadence ncsim

The complete GRLIB as well as the local design are compiled and elaborated in batch mode bymake
ncsim . The simulation models will be stored locally in a sub-directory (./xncsim). A cds.lib file will
be created automatically, containing the proper VHDL library mapping definitions, as well as an
empty hdl.var. Simulation can then be started by usingmake ncsim-launch .

Figure 2. Ncsim graphical user interface

To rebuild the local design, runmake ncsim again. This will use the ncupdate utility to rebuild out-of-
date files. The tables below summarizes the make targets and the files creates by make scripts.

TABLE 8. Ncsim make targets

Make target Description

ncsim Compile or re-analyze GRLIB and local design

ncsim-clean Remove compiled models and temporary files

ncsim-launch Start modelsim GUI on current test bench

ncsim-run Run test bench in batchmode

TABLE 9. Ncsim scripts and files

File Description

compile.ncsim Compile script for GRLIB files

make.ncsim Makefile to rebuild GRLIB and local design

xncsim Directory with compiled models

AEROFLEX GAISLER 23 GRLIB

4.7.3 Mentor ModelSim

The complete GRLIB as well as the local design are compiled bymake vsim. The compiled simulation
models will be stored locally in a sub-directory (./modelsim). A modelsim.ini file will be created
automatically, containing the necessary VHDL library mapping definitions. Runningmake vsim again
will then use a vmake-generated makefile to check dependencies and rebuild out of date modules..

An other way to compile and simulate the library with modelsim is to use a modelsim project file.
When doingmake scripts, a modelsim project file is created. It is then possible to start vsim with this
project file and perform compilation within vsim. In this case, vsim should be started withmake vsim-
launch. In the vsim window, click on the build-all icon to compile the complete library and the local
design. The project file also includes one simulation configuration, which can be used to simulate the
test bench (see figure below).

Figure 3. Modelsim simulator window using a project file

TABLE 10. Modelsim make targets

Make target Description

vsim Compile or re-analyze local design

vsim-clean Remove compiled models and temporary files

vsim-launch Start modelsim GUI on current test bench

vsim-fix Run aftermake vsim to fix problems with make in CygWin

vsim-run Run test bench in batchmode

TABLE 11. Modelsim scripts and files

File Description

compile.vsim Compile script for GRLIB files

make.work Makefile to rebuild GRLIB and local design

modelsim Directory with compiled models

SIMTOP.mpf Modelsim project file for compilation and simulation

AEROFLEX GAISLER 24 GRLIB

4.7.4 Aldec Active-HDL

The Active-HDL tool from Aldec can be used in the standalone batch mode (vsimsa.bat) and in the
GUI mode (avhdl.exe, or started from Windows icon/menu).

The batch mode does not support waveforms and is generally not directly transferable to the GUI
mode. The batch mode uses ModelSim compatible command line names such asvlib andvcom. To
use the batch mode, one must ensure that these commands are visible in the shell to be used. Note that
the batch mode simulator requires a separate license from Active-HDL.

In batch mode, the completed GRLIB as well as the local design are compiled bymake vsimsa. The
compiled simulation models will be stored locally in a sub-directory (./activehdl). A vsimsa.cfg file
will be created automatically, containing the necessary VHDL library mapping definitions. The simu-
lation can then be started using the Active-HDLvsimsa.bator vsimcommand. The simulation can
also be started withmake vsimsa-run.

Another way to compile and simulate the library is with the Active-HDL GUI using atcl command
file. When doingmake avhdl, the tcl command file is automatically created for GRLIB and the local
design files. The file can then be executed within Active-HDL withdo avhdl.tcl, creating all necessary
libraries and compiling all files. The compiled simulation models will be stored locally in a sub-direc-
tory (./work). Note that only the local design files are directly accessible from the design browser
within Active-HDL. The compilation and simulation can also be started from the cygwin command
line with make avhdl-launch.

Note that it is not possible to use both batch and GUI mode in the same design directory.

TABLE 12. Active-HDL make targets

Make target Description

vsimsa Compile GRLIB and local design

vsimsa-clean Remove compiled models and temporary files

vsim-run Run test bench in batch mode (must be compiled first)

avhdl Setup GRLIB and local design

avhdl-clean Remove compiled models and temporary files

avhdl-launch Compile and Run test bench in GUI mode (must be setup first)

TABLE 13. Active-HDL scripts and files

File Description

compile.asim Compile script for GRLIB files (batch mode)

make.asim Compile script for GRLIB files and local design (batch mode)

activehdl Directory with compiled models (batch mode)

work Directory with compiled models (GUI mode)

avhdl.tcl Active-HDLtcl file for compilation and simulation (GUI mode)

AEROFLEX GAISLER 25 GRLIB

4.7.5 Aldec ALINT

The ALINT tool from Aldec can be used in the standalone batch mode and in the GUI mode.

TABLE 14. ALINT make targets

Make target Description

alint-comp Compilation time linting

alint-elab Compilation time linting followed by elaboration time linting

AEROFLEX GAISLER 26 GRLIB

4.7.6 Aldec Riviera

The Riviera tool from Aldec can be used in the standalone batch mode and in the GUI mode. The two
modes are compatible, using the same compiled database.

In both modes, the completed GRLIB as well as the local design are compiled bymake riviera. The
compiled simulation models will be stored locally in a sub-directory (./riviera). A vsimsa.cfg file will
be created automatically, containing the necessary VHDL library mapping definitions.

The standalone batch mode simulation can be started withmake riviera-run . The GUI mode simulation
can be started withmake riviera-launch.

TABLE 15. Riviera make targets

Make target Description

riviera Compile GRLIB and local design

riviera-clean Remove compiled models and temporary files

riviera-run Run test bench in batch mode (must be compiled first)

riviera-launch Run test bench in GUI mode (must be compiled first)

TABLE 16. Riviera scripts and files

File Description

riviera Directory with compiled models

riviera.do Rivera script file for simulation (GUI mode)

AEROFLEX GAISLER 27 GRLIB

4.7.7 Symphony-EDA Sonata

Note: GRLIB contains support for generating project files for Sonata and starting the tool. Sonata
support is provided as-is and is not kept up to date by Aeroflex Gaisler.

The complete GRLIB as well as the local design are compiled bymake sonata. The compiled simula-
tion models will be stored locally in a sub-directory (./sonata). A symphony.ini file will be created
automatically, containing the necessary VHDL library mapping definitions. To run the Sonata simula-
tor in GUI mode, domake sonata-launchor start Sonata using the crated sonata.sws project file. Sonata
can also be run in batch mode, withmake sonata-run. The VHDL work library will be mapped on
library ‘sonata’, as ‘work’ is reserved and cannot be used.

TABLE 17. Sonata make targets

Make target Description

sonata Compile GRLIB and local design

sonata-clean Remove compiled models and temporary files

sonata-run Compile GRLIB and run test bench in batch mode

sonata-launch Compiler GRLIb and run test bench in GUI mode

TABLE 18. Riviera scripts and files

File Description

sonata Directory with compiled models

symphony.ini Sonata library mapping for batch simulation

sonata.sws Sonata project file for GUI version

AEROFLEX GAISLER 28 GRLIB

4.7.8 Synthesis with Synplify

Themake scripts command will create a compile.synp file which contains Synplify tcl commands for
analyzing all GRLIB files and a synplify project file called TOP_synplify.prj, where TOP will be
replaced with the name of the top level entity.

Synthesizing the design in batch mode using the generated project file can be done in one step using
make synplify. All synthesis results will be stored locally in a sub-directory (./synplify). Running Syn-
plify in batch requires that it supports the -batch option (Synplify Professional). If the installed Syn-
plify version does not support -batch, first create the project file and then run Synplify interactively.
By default, the synplify executable is called ‘synplify_pro’. This can be changed by supplying the
SYNPLIFY variable to ‘make’:
make synplify SYNPLIFY=synplify_pro.exe

The synthesis script will set the following mapping option by default:
set_option -symbolic_fsm_compiler 0

set_option -resource_sharing 0

set_option -use_fsm_explorer 0

set_option -write_vhdl 1

set_option -disable_io_insertion 0

Additional options can be set through the SYNPOPT variable in the Makefile:
SYNPOPT="set_option -pipe 0; set_option -retiming 1”

Note that the Synplify tool does have some bugs, which can cause the generation of corrupt netlist for
large designs. Currently, the most stable version seems to be 8.9.

TABLE 19. Synplify make targets

Make target Description

synplify Synthesize design in batch mode

synplify-clean Remove compiled models and temporary files

synplify-launch Start synplify interactively using generated project file

TABLE 20. Synplify scripts and files

File Description

compile.synp Tcl compile script for all GRLIB files

TOP_synplify.prj Synplify project file

synplify Directory with netlist and log files

AEROFLEX GAISLER 29 GRLIB

4.7.9 Synthesis with Mentor Precision

Note: GRLIB contains support for generating project files for Precision and starting the tool. Preci-
sion support is provided as-is and is not tested with the latest versions by Aeroflex Gaisler.

Themake scriptscommand will create a TOP_precision.tcl file which contains tcl script to create a Pre-
cision project file. The project file (TOP_precision.psp) is created on the first invocation of Precision,
but can also be created manually withprecision -shell -file TOP_precision.tcl.

Synthesizing the design in batch mode can be done in one step usingmake precision. All synthesis
results will be stored locally in a sub-directory (./precision). Precision can also be run interactively by
issuingmake precision-launch. By default, the Precision executable is called with ‘precision’. This can
be changed by supplying the PRECISION variable to ‘make’:
make precision PRECISION=/usr/local/bin/precision

The environment variable PRECISIONOPT can be set in to pass arguments to Precision. For exam-
ple, to always start with RTL+ the following line can be added to the design Makefile:

PRECISIONOPT=-rtlplus

TABLE 21. Precision make targets

Make target Description

precision Synthesize design in batch mode

precision-clean Remove compiled models and temporary files

precision-launch Start Precision interactively using generated project file

TABLE 22. Precision scripts and files

File Description

TOP_precision.tcl Tcl compile script to create Precision project file

TOP_precision.psp Precision project file

precision Directory with netlist and log files

AEROFLEX GAISLER 30 GRLIB

4.7.10 Actel Designer

Actel Designer is used to place&route designs targeting Actel FPGAs. It does not include a synthesis
engine, and the design must first be synthesized with synplify.

Themake scripts command will generate a tcl script to perform place&route of the local design in
batch mode. The tcl script is named TOP_designer.tcl, where TOP is replaced with the name of the
top entity.

The commandmake actel will place&route the design using the created tcl script. The design data-
base will be place in actel/TOP.adb. The commandmake actel-launch will load the edif netlist of
the current design, and start Designer in interactive mode.

GRLIB includes a leon3 design template for the GR-CPCI-AX board from Pender/Gaisler. The tem-
plate design is located designs/leon3-gr-cpci-ax. The local design file uses board settings from the
boards/gr-cpci-ax directory. The leon3-gr-cpci-ax design can be used a template for other AX-based
projects.

GRLIB also includes a leon3 template design for the Actel CoreMP7 board (Proasic3-1000). It is
located in designs/leon3-actel-coremp7.

A template design can specify the variableDESIGNER_LAYOUT_OPTto override the switches
passed to thelayout command.

TABLE 23. Actel Designer make targets

Make target Description

actel Place&route design in batch mode

actel-clean Remove compiled models and temporary files

actel-launch Start Designer interactively using synplify netlist

actel-from Create FROM memory simulation (from.mem) and programming
(from.ufc) files from the input hex file (from.hex)

TABLE 24. Actel Designer scripts and files

File Description

TOP_designer.tcl Batch script for Actel Designer place&route

AEROFLEX GAISLER 31 GRLIB

4.7.11 Actel Libero

Actel Libero is an integrated design environment for implementing Actel FPGAs. It consists of Actel-
specific versions of Synplify and Modelsim, together with the Actel Designer back-end tool.

Using Libero to implement GRLIB designs is possible using Libero-8.1 and later versions. Themake
scripts command will create a Libero project file called TOP_libero.prj. Libero can then be started
with libero TOP_libero.prj , or by the commandmake libero-launch . Implementation of the
design is done using the normal Libero flow.

Note that when synplify is launched from Libero the first time, the constraints file defined in the local
Makefile is not included in the project, and must be added manually. Before simulation is started first
time, the file testbench.vhd in the template design should be associated as stimulify file.

TABLE 25. Libero make targets

Make target Description

scripts Created libero project file

libero-launch Create project file and launch libero

libero-from Create FROM memory simulation (from.mem) and programming
(from.ufc) files from the input hex file (from.hex)

TABLE 26. Libero scripts and files

File Description

TOP_libero.prj Libero project file

AEROFLEX GAISLER 32 GRLIB

4.7.12 Altera Quartus

Altera Quartus is used for Altera FPGA targets, and can be used to both synthesize and place&route a
design. It is also possible to first synthesize the design with synplify and then place&route with Quar-
tus.

Themake scripts command will generate two project files for Quartus, one for an EDIF flow where
a netlist has been created with synplify and one for a Quartus-only flow. The project files are named
TOP.qpf and TOP_synplify.qpf, where TOP is replaced with the name of the top entity.

The commandmake quartus will synthesize and place&route the design using a quartus-only flow in
batch mode. The commandmake quartus-synp will synthesize with synplify and run place&route
with Quartus. Interactive operation is achieved through the commandmake quartus-launch (quar-
tus-only flow), ormake quartus-launch-synp (EDIF flow). Quartus can also be started manually
with quartus TOP.qpf or quartus TOP_synplify.qpf .

TABLE 27. Altera Quartus make targets

Make target Description

quartus Synthesize and place&route design with Quartus in batch mode

quartus-clean Remove compiled models and temporary files

quartus-launch Start Quartus interactively using Quartus-only flow

quartus-launch-synp Start Quartus interactively using EDIF flow

quartus-map Synthesize design with Quartus in batch mode

quartus-synp Synthesize with synplify and place&route with Quartus in batch mode

quartus-prog-fpga Program FPGA in batch mode

TABLE 28. Altera Quartus scripts and files

File Description

TOP.qpf Project file for Quartus-only flow

TOP_synplify.qpf Project file for EDIF flow

AEROFLEX GAISLER 33 GRLIB

4.7.13 Xilinx ISE

Xilinx ISE is used for Xilinx FPGA targets, and can be used to simulate, synthesize and place&route
a design. It is also possible to first synthesize the design with synplify and the place&route with ISE.
It is generally recommended to use the latest version of ISE. Simulation of grlib template design
using ISIM is supported as of ISE-13.2. The simulator is launched from the project navigator GUI.

The make scripts command will create an XML project file (TOP.xise), useful with ISE-11 and
above. When executingmake ise-launch, this XML will be used to launch the ISE project manager.
Synthesis and place&route can also be run in batch mode (preferred option) usingmake isefor the
XST flow andmake ise-synp for synplify flow.

Many Xilinx FPGA boards are supported in GRLIB, and can be re-programmed usingmake ise-prog-
fpga andmake ise-prog-prom. The first command will only re-program the FPGA configuration, while
the second command will reprogram the configuration proms (if available). Programming will be
done using the ISE Impact tool in batch mode.

When simulating designs that depends on Xilinx macro cells (RAM, PLL, pads), a built-in version of
the Xilinx UNSIM simulation library will be used. The built-in library has reduced functionality, and
only contains the cells used in grlib. The full Xilinx UNISIM library can be installed using make
install-unisim. This will copy the UNISIM files from ISE into grlib. Amake distcleanmust first be
given before the libraries can be used. It is possible to revert to the built-in UNISIM libraries by issu-
ing make remove-unisim. To simulate designs using the Xilinx MIG memory controllers, the
secureIP library must first be installed usingmake install-secureip. The Xilinx UNIMACRO library
can also be installed/removed by usingmake install-unimacro andmake remove-unimacro.

Note: to install the Xilinx UNISIM/SeureIP/UNIMACRO files, the variable XILINX must point to
the installation path of ISE. The variable is normally set automatically during installation of ISE.

TABLE 29. Xilinx ISE make targets

Make target Description

ise Synthesize and place&route design with XST in batch mode

ise-prec Synthesize and place&route design with Precision in batch mode

ise-synp Synthesize and place&route design with Synplify in batch mode

ise-launch Start project navigator interactively using XST flow

ise-launch-synp Start project navigator interactively using EDIF flow

ise-map Synthesize design with XST in batch mode

ise-prog-fpga Program FPGA on target board using JTAG

ise-prog-fpga-ref Program FPGA on target board with reference bit file

ise-prog-prom Program configuartion proms on target board using JTAG

ise-prog-prom-ref Program configuartion proms with reference bit file

install-unisim Install Xilinx UNISIM libraries into grlib

remove-unisim Remove Xilinx UNISIM libraries from grlib

install-secureip Install Xilinx SecureIP files into grlib

remove-secureIP Remove Xilinx SecureIP files from grlib

install-unimacro Install Xilinx UNIMACRO files into grlib (requires install-unisim)

remove-unimacro Remove Xilinx UNIMACRO files from grlib

TABLE 30. Xilinx ISE scripts and files

File Description

compile.xst XST synthesis include script for all GRLIB files

TOP.xst XST synthesis script for local design

TOP.npl ISE 8 project file for XST flow

TOP.ise ISE 9/10project file for XST flow

AEROFLEX GAISLER 34 GRLIB

ISE project properties:

The ISE project file is automatically generated based on settings in the current design’s Makefile.
Variables such as device, speed grade and so on are defined in the template design’s Makefile, or
taken from the board directory specified in the template design’s Makefile. A few additional ISE prop-
erties can be set in the board or template design Makefile. If the variables are not assigned then a
default value will be used. Table 31 below lists the ISE project properties that can be overriden by
defining specific variables.

As an example, to change the default simulator used by the ISE project to ModelSim the following
definition can be added to the design’s Makefile:
GRLIB_XIL_PN_Simulator=Modelsim-SE VHDL

Old and deprecated ISE versions:

The make scripts command also generates .npl project files for the ISE-8 project navigator, for both
EDIF flow where a netlist has been created with synplify and for ISE/XST flow. The project navigator
can be launched withmake ise-launch-synpfor the EDIF flow, and withmake ise-launch8for the XST
flow. The project navigator can also be started manually withise TOP.npl or ise TOP_synplify.npl. The
.npl files are intended to be used with ISE 6 - 8.

For ISE-9 and ISE-10, an .ise file will be generated using xtclsh whenmake ise-launchis given, or
by make TOP.ise. Note that the Xilinx xtclsh application may operate very slowly.

TOP.xise ISE 11/12/13 XML project file for XST flow

TOP_synplify.npl ISE 8 project file for EDIF flow

TABLE 31. Xilinx ISE project properties that can be overriden

Property Default value Variable name

Pack I/O Registers/
Latches into IOBs

For Inputs and Outputs GRLIB_XIL_PN_Pack_Reg_Latches_into_IOBs

Simulator ISim VHDL/Verilog GRLIB_XIL_PN_Simulator

TABLE 30. Xilinx ISE scripts and files

File Description

AEROFLEX GAISLER 35 GRLIB

4.7.14 Xilinx PlanAhead

Xilinx PlanAhead is supported for Xilinx devices and prototype boards to improve runtime and per-
formance. The GRLIB enviroment allows the user to experiment with diffrent implementation options
to improve design results via runtime option specificed in$(GRLIB)/boards/$(BOARD)/Makefile.inc .
The Xilinx PlanAhead flow should be seen as an extension of GRLIB Xilinx ISE flow.

Themake scripts command will create compile scripts for the PlanAhead tool, useful with ISE-14
and above. When executingmake planAhead-launch, the compile scripts will be used to launch the
PlanAhead project manager. Synthesis and place&route can also be run in batch mode (preferred
option) usingmake planAhead.

Many Xilinx FPGA boards are supported in GRLIB, and can be re-programmed usingmake ise-prog-
fpga andmake ise-prog-prom. The first command will only re-program the FPGA configuration, while
the second command will reprogram the configuration proms (if available). Programming will be
done using the ISE Impact tool in batch mode.

TABLE 32. Xilinx PlanAhead specific make targets

Make target Description

planAhead Synthesize and place&route design with PlanAhead in batch mode

planAhead-launch Start project navigator interactively using planAhead flow

planAhead-clean Remove all planAhead generated project files

TABLE 33. Xilinx PlanAhead scripts and files

File Description

compile.planAhead PlanAhead synthesis include script for all GRLIB files

planAhead.tcl PlanAhead script for creating a PlanAhead project and to build the
project.

AEROFLEX GAISLER 36 GRLIB

4.7.15 Xilinx Vivado

Xilinx Vivado is the build flow for Xilinx 7 series devices and prototype boards . The GRLIB enviro-
ment allows the user to experiment with diffrent implementation options to improve design results via
runtime option specificed in$(GRLIB)/boards/$(BOARD)/Makefile.inc .

The make scripts command will create compile scripts for the Vivado tool, useful with ISE-14.2
and above. When executingmake vivado-launch, the compile scripts will be used to launch the
Vivado project manager. Synthesis and place&route can also be run in batch mode (preferred option)
usingmake vivado.

Many Xilinx FPGA boards are supported in GRLIB, and can be re-programmed usingmake ise-prog-
fpga andmake ise-prog-prom. The first command will only re-program the FPGA configuration, while
the second command will reprogram the configuration proms (if available). Programming will be
done using the ISE Impact tool in batch mode.

TABLE 34. Xilinx Vivado specific make targets

Make target Description

vivado Synthesize and place&route design with Vivado in batch mode

vivado-launch Start project navigator interactively using Vivado flow

vivado-clean Remove all Vivado generated project files

vivado-prog-fpga Optional program target for faster programming of the FPGA Device.
This target needs Xilinx EDK/SDK to be installed.

TABLE 35. Xilinx Vivado scripts and files

File Description

compile.vivado Vivado synthesis include script for all GRLIB files

vivado.tcl Vivado script for creating a PlanAhead project and to build the project.

AEROFLEX GAISLER 37 GRLIB

4.7.16 Lattice ISP Tools

Note: GRLIB contains support for generating project files for Lattice ISP and starting the tool. Lattice
ISP support is provided as-is and is not kept up to date by Aeroflex Gaisler.

Implementing GRLIB design on Lattice FPGAs is supported with Synplify for synthesis and the Lat-
tice ISP Lever for place&route. Themake isp-synp commmand will automatically synthesize and
place&route a Lattice design. The associated place&route script is provided in bin/route_lattice, and
can be modified if necessary. Supported FPGA families are EC and ECP. On linux, it might be neces-
sary to source the ISP setup script in order to set up necessary paths:

source $ISPLEVER_PATH/ispcpld/bin/setup_lv.sh

TABLE 36. Lattice ISP make targets

Make target Description

isp-synp Synthesize and place&route design with Sunplify in batch mode

isp-clean Remove compiled models and temporary files

isp-prom Create FPGA prom

AEROFLEX GAISLER 38 GRLIB

4.7.17 Synthesis with Synopsys Design Compiler

The make scripts command will create a compile.dc file which contains Design Compiler commands
for analyzing all GRLIB files. The compile.dc file can be run manually using ‘dc_shell -f compile.dc’.
A script for the local design is created automatically and calledTOP_dc.tclwhereTOP is the top
entity name:

$ cat leon4mp_dc.tcl

sh mkdir synopsys

set objects synopsys

#set trans_dc_max_depth 1

#set hdlin_seqmap_sync_search_depth 1

#set hdlin_nba_rewrite false

set hdlin_ff_always_sync_set_reset true

set hdlin_ff_always_async_set_reset false

#set hdlin_infer_complex_set_reset true

#set hdlin_translate_off_skip_text true

set suppress_errors VHDL-2285

#set hdlin_use_carry_in true

source compile.dc

analyze -f VHDL -library work config.vhd

analyze -f VHDL -library work ahbrom.vhd

analyze -f VHDL -library work clkgate.vhd

analyze -f VHDL -library work qmod.vhd

analyze -f VHDL -library work qmod_prect.vhd

analyze -f VHDL -library work leon4mp.vhd

elaborate leon4mp

The script can be run with dc_shell-xg-t via the commandmake dc. The created script will analyze and
elaborate the local design. Compilation and mapping will not be performed, the script should be seen
as a template only.

4.7.18 Synthesis with Cadence RTL Compiler

Note: GRLIB contains support for generating project files for RTL Compiler and starting the tool.
RTL Compiler support is provided as-is and is not tested with the latest versions by Aeroflex Gaisler.

Themake scripts command will create a compile.rc file which contains RTL Compiler commands for
analyzing all GRLIB files. The compile.rc file can be run manually usingrc -files compile.rc or through
make rc. A script to analyze and synthesize the local design is created automatically and called TOP.rc
where TOP is the top entity name:
$ cat netcard.rc

set_attribute input_pragma_keyword "cadence synopsys g2c fast ambit pragma"

include compile.rc

read_hdl -vhdl -lib work netcard.vhd

elaborate netcard

write_hdl -generic > netcard_gen.v

The created script will analyze and elaborate the local design, and save it to a Verilog file. Compila-
tion and mapping will not be performed, the script should be seen as a template only.

AEROFLEX GAISLER 39 GRLIB

4.7.19 eASIC eTools

GRLIB support for eTools with eASIC Nextreme technology was discontinued in GRLIB version
1.1.0-b4109.

Support for the Nextreme2 technology and eTools 9 can be requested from Aeroflex Gaisler but is not
included in any of the default GRLIB distributions. To work with eTools 9 the environment variable
ETOOLS_N2X_HOME must be set to the eTools installation directory.

The GRLIB technology map for eASIC Nextreme2 makes extensive use of eASIC’s RAM and pad
generators, and also of wrappers for the DDR2 PHY. When eASIC’s IP library has been imported into
GRLIB (via theimport-easic-n2xmake target), the normal technology map components (pads, mem-
ory, DDR2 PHY) can be used.

The GRLIB SYNCRAM* components map to both rFiles and bRAMs. The conditions for selecting
between these RAM types may need to be adjusted for each design in order to not over-utilize one or
the other. The selection between rFiles and bRAMs is made with the functionn2x_use_rfile(..)that is
defined in the filelib/techmap/nextreme2/memory_n2x_package.vhd.

The technology map also includes a clock generator map for eASIC PLLs. However it is strongly rec-
ommended to use eASIC’s IP generators instead and directly instantiate the Nextreme2 PLLs in the
design.

TABLE 37. eASIC Nextreme2 make targets

Make target Description

import-easic-n2x Imports eASIC RTL and IP libraries from eTools into GRLIB.
Requires that the environment variable.

remove-easic-n2x Removes eASIC RTL and IP libraries from GRLIB.

etools-n2x-init Creates a eTools project file. Makes use of the environment vari-
ables TOP, DEVICE, PACKAGE, PNC, SDCFILE, and
GRLIB_NHCPU. The last variable defines the number of avail-
able host CPUs.

etools-n2x-launch Launch eTools DesignNavigator for the current project

etools-n2x-launch-no_iu LauncheTools DesignNavigator for the current project in CLI
mode.

AEROFLEX GAISLER 40 GRLIB

4.8 XGrlib graphical implementation tool

4.8.1 Introduction

NOTE: Some template designs require commands to be issued to install special libraries or to gener-
ate parts of the design. These special commands are not available in XGrlib and must instead be given
via the command line interface.

XGrlib serves as a graphical front-end to the makefile system described in the previous chapters. It is
written in tcl/tk, using the Visual-tcl (vtcl) GUI builder. XGrlib allows to select which CAD tools will
be used to implement the current design, and how to run them. XGrlib should be started in a directory
with a GRLIB design, usingmake xgrlib . Other make variables can also be set on the command line,
as described earlier:
make xgrlib SYNPLIFY=synplify_pro GRLIB=”../..”

Since XGrlib uses the make utility, it is necessary that all used tools are in the execution path of the
used shell. The tools are divided into three categories: simulation, synthesis and place&route. All
tools can be run in batch mode with the output directed to the XGrlib console, or launched interac-
tively through each tool’s specific GUI. Below is a figure of the XGrlib main window:

Figure 4. XGrlib main window

4.8.2 Simulation

The simulator type can be selected through the left menu button in the frame marked ‘Simulation’.
There are seven options available: modelsim, ncsim, GHDL, libero, riviera, active-hdl, and active-hdl
batch. Once the simulator has been selected, the design can be compiled by pressing the green ‘Build’
button. The simulator can then be launched interactively by pressing the ‘Run’ button. If the ‘Batch’
check-button has been set, the ‘Run’ button will run the default test bench in batch mode with the out-
put displayed in the console frame. The ‘Clean’ button will remove all generated file for the selected
tool.

Note: on windows/cygwin platforms, launching modelsim interactively can fail due to conflict of cyg-
win and modelsim tcl/tk libraries.

AEROFLEX GAISLER 41 GRLIB

4.8.3 Synthesis

The synthesis tool is selected through the menu button in the frame labeled with ‘Synthesis’. There
are five possibilities: Synplify, Altera Quartus, Xilinx ISE/XST, Mentor Precision and Actel Libero.
The ‘Batch’ check-button defines if synthesis will be run in batch mode or if the selected tool will be
launched interactively. The selected tool is started through the ‘Run’ button.

If a tool is started interactively, is automatically loads a tool-specific project file for the current design.
It is then possible to modify the settings for the project before synthesis is started. Only one tool
should be started at a time to avoid I/O conflicts. The ‘Clean’ button in the ‘Synthesis’ frame will
remove all generated file for the selected synthesis tool.

Note that the Libero tool actually performs both simulation, synthesis and place&route. I has been
added to the ‘Synthesis’ menu for convenience.

4.8.4 Place & Route

Place & route is supported for three FPGA tool-chains: Actel Designer, Altera Quartus and Xilinx
ISE. Selecting the tool-chain is done through the menu button in the frame labeled ‘Place & Route’.
Again, the ‘Batch’ check-button controls if the tool-chain will be launched interactively or run in
batch mode. Note that the selection of synthesis tool affects on how place&route is performed. For
instance: if synplify has been selected for synthesis and the Xilinx ISE tool is launched, it will use a
project file where the edif netlist from synplify is referenced. If the XST synthesis tool has been
selected instead, the .ngc netlist from XST would have been used.

The ‘Clean’ button in the ‘Place&Route’ frame will remove all generated file for the selected
place&route tool.

4.8.5 Additional functions

Cleaning

The ‘Clean’ button in each of the three tool frames will remove all generated files for selected tool.
This make it possible to for instance clean and rebuild a simulation model without simultaneously
removing a generated netlist. Generated files for all tools will be removed when the ‘clean all’ button
is pressed. This will however not removed compile scripts and project files. To remove these as well,
use the ‘distclean’ button.

Generating compile scripts

The compile scripts and project files are normally automatically generated by the make utility when
needed by a tool. They can also be created directly through the ‘scripts’ button.

Xconfig

If the local design is configured through xconfig (leon3 systems), the xconfig tool can be launched by
pressing the ‘xconfig’ button. The configuration file (config.vhd) is automatically generated if xconfig
is exited by saving the new configuration.

FPGA prom programming

The button ‘PROM prog’ will generate FPGA prom files for the current board, and program the con-
figuration proms using JTAG. This is currently only supported on Xilinx-based boards. The configu-
ration prom must be reloaded by the FPGA for the new configuration to take effect. Some boards has
a special reload button, while others must be power-cycled.

AEROFLEX GAISLER 42 GRLIB

5 GRLIB Design concept

5.1 Introduction

GRLIB is a collection of reusable IP cores, divided on multiple VHDL libraries. Each library pro-
vides components from a particular vendor, or a specific set of shared functions or interfaces. Data
structures and component declarations to be used in a GRLIB-based design are exported through
library specific VHDL packages.

GRLIB is based on the AMBA AHB and APB on-chip buses, which is used as the standard intercon-
nect interface. The implementation of the AHB/APB buses is compliant with the AMBA-2.0 specifi-
cation, with additional ‘sideband’ signals for automatic address decoding, interrupt steering and
device identification (a.k.a. plug&play support). The AHB and APB signals are grouped according to
functionality into VHDL records, declared in the GRLIB VHDL library. The GRLIB AMBA package
source files are located in lib/grlib/amba.

All GRLIB cores use the same data structures to declare the AMBA interfaces, and can then easily be
connected together. An AHB bus controller and an AHB/APB bridge are also available in the GRLIB
library, and allows to assemble quickly a full AHB/APB system.

The following sections will describe how the AMBA buses are implemented and how to develop a
SOC design using GRLIB.

5.2 AMBA AHB on-chip bus

5.2.1 General

The AMBA Advanced High-performance Bus (AHB) is a multi-master bus suitable to interconnect
units that are capable of high data rates, and/or variable latency. A conceptual view is provided in fig-
ure 5. The attached units are divided into master and slaves, and controlled by a global bus arbiter.

Figure 5.AMBA AHB conceptual view

Since the AHB bus is multiplexed (no tristate signals), a more correct view of the bus and the attached
units can be seen in figure 6. Each master drives a set of signals grouped into a VHDL record called
ahbmo. The output record of the current bus master is selected by the bus multiplexers and sent to the
input record (ahbsi) of all AHB slaves. The output record (ahbso) of the active slave is selected by the
bus multiplexer and forwarded to all masters. A combined bus arbiter, address decoder and bus multi-
plexer controls which master and slave are currently selected.

MASTER 1 MASTER 2 MASTER 3

BUS
CONTROL

SLAVE 1 SLAVE 2

AEROFLEX GAISLER 43 GRLIB

Figure 6.AHB inter-connection view

5.2.2 AHB master interface

The AHB master inputs and outputs are defined as VHDL record types, and are exported through the
AMBA package in the GRLIB library:
-- AHB master inputs
 type ahb_mst_in_type is record
 hgrant : std_logic_vector(0 to NAHBMST-1); -- bus grant
 hready : std_ulogic; -- transfer done
 hresp : std_logic_vector(1 downto 0); -- response type
 hrdata : std_logic_vector(31 downto 0); -- read data bus
 hirq : std_logic_vector(NAHBIRQ-1 downto 0); -- interrupt result bus
 end record;

-- AHB master outputs
type ahb_mst_out_type is record
 hbusreq : std_ulogic; -- bus request
 hlock : std_ulogic; -- lock request
 htrans : std_logic_vector(1 downto 0); -- transfer type
 haddr : std_logic_vector(31 downto 0); -- address bus (byte)
 hwrite : std_ulogic; -- read/write
 hsize : std_logic_vector(2 downto 0); -- transfer size
 hburst : std_logic_vector(2 downto 0); -- burst type
 hprot : std_logic_vector(3 downto 0); -- protection control
 hwdata : std_logic_vector(31 downto 0); -- write data bus
 hirq : std_logic_vector(NAHBIRQ-1 downto 0);-- interrupt bus
 hconfig : ahb_config_type; -- memory access reg.
 hindex : integer range 0 to NAHBMST-1; -- diagnostic use only
 end record;

The elements in the record types correspond to the AHB master signals as defined in the AMBA 2.0
specification, with the addition of three sideband signals: HIRQ, HCONFIG and HINDEX. A typical
AHB master in GRLIB has the following definition:

library grlib;
use grlib.amba.all;
library ieee;
use ieee.std_logic.all;

entity ahbmaster is

MASTER 1

MASTER 2

MASTER 3

ahbmo(1)

ahbmi

SLAVE 1

SLAVE 2 ahbso(2)

ahbso(1)ahbmo(2)

ahbmo(3)

BUS ARBITER,
MULTIPLEXER,

& DECODER

ahbsi

AEROFLEX GAISLER 44 GRLIB

 generic (
 hindex : integer := 0); -- master bus index
 port (
 reset : in std_ulogic;
 clk : in std_ulogic;
 ahbmi : in ahb_mst_in_type; -- AHB master inputs
 ahbmo : out ahb_mst_out_type -- AHB master outputs
);
end entity;

The input record (AHBMI) is routed to all masters, and includes the bus grant signals for all masters
in the vector AHBMI.HGRANT. An AHB master must therefore use a generic that specifies which
HGRANT element to use. This generic is of type integer, and typically called HINDEX (see example
above).

5.2.3 AHB slave interface

Similar to the AHB master interface, the inputs and outputs of AHB slaves are defined as two VHDL
records types:

-- AHB slave inputs
 type ahb_slv_in_type is record
 hsel : std_logic_vector(0 to NAHBSLV-1); -- slave select
 haddr : std_logic_vector(31 downto 0); -- address bus (byte)
 hwrite : std_ulogic; -- read/write
 htrans : std_logic_vector(1 downto 0); -- transfer type
 hsize : std_logic_vector(2 downto 0); -- transfer size
 hburst : std_logic_vector(2 downto 0); -- burst type
 hwdata : std_logic_vector(31 downto 0); -- write data bus
 hprot : std_logic_vector(3 downto 0); -- protection control
 hready : std_ulogic; -- transfer done
 hmaster : std_logic_vector(3 downto 0); -- current master
 hmastlock : std_ulogic; -- locked access
 hbsel : std_logic_vector(0 to NAHBCFG-1); -- bank select
hirq : std_logic_vector(NAHBIRQ-1 downto 0); -- interrupt result bus
 end record;

-- AHB slave outputs
type ahb_slv_out_type is record

 hready : std_ulogic; -- transfer done
 hresp : std_logic_vector(1 downto 0); -- response type
 hrdata : std_logic_vector(31 downto 0); -- read data bus
 hsplit : std_logic_vector(15 downto 0); -- split completion
 hirq : std_logic_vector(NAHBIRQ-1 downto 0); -- interrupt bus
 hconfig : ahb_config_type; -- memory access reg.
 hindex : integer range 0 to NAHBSLV-1; -- diagnostic use only
 end record;

The elements in the record types correspond to the AHB slaves signals as defined in the AMBA 2.0
specification, with the addition of four sideband signals: HSEL, HIRQ, HCONFIG and HINDEX. A
typical AHB slave in GRLIB has the following definition:
library grlib;
use grlib.amba.all;
library ieee;
use ieee.std_logic.all;

entity ahbslave is
 generic (
 hindex : integer := 0); -- slave bus index
 port (
 reset : in std_ulogic;
 clk : in std_ulogic;
 abhsi : in ahb_slv_in_type; -- AHB slave inputs
 ahbso : out ahb_slv_out_type -- AHB slave outputs
);
end entity;

The input record (ahbsi) is routed to all slaves, and include the select signals for all slaves in the vec-
tor ahbsi.hsel. An AHB slave must therefore use a generic that specifies which hsel element to use.
This generic is of type integer, and typically called HINDEX (see example above).

5.2.4 AHB bus control

GRLIB AMBA package provides a combined AHB bus arbiter (AHBCTRL), address decoder and
bus multiplexer. It receives the ahbmo and ahbso records from the AHB units, and generates ahbmi
and ahbsi as indicated in figure 6. The bus arbitration function will generate which of the
ahbmi.hgrant elements will be driven to indicate the next bus master. The address decoding function

AEROFLEX GAISLER 45 GRLIB

will drive one of the ahbsi.hsel elements to indicate the selected slave. The bus multiplexer function
will select which master will drive the ahbsi signal, and which slave will drive the ahbmo signal.

5.2.5 AHB bus index control

The AHB master and slave output records contain the sideband signal HINDEX. This signal is used to
verify that the master or slave is driving the correct element of the ahbso/ahbmo buses. The generic
HINDEX that is used to select the appropriate hgrant and hsel is driven back on ahbmo.hindex and
ahbso.hindex. The AHB controller then checks that the value of the received HINDEX is equal to the
bus index. An error is issued dunring simulation if a missmatch is detected.

5.2.6 Support for wide AHB data buses

5.2.6.1 Overview

The cores in GRLIB and the GRLIB infrastructure can be configured to support an AMBA AHB data
bus width of 32, 64, 128, or 256 bits. The default AHB bus width is 32 bits and AHB buses with data
vectors having widths over 32 bits will in this section be referred to as wide AHB buses.

Changing the AHB bus width can increase performance, but may also increase the area requirements
of a design, depending on the synthesis tool used and the type of cores instantiated. Manual modifica-
tion of the GRLIB CONFIG package is required to enable support for wide AHB buses. Alternatively,
a local version of the GRLIB CONFIG package can be placed in the current template design, overrid-
ing the settings in the global GRLIB CONFIG package.

When modifying the system's bus width, care should be taken to verify that all cores have been instan-
tiated with the correct options with regards to support for wide buses.

Note that the APB bus in GRLIB will always be 32-bits, regardless of the AHB data bus width.

5.2.6.2 Implementation of support for wide AHB buses

To support wide buses, the AHB VHDL records that specify the GRLIB AMBA AHB interface have
their data vector lengths defined by a constant, CFG_AHBDW, defined in the GRLIB CONFIG
VHDL package.

Using a wide AHB bus places additional requirements on the cores in a design; The cores should
drive the extra positions in the AHB data vector in order to minimize the amount of undriven signals
in the design, and to allow synthesis tool optimisations for cores that do not support AMBA accesses
larger than word accesses. The cores are also required to select and drive the applicable byte lanes,
depending on access size and address.

In order to minimize the amount of undriven signals, all GRLIB AHB cores drive their AHB data vec-
tor outputs via a subprogram,ahbdrivedata(..), defined in the GRLIB AMBA VHDL package. The
subprogram replicates its input so that the whole AHB data vector is driven. Since data is present on
all byte lanes, the use of this function also ensures that data will be present on the correct byte lanes.

The AMBA 2.0 Specification requires that cores select their data from the correct byte lane. For
instance, when performing a 32-bit access in a system with a 64-bit wide bus, valid data will be on
positions 63:32 of the data bus if bit 2 of the address is 0, otherwise the valid data will be on positions
31:0. In order to ease adding support for variable buses, the GRLIB AMBA VHDL package includes
subprograms,ahbread*(...), for reading the AMBA AHB data vectors, hereafter referred to as AHB
read subprograms. These subprograms exists in two variants; The first variant takes an address argu-
ment so that the subprogram is able to select the valid byte lanes of the data vector. This functionality
is not always enabled, as will be explained below. The second variant does not require the address
argument, and always returns the low slice of the AHB data vector.

Currently the majority of the GRLIB AHB cores use the functions without the address argument, and
therefore the cores are only able to read the low part of the data vector. The cores that only read the
low part of the AHB data vector are not fully AMBA 2.0 compatible with regard to wide buses. How-
ever, this does not affect the use of a wide AHB bus in a GRLIB system, since all GRLIB cores places
valid data on the full AHB data vector. As adoption of wide buses become more widespread, the cores
will be updated so that they are able to select the correct byte lanes.

The GRLIB AHB controller core, AHBCTRL, is a central piece of the bus infrastructure. The AHB
controller includes a multiplexer of the width defined by the AMBA VHDL package constant
AHBDW. The core also has a generic that decides if the controller should perform additional AMBA
data multiplexing. Data multiplexing is discussed in the next section.

AEROFLEX GAISLER 46 GRLIB

5.2.6.3 AMBA AHB data multiplexing

Almost all GRLIB cores drive valid data on all lanes of the data bus, some exceptions exist, such as
the cores in the AMBA Test Framework). Since theahbdrivedata(..)subprogram duplicates all data
onto the wider bus, all cores will be compliant to the AMBA standard with regards to placing valid
data on the correct lane in the AHB data vector.

As long as there are only GRLIB cores in a design, the cores can support wide AHB buses by only
reading the low slice of the AHB data vectors, which is the case for most cores, as explained in the
section above. However, if a core that only drives the required part of the data vector is introduced in
a design there is a need for support to allow the GRLIB cores to select the valid part of the data.

The current implementation has two ways of accomplishing this:

Set the ACDM generic of AHBCTRL to 1. When this option is enabled the AHB controller will check
the size and address of each access and propagate the valid part of the data on the entire AHB data bus
bus. The smallest portion of the slice to select and duplicate is 32-bits. This means that valid data for
a a byte or halfword access will not be present on all byte lanes, however the data will be present on
all the required byte lanes.

Set the CFG_AHB_ACDM constant to 1 in the GRLIB CONFIG VHDL package. This will make the
AHB read subprograms look at the address and select the correct slice of the incoming data vector. If
a core uses one of the AHB read subprograms that does not have the address argument there will be a
failure asserted. If CFG_AHB_ACDM is 0, the AHB read subprograms will return the low slice of the
data vector. With CFG_AHB_ACDM set to 1, a core that uses the subprograms with the correct
address argument will be fully AMBA compliant and can be used in non-GRLIB environments with
bus widths exceeding 32 bits.

Note that it is unnecessary to enable both of these options in the same system.

5.2.6.4 Modified cores

Several cores in the IP library make use of the wide buses, see the core documentation in the GRLIB
IP Cores User’s Manual to determine the state of wide bus support for specific cores. All cores in
GRLIB can be used in a system with wide AHB buses, however they do not all exploit the advantages
of a wider bus.

5.2.6.5 GRLIB CONFIG Package

The GRLIB configuration package contains a constant the controls the maximum allowed AHB bus
width in the system, see section 5.6.

5.2.6.6 Issues with wide AHB buses

A memory controller may not be able to respond all access sizes. With the current scheme the user of
the system must keep track of which areas that can be accessed with accesses larger then word
accesses. For instance, if SVGACTRL is configured to use 4WORD accesses and the designs has a
DDR2SPA core and a MCTRL core in the system, the SVGACTRL will only receive correct data if
the framebuffer is placed in the DDR2 memory area.

Special care must be taken when using wide buses so that the core specific settings for wider buses
matches the intended use for the cores. Most cores are implemented so that they include support for
handling access sizes up to AHBDW.

AEROFLEX GAISLER 47 GRLIB

5.3 AHB plug&play configuration

5.3.1 General

The GRLIB implementation of the AHB bus includes a mechanism to provide plug&play support.
The plug&play support consists of three parts: identification of attached units (masters and slaves),
address mapping of slaves, and interrupt routing. The plug&play information for each AHB unit con-
sists of a configuration record containing eight 32-bit words. The first word is called the identification
register and contains information on the device type and interrupt routing. The last four words are
called bank address registers, and contain address mapping information for AHB slaves. The remain-
ing three words are currently not assigned and could be used to provide core-specific configuration
information.

Figure 7.AHB plug&play configuration layout

The plug&play information for all attached AHB units appear as a read-only table mapped on a fixed
address of the AHB, typically at 0xFFFFF000. The configuration records of the AHB masters appear
in 0xFFFFF000 - 0xFFFFF800, while the configuration records for the slaves appear in 0xFFFFF800
- 0xFFFFFFFC. Since each record is 8 words (32 bytes), the table has space for 64 masters and 64
slaves. A plug&play operating system (or any other application) can scan the configuration table and
automatically detect which units are present on the AHB bus, how they are configured, and where
they are located (slaves).

The top four words of the plug&play area (0xFFFFFFF0 - 0xFFFFFFFF) may contain device specific
information such as GRLIB build ID and a (SoC) device ID. If present, this information shadows the
bank address registers of the last slave record, limiting the number of slaves on one bus to 63. All sys-
tems that use the GRLIB AHB controller have the library’s build ID in the most siginificant half-
word, and a (SoC) device ID in the least signifcant half-word, of the word at address 0xFFFFFFF0.
The contents of the top four words is described in the AHB controller’s IP core manual.

The configuration record from each AHB unit is sent to the AHB bus controller via the HCONFIG
signal. The bus controller creates the configuration table automatically, and creates a read-only mem-
ory area at the desired address (default 0xFFFFF000). Since the configuration information is fixed, it
can be efficiently implemented as a small ROM or with relatively few gates. A debug module (ahbre-
port) in the WORK.DEBUG package can be used to print the configuration table to the console dur-
ing simulation, which is useful for debugging. A typical example is provided below:

VENDOR ID DEVICE ID VERSION IRQ

31 24 23 12 11 5 4 0

31 20 19 16 15 4 3 0

Identification Register 00

10 9

HADDR P MASK TYPEC0 0ADDR P MASK TYPEC0 0

ADDR P MASK TYPEC0 0

ADDR P MASK TYPEC0 0

ADDR P MASK TYPEC0 0

Bank Address Registers

USER-DEFINED

USER-DEFINED

USER-DEFINED

00

04

08

10

14

18

1C

0C

18 17

BAR0

BAR1

BAR2

BAR3

C = Cacheable

P = Prefetchable TYPE

0010 = AHB Memory space

0011 = AHB I/O space

0001 = APB I/O space

AEROFLEX GAISLER 48 GRLIB

VSIM 1> run
.
.
LEON3 Actel PROASIC3-1000 Demonstration design
GRLIB Version 1.0.16, build 2460
Target technology: proasic3 , memory library: proasic3
ahbctrl: AHB arbiter/multiplexer rev 1
ahbctrl: Common I/O area disabled
ahbctrl: AHB masters: 2, AHB slaves: 8
ahbctrl: Configuration area at 0xfffff000, 4 kbyte
ahbctrl: mst0: Gaisler Research Leon3 SPARC V8 Processor
ahbctrl: mst1: Gaisler Research AHB Debug UART
ahbctrl: slv0: European Space Agency Leon2 Memory Controller
ahbctrl: memory at 0x00000000, size 512 Mbyte, cacheable, prefetch
ahbctrl: memory at 0x20000000, size 512 Mbyte
ahbctrl: memory at 0x40000000, size 1024 Mbyte, cacheable, prefetch
ahbctrl: slv1: Gaisler Research AHB/APB Bridge
ahbctrl: memory at 0x80000000, size 1 Mbyte
ahbctrl: slv2: Gaisler Research Leon3 Debug Support Unit
ahbctrl: memory at 0x90000000, size 256 Mbyte
apbctrl: APB Bridge at 0x80000000 rev 1
apbctrl: slv0: European Space Agency Leon2 Memory Controller
apbctrl: I/O ports at 0x80000000, size 256 byte
apbctrl: slv1: Gaisler Research Generic UART
apbctrl: I/O ports at 0x80000100, size 256 byte
apbctrl: slv2: Gaisler Research Multi-processor Interrupt Ctrl.
apbctrl: I/O ports at 0x80000200, size 256 byte
apbctrl: slv3: Gaisler Research Modular Timer Unit
apbctrl: I/O ports at 0x80000300, size 256 byte
apbctrl: slv7: Gaisler Research AHB Debug UART
apbctrl: I/O ports at 0x80000700, size 256 byte
apbctrl: slv11: Gaisler Research General Purpose I/O port
apbctrl: I/O ports at 0x80000b00, size 256 byte
grgpio11: 8-bit GPIO Unit rev 0
gptimer3: GR Timer Unit rev 0, 8-bit scaler, 2 32-bit timers, irq 8
irqmp: Multi-processor Interrupt Controller rev 3, #cpu 1
apbuart1: Generic UART rev 1, fifo 1, irq 2
ahbuart7: AHB Debug UART rev 0
dsu3_2: LEON3 Debug support unit + AHB Trace Buffer, 1 kbytes
leon3_0: LEON3 SPARC V8 processor rev 0
leon3_0: icache 1*2 kbyte, dcache 1*2 kbyte

5.3.2 Device identification

The Identification Register contains three fields to identify uniquely an attached AHB unit: the vendor
ID, the device ID, and the version number. The vendor ID is a unique number assigned to an IP ven-
dor or organization. The device ID is a unique number assigned by a vendor to a specific IP core. The
device ID is not related to the core’s functionality. The version number can be used to identify (func-
tionally) different versions of the unit.

The vendor IDs are declared in a package in each vendor library, usually called DEVICES. Vendor
IDs are provided by Aeroflex Gaisler. The following ID’s are currently assigned:

Vendor ID

Gaisler Research 0x01

Pender Electronic Design 0x02

European Space Agency 0x04

Astrium EADS 0x06

OpenChip.org 0x07

OpenCores.org 0x08

DLR 0x0A

Eonic BV 0x0B

Telecom ParisTech 0x0C

Radionor 0x0F

Gleichmann Electronics 0x10

TABLE 38. Vendor ID assignment

AEROFLEX GAISLER 49 GRLIB

Vendor ID 0x00 is reserved to indicate that no core is present. Unused slots in the configuration table
will have Identification Register set to 0.

5.3.3 Address decoding

The address mapping of AHB slaves in GRLIB is designed to be distributed, i.e. not rely on a shared
static address decoder which must be modified as soon as a slave is added or removed. The GRLIB
AHB bus controller, which implements the address decoder, will use the configuration information
received from the slaves on HCONFIG to automatically generate the slave select signals (HSEL).
When a slave is added or removed during the design, the address decoding function is automatically
updated without requiring manual editing.

The AHB address range for each slave is defined by its Bank Address Registers (BAR). Address
decoding is performed by comparing the 12-bit ADDR field in the BAR with part of the AHB address
(HADDR). There are two types of banks defined for the AHB bus: AHB memory bank and AHB I/O
bank. The AHB address decoding is done differently for the two types.

For AHB memory banks, the address decoding is performed by comparing the 12-bit ADDR field in
the BAR with the 12 most significant bits in the AHB address (HADDR(31:20)). If equal, the corre-
sponding HSEL will be generated. This means that the minimum address range occupied by an AHB
memory bank is 1 MByte. To allow for larger address ranges, only the bits set in the MASK field of
the BAR are compared. Consequently, HSEL will be generated when the following equation is true:
((BAR.ADDR xor HADDR[31:20]) and BAR.MASK) = 0

As an example, to decode a 16 MByte AHB memory bank at address 0x24000000, the ADDR field
should be set to 0x240, and the MASK to 0xFF0. Note: if MASK = 0, the BAR is disabled rather than
occupying the full AHB address range.

For AHB I/O banks, the address decoding is performed by comparing the 12-bit ADDR field in the
BAR with 12 bits in the AHB address (HADDR(19:8)). If equal, the corresponding HSEL will be
generated. This means that the minimum address range occupied by an AHB I/O bank is 256 Byte. To
allow for larger address ranges, only the bits set in the MASK field of the BAR are compared. Conse-
quently, HSEL will be generated when the following equation is true:
((BAR.ADDR xor HADDR[19:8]) and BAR.MASK) = 0

The 12 most significant bits in the AHB address (HADDR(31:20)) are always fixed to 0xFFF, effec-
tively placing all AHB I/O banks in the 0xFFF00000-0xFFFFEFFF address space. As an example, to
decode an 4 kByte AHB I/O bank at address 0xFFF24000, the ADDR field should be set to 0x240,
and the MASK to 0xFF0. Note: if MASK = 0, the BAR is disabled rather than occupying the full
AHB I/O address range.

The AHB slaves in GRLIB define the value of their ADDR and MASK fields through generics. This
allows to choose the address range for each slave when it is instantiated, without having to modify a
central decoder or the slave itself. Below is an example of a component declaration of an AHB RAM
memory, and how it can be instantiated:
component ahbram
 generic (
 hindex : integer := 0; -- AHB slave index
 haddr : integer := 0;
 hmask : integer := 16#fff#);
 port (

Menta 0x11

Sun Microsystems 0x13

Movidia 0x14

Orbita 0x17

Siemens AG 0x1A

Actel Corporation 0xAC

Caltech 0xCA

Embeddit 0xEA

Vendor ID

TABLE 38. Vendor ID assignment

AEROFLEX GAISLER 50 GRLIB

 rst : in std_ulogic;
 clk : in std_ulogic;

ahbsi : in ahb_slv_in_type; -- AHB slave input
 ahbso : out ahb_slv_out_type); -- AHB slave output
end component;

ram0 : ahbram
 generic map (hindex => 1, haddr => 16#240#, hmask => 16#FF0#)
 port map (rst, clk, ahbsi, ahbso(1));

An AHB slave can have up to four address mapping registers, thereby decode four independent areas
in the AHB address space. HSEL is asserted when any of the areas is selected. To know which partic-
ular area was selected, the ahbsi record contains the additional bus signal HBSEL(0:3). The elements
in HBSEL(0:3) are asserted if the corresponding to BAR(0-3) caused HSEL to be asserted. HBSEL is
only valid when HSEL is asserted. For example, if BAR1 caused HSEL to be asserted, the HBSEL(1)
will be asserted simultaneously with HSEL.

5.3.4 Cacheability

In processor-based systems without an MMU, the cacheable areas are typically defined statically in
the cache controllers. The LEON processors build the cachebility table automatically during synthe-
sis, using the cacheability information in the AHB configuration records. In this way, the cacheability
settings always reflect the current configuration.

For systems with an MMU, the cacheability information can be read out by from the configuration
records through software. This allows the operating system to build an MMU page table with proper
cacheable-bits set in the page table entries.

5.3.5 Interrupt steering

GRLIB provides a unified interrupt handling scheme by adding 32 interrupt signals (HIRQ) to the
AHB bus, both as inputs and outputs. An AHB master or slave can drive as well as read any of the
interrupts.

The output of each master includes all 32 interrupt signals in the vector ahbmo.hirq. An AHB master
must therefore use a generic that specifies which HIRQ element to drive. This generic is of type inte-
ger, and typically called HIRQ (see example below).
component ahbmaster is
 generic (
 hindex : integer := 0; -- master index
 hirq : integer := 0); -- interrupt index
 port (
 reset : in std_ulogic;
 clk : in std_ulogic;
 hmsti : in ahb_mst_in_type; -- AHB master inputs
 hmsto : out ahb_mst_out_type -- AHB master outputs
);
end component;

master1 : ahbmaster
 generic map (hindex => 1, hirq => 1)
 port map (rst, clk, hmsti, hmsto(1));

The same applies to the output of each slave which includes all 32 interrupt signals in the vector
ahbso.hirq. An AHB slave must therefore use a generic that specifies which HIRQ element to drive.
This generic is of type integer, and typically called HIRQ (see example below).

component ahbslave
 generic (
 hindex : integer := 0; -- slave index
 hirq : integer := 0); -- interrupt index
 port (
 rst : in std_ulogic;
 clk : in std_ulogic;
 hslvi : in ahb_slv_in_type; -- AHB slave inputs
 hslvo : out ahb_slv_out_type); -- AHB slave outputs
end component;

slave2 : ahbslave
 generic map (hindex => 2, hirq => 2)
 port map (rst, clk, hslvi, hslvo(1));

The AHB bus controller in the GRLIB provides interrupt combining. For each element in HIRQ, all
the ahbmo.hirq signals from the AHB masters and all the ahbso.hirq signals from the AHB slaves are
logically OR-ed. The combined result is output both on ahbmi.hirq (routed back to the AHB masters)

AEROFLEX GAISLER 51 GRLIB

and ahbsi.hirq (routed back to the AHB slaves). Consequently, the AHB masters and slaves share the
same 32 interrupt signals.

An AHB unit that implements an interrupt controller can monitor the combined interrupt vector
(either ahbsi.hirq or ahbmi.hirq) and generate the appropriate processor interrupt.

AEROFLEX GAISLER 52 GRLIB

5.4 AMBA APB on-chip bus

5.4.1 General

The AMBA Advanced Peripheral Bus (APB) is a single-master bus suitable to interconnect units of
low complexity which require only low data rates. An APB bus is interfaced with an AHB bus by
means of a single AHB slave implementing the AHB/APB bridge. The AHB/APB bridge is the only
APB master on one specific APB bus. More than one APB bus can be connected to one AHB bus, by
means of multiple AHB/APB bridges. A conceptual view is provided in figure 8.

Figure 8.AMBA AHB/APB conceptual view

Since the APB bus is multiplexed (no tristate signals), a more correct view of the bus and the attached
units can be seen in figure 9. The access to the AHB slave input (AHBI) is decoded and an access is
made on APB bus. The APB master drives a set of signals grouped into a VHDL record called APBI
which is sent to all APB slaves. The combined address decoder and bus multiplexer controls which
slave is currently selected. The output record (APBO) of the active APB slave is selected by the bus
multiplexer and forwarded to AHB slave output (AHBO).

AHB MASTER 1 AHB MASTER 2 AHB MASTER 3

AHB BUS
CONTROL

AHB SLAVE 1
AHB SLAVE 2

APB MASTER

APB SLAVE 2APB SLAVE 1

AHB BUS

APB BUS

AEROFLEX GAISLER 53 GRLIB

Figure 9.APB inter-connection view

5.4.2 APB slave interface

The APB slave inputs and outputs are defined as VHDL record types, and are exported through the
TYPES package in the GRLIB AMBA library:
-- APB slave inputs
 type apb_slv_in_type is record
 psel : std_logic_vector(0 to NAPBSLV-1); -- slave select
 penable : std_ulogic; -- strobe
 paddr : std_logic_vector(31 downto 0); -- address bus (byte)
 pwrite : std_ulogic; -- write
 pwdata : std_logic_vector(31 downto 0); -- write data bus
 pirq : std_logic_vector(NAHBIRQ-1 downto 0); -- interrupt result bus
 end record;

-- APB slave outputs
type apb_slv_out_type is record

 prdata : std_logic_vector(31 downto 0); -- read data bus
 pirq : std_logic_vector(NAHBIRQ-1 downto 0); -- interrupt bus
 pconfig : apb_config_type; -- memory access reg.
 pindex : integer range 0 to NAPBSLV -1; -- diag use only
 end record;

The elements in the record types correspond to the APB signals as defined in the AMBA 2.0 specifi-
cation, with the addition of three sideband signals: PCONFIG, PIRQ and PINDEX. A typical APB
slave in GRLIB has the following definition:
library grlib;
use grlib.amba.all;
library ieee;
use ieee.std_logic.all;

entity apbslave is
 generic (
 pindex : integer := 0); -- slave bus index
 port (
 rst : in std_ulogic;
 clk : in std_ulogic;
 apbi : in apb_slv_in_type; -- APB slave inputs
 apbo : out apb_slv_out_type -- APB slave outputs
);
end entity;

The input record (APBI) is routed to all slaves, and include the select signals for all slaves in the vec-
tor APBI.PSEL. An APB slave must therefore use a generic that specifies which PSEL element to use.
This generic is of type integer, and typically called PINDEX (see example above).

AHBI

AHBO

SLAVE 1

SLAVE 2 APBO(2)

APBO(1)

AHB SLAVE
APB MASTER

APBI

AEROFLEX GAISLER 54 GRLIB

5.4.3 AHB/APB bridge

GRLIB provides a combined AHB slave, APB bus master, address decoder and bus multiplexer. It
receives the AHBI and AHBO records from the AHB bus, and generates APBI and APBO records on
the APB bus. The address decoding function will drive one of the APBI.PSEL elements to indicate
the selected APB slave. The bus multiplexer function will select from which APB slave data will be
taken to drive the AHBI signal. A typical APB master in GRLIB has the following definition:
library IEEE;
use IEEE.std_logic_1164.all;
library grlib;
use grlib.amba.all;

entity apbmst is
 generic (

hindex : integer := 0; -- AHB slave bus index
);
 port (
 rst : in std_ulogic;
 clk : in std_ulogic;
 ahbi : in ahb_slv_in_type; -- AHB slave inputs
 ahbo : out ahb_slv_out_type; -- AHB slave outputs
 apbi : out apb_slv_in_type; -- APB master inputs
 apbo : in apb_slv_out_vector -- APB master outputs
);
end;

5.4.4 APB bus index control

The APB slave output records contain the sideband signal PINDEX. This signal is used to verify that
the slave is driving the correct element of the AHBPO bus. The generic PINDEX that is used to select
the appropriate PSEL is driven back on APBO.PINDEX. The APB controller then checks that the
value of the received PINDEX is equal to the bus index. An error is issued during simulation if a mis-
match is detected.

AEROFLEX GAISLER 55 GRLIB

5.5 APB plug&play configuration

5.5.1 General

The GRLIB implementation of the APB bus includes the same type of mechanism to provide
plug&play support as for the AHB bus. The plug&play support consists of three parts: identification
of attached slaves, address mapping, and interrupt routing. The plug&play information for each APB
slave consists of a configuration record containing two 32-bit words. The first word is called the iden-
tification register and contains information on the device type and interrupt routing. The last word is
the bank address register (BAR) and contains address mapping information for the APB slave. Only a
single BAR is defined per APB slave. An APB slave is neither prefetchable nor cacheable.

Figure 10.APB plug&play configuration layout

All addressing of the APB is referenced to the AHB address space. The 12 most significant bits of the
AHB bus address are used for addressing the AHB slave of the AHB/APB bridge, leaving the 20 least
significant bits for APB slave addressing.

The plug&play information for all attached APB slaves appear as a read-only table mapped on a fixed
address of the AHB, typically at 0x---FF000. The configuration records of the APB slaves appear in
0x---FF000 - 0x---FFFFF on the AHB bus. Since each record is 2 words (8 bytes), the table has space
for 512 slaves on a signle APB bus. A plug&play operating system (or any other application) can scan
the configuration table and automatically detect which units are present on the APB bus, how they are
configured, and where they are located (slaves).

The configuration record from each APB unit is sent to the APB bus controller via the PCONFIG sig-
nal. The bus controller creates the configuration table automatically, and creates a read-only memory
area at the desired address (default 0x---FF000). Since the configuration information is fixed, it can be
efficiently implemented as a small ROM or with relatively few gates. A special reporting module
(apbreport) is provided in the WORK.DEBUG package of Grlib which can be used to print the con-
figuration table to the console during simulation.

5.5.2 Device identification

The APB bus uses same type of Identification Register as previously defined for the AHB bus.

5.5.3 Address decoding

The address mapping of APB slaves in GRLIB is designed to be distributed, i.e. not rely on a shared
static address decoder which must be modified as soon as a slave is added or removed. The GRLIB
APB master, which implements the address decoder, will use the configuration information received
from the slaves on PCONFIG to automatically generate the slave select signals (PSEL). When a slave
is added or removed during the design, the address decoding function is automatically updated with-
out requiring manual editing.

The APB address range for each slave is defined by its Bank Address Registers (BAR). There is one
type of banks defined for the APB bus: APB I/O bank. Address decoding is performed by comparing
the 12-bit ADDR field in the BAR with 12 bits in the AHB address (HADDR(19:8)). If equal, the cor-
responding PSEL will be generated. This means that the minimum address range occupied by an APB
I/O bank is 256 Byte. To allow for larger address ranges, only the bits set in the MASK field of the
BAR are compared. Consequently, PSEL will be generated when the following equation is true:
((BAR.ADDR xor HADDR[19:8]) and BAR.MASK) = 0

As an example, to decode an 4 kByte AHB I/O bank at address 0x---24000, the ADDR field should be
set to 0x240, and the MASK to 0xFF0. Note that the 12 most significant bits of AHBI.HADDR are

VENDOR ID DEVICE ID VERSION IRQ

31 24 23 12 11 5 4 0

31 20 19 16 15 4 3 0

Identification Register CT

10 9

HADDR P MASK TYPEC0 0ADDR 0 MASK TYPE0
Bank Address Register

00

04

18 17

0 0

AEROFLEX GAISLER 56 GRLIB

used for addressing the AHB slave of the AHB/APB bridge, leaving the 20 least significant bits for
APB slave addressing.

As for AHB slaves, the APB slaves in GRLIB define the value of their ADDR and MASK fields
through generics. This allows to choose the address range for each slave when it is instantiated, with-
out having to modify a central decoder or the slave itself. Below is an example of a component decla-
ration of an APB I/O unit, and how it can be instantiated:
component apbio
 generic (

pindex : integer := 0;
paddr : integer := 0;
pmask : integer := 16#fff#);

 port (
 rst : in std_ulogic;
 clk : in std_ulogic;
 apbi : in apb_slv_in_type;
 apbo : out apb_slv_out_type);
end component;

io0 : apbio
 generic map (pindex => 1, paddr => 16#240#, pmask => 16#FF0#)
 port map (rst, clk, apbi, apbo(1));

5.5.4 Interrupt steering

GRLIB provides a unified interrupt handling scheme by also adding 32 interrupt signals (PIRQ) to the
APB bus, both as inputs and outputs. An APB slave can drive as well as read any of the interrupts.
The output of each slave includes all 32 interrupt signals in the vector APBO.PIRQ. An APB slave
must therefore use a generic that specifies which PIRQ element to drive. This generic is of type inte-
ger, and typically called PIRQ (see example below).
component apbslave
 generic (

pindex : integer := 0; -- slave index
 pirq : integer := 0); -- interrupt index
 port (
 rst : in std_ulogic;
 clk : in std_ulogic;
 apbi : in apb_slv_in_type; -- APB slave inputs
 apbo : out apb_slv_out_type); -- APB slave outputs
end component;

slave3 : apbslave
 generic map (pindex => 1, pirq => 2)
 port map (rst, clk, pslvi, pslvo(1));

The AHB/APB bridge in the GRLIB provides interrupt combining, and merges the APB-generated
interrupts with the interrups bus on the AHB bus. This is done by OR-ing the 32-bit interrupt vectors
from each APB slave into one joined vector, and driving the combined value on the AHB slave output
bus (AHBSO.HIRQ). The APB interrupts will then be merged with the AHB interrupts. The resulting
interrupt vector in available on the AHB slave input (AHBSI.HIRQ), and is also driven on the APB
slave inputs (APBI.PIRQ) by the AHB/APB bridge. Each APB slave (as well as AHB slave) thus sees
the combined AHB/APB interrupts. An interrupt controller can then be placed either on the AHB or
APB bus and still monitor all interrupts.

5.6 GRLIB configuration package

The location of the global GRLIB CONFIG package is inlib/grlib/stdlib/config.vhd. This file contains
the settings for the wide AHB buses, as described in the previous sections, and some additional global
parameters.

This package can be replaced by a local version by setting the variable GRLIB_CONFIG in the
Makefile of a template design to the location of an alternative version. When the simulation and syn-
thesis scripts are built, the alternative CONFIG package will be used instead of the global one. The
the variable GRLIB_CONFIG is modified, the scripts have to be re-built for the new value to take
effect.

The GRLIB configuration package contains the constants listed in table 39.

AEROFLEX GAISLER 57 GRLIB

5.7 Technology mapping

5.7.1 General

GRLIB provides portability support for both ASIC and FPGA technologies. The support is imple-
mented by means of encapsulation of technology specific components such as memories, pads and
clock buffers. The interface to the encapsulated component is made technology independent, not rely-
ing on any specific VHDL or Verilog code provided by the foundry or FPGA manufacturer. The inter-
face to the component stays therefore always the same. No modification of the design is therefore
required if a different technology is targeted. The following technologies are currently supported by
the TECHMAP.GENCOMP package:
constant inferred : integer := 0;
constant virtex : integer := 1;
constant virtex2 : integer := 2;
constant memvirage : integer := 3;
constant axcel : integer := 4;
constant proasic : integer := 5;
constant atc18s : integer := 6;
constant altera : integer := 7;
constant umc : integer := 8;
constant rhumc : integer := 9;
constant apa3 : integer := 10;
constant spartan3 : integer := 11;
constant ihp25 : integer := 12;
constant rhlib18t : integer := 13;
constant virtex4 : integer := 14;
constant lattice : integer := 15;
constant ut25 : integer := 16;
constant spartan3e : integer := 17;
constant peregrine : integer := 18;
constant memartisan : integer := 19;
constant virtex5 : integer := 20;
constant custom1 : integer := 21;
constant ihp25rh : integer := 22;

Constant Description

CFG_AHBDW Selects the maximum AHB data width to be used in the system

CFG_AHB_ACDM Enable AMBA compliant data multiplexing in cores that support
this.

GRLIB_CONFIG_ARRAY Array of configuration values that enable different types of func-
tionality in the library. The available values together with short
descriptions can be seen in the filelib/grlib/stdlib/
config_types.vhd. The available settings are also described in
table 40.

TABLE 39. GRLIB configuration package constants

GRLIB_CONFIG_ARRAY(Constant) Description

grlib_debug_level Controls (simulation) debug output from TECHMAP layer

grlib_debug_mask

grlib_techmap_strict_ram Defines if struct RAM TECHMAP should be used. Otherwise
small (shallow) RAMs may be mapped to inferred technology.
Not supported by all target technologies.

grlib_techmap_testin_extra Expand testin vector to SYNCRAM components with additional
bits (value defines number of additional bits).

grlib_sync_reset_enable_all Add synchronous reset to all registers (requires support in
instantiated IP cores)

TABLE 40. GRLIB configuration array description

AEROFLEX GAISLER 58 GRLIB

constant stratix1 : integer := 23;
constant stratix2 : integer := 24;
constant eclipse : integer := 25;
constant stratix3 : integer := 26;
constant cyclone3 : integer := 27;
constant memvirage90 : integer := 28;
constant tsmc90 : integer := 29;
constant easic90 : integer := 30;
constant atc18rha : integer := 31;
constant smic013 : integer := 32;
constant tm65gpl : integer := 33;
constant axdsp : integer := 34;
constant spartan6 : integer := 35;
constant virtex6 : integer := 36;
constant actfus : integer := 37;
constant stratix4 : integer := 38;
constant st65lp : integer := 39;
constant st65gp : integer := 40;
constant easic45 : integer := 41;
constant cmos9sf : integer := 42;
constant apa3e : integer := 43;
constant apa3l : integer := 44;
constant ut130 : integer := 45;
constant ut90 : integer := 46;
constant gf65 : integer := 47;
constant virtex7 : integer := 48;
constant kintex7 : integer := 49;

Each encapsulating component provides a VHDL generic (normally named TECH) with which the
targeted technology can be selected. The generic is used by the component to select the correct tech-
nology specific cells to instantiatein its architecture and to configure them approriately. This method
does not rely on the synthesis tool to inferring the correct cells.

For technologies not defined in GRLIB, the default “inferred” option can be used. This option relies
on the synthesis tool to infer the correct technology cells for the targeted device.

A second VHDL generic (normally named MEMTECH) is used for selecting the memory cell tech-
nology. This is useful for ASIC technologies where the pads are provided by the foundry and the
memory cells are provided by a different source. For memory cells, generics are also used to specify
the address and data widths, and the number of ports.

The two generics TECH and MEMTECH should be defined at the top level entity of a design and be
propagated to all underlying components supporting technology specific implementations.

5.7.2 Memory blocks

Memory blocks are often implemented with technology specific cells or macrocells and require an
encapsulating component to offer a unified technology independent interface. The TECHMAP library
provides such technology independent memory component, as the synchronous single-port RAM
shown in the following code example. The address and data widths are fully configurable by means of
the generics ABITS and DBITS, respectively.
component syncram
 generic (
 memtech : integer := 0; -- memory technology
 abits : integer := 6; -- address width
 dbits : integer := 8); -- data width
 port (
 clk : in std_ulogic;
 address : in std_logic_vector((abits -1) downto 0);
 datain : in std_logic_vector((dbits -1) downto 0);
 dataout : out std_logic_vector((dbits -1) downto 0);
 enable : in std_ulogic;
 write : in std_ulogic);
end component;

This synchronous single-port RAM component is used in the AHB RAM component shown in the
following code example.
component ahbram
 generic (
 hindex : integer := 0; -- AHB slave index
 haddr : integer := 0;
 hmask : integer := 16#fff#;
 memtech : integer := 0; -- memory technology
 kbytes : integer := 1); -- memory size
 port (
 rst : in std_ulogic;
 clk : in std_ulogic;
 hslvi : in ahb_slv_in_type; -- AHB slave input
 hslvo : out ahb_slv_out_type); -- AHB slave output
end component;

AEROFLEX GAISLER 59 GRLIB

ram0 : ahbram
 generic map (hindex => 1, haddr => 16#240#, hmask => 16#FF0#,
 tech => virtex, kbytes => 4)
 port map (rst, clk, hslvi, hslvo(1));

In addition to the selection of technology (VIRTEX in this case), the size of the AHB RAM is speci-
fied in number of kilo-bytes. The conversion from kilo-bytes to the number of address bits is per-
formed automatically in the AHB RAM component. In this example, the data width is fixed to 32 bits
and requires no generic. The VIRTEX constant used in this example is defined in the TECH-
MAP.GENCOMP package.

5.7.3 Pads

As for memory cells, the pads used in a design are always technology dependent. The TECHMAP
library provides a set of encapsulated components that hide all the technology specific details from
the user. In addition to the VHDL generic used for selecting the technology (normally named TECH),
generics are provided for specifying the input/output technology levels, voltage levels, slew and driv-
ing strength. A typical open-drain output pad is shown in the following code example:

component odpad
 generic (
 tech : integer := 0;
 level : integer := 0;
 slew : integer := 0;
 voltage : integer := 0;
 strength : integer := 0

);
 port (
 pad : out std_ulogic;

o : in std_ulogic
);

end component;

pad0 : odpad
 generic map (tech => virtex, level => pci33, voltage => x33v)
 port map (pad => pci_irq, o => irqn);

The TECHMAP.GENCOMP package defines the following constants that to be used for configuring
pads:
-- input/output voltage

constant x18v : integer := 1;
constant x25v : integer := 2;
constant x33v : integer := 3;
constant x50v : integer := 5;

-- input/output levels

constant ttl : integer := 0;
constant cmos : integer := 1;
constant pci33 : integer := 2;
constant pci66 : integer := 3;
constant lvds : integer := 4;
constant sstl2_i : integer := 5;
constant sstl2_ii : integer := 6;
constant sstl3_i : integer := 7;
constant sstl3_ii : integer := 8;

-- pad types

constant normal : integer := 0;
constant pullup : integer := 1;
constant pulldown : integer := 2;
constant opendrain: integer := 3;
constant schmitt : integer := 4;
constant dci : integer := 5;

The slew control and driving strength is not supported by all target technologies, or is often imple-
mented differently between different technologie. The documentation for the IP core implementing
the pad should be consulted for details.

AEROFLEX GAISLER 60 GRLIB

5.8 Scan test support

5.8.1 Overview

Scan test is a method for production testing digital ASICs. A test mode is added to the design that
changes all flip-flops in the design to shift registers that can be set and read out serially. This is imple-
mented partially in RTL code and partially in the implementation flow.

In a typical GRLIB ASIC, a number of signals are added for scan test. All signals except testen are
usually muxed with other slow I/O signals so only one pin has to be added to the design.

The signals added are:

testen - Enables test mode (top-level pin)

scanen - Muxes flip-flop data inputs to previous in chain instead of normal function

testoen - Controls all output-enables in test mode

testrst - Controls all async-resets in test mode

scanin - Scan chain inputs

scanout - Scan chain outputs

The top level of the design adds the testen signal to the port list and muxes in the scanen, testoen and
testrst signals. The scanin and scanout signals are not handled at the RTL level.

At the RTL level, the test signals are connected to any hard macro that needs them, such as block
RAM:s and PLL:s. Also testoen and testrst are handled fully at source code level. The RTL also con-
tains logic so that all flip-flops are directly clocked by an input clock pin when test mode is enabled.

During synthesis, the synthesis tool implements registers using special "scan flip-flops" containing the
necessary muxing for the scan chain. The actual scan chain connections are not derived until after
placement, so the scan order can be selected to minimize routing.

5.8.2 GRLIB support

To support scan test methods, GRLIB distributes the testen,scanen,testoen and testrst signals via the
AHB and APB bus records. The signals are supplied into the AHB controller which will pass them on
to the AHB bus records. The APB controller and AHB-to-AHB bridges will pass them on to their bus
signals. This way all IP cores connecting to an AHB or APB bus have access to the test signals with-
out having to add extra input ports for them.

The GRLIB IP cores supporting scan test signals have a generic called scantest to enable this func-
tionality. For historical reasons, this generic is on some IP cores called scanen or testen instead. Cores
which use the scan signals include LEON3, MCTRL and GRGPIO.

The techmap layer handles certain test mode features. The clkgate component will automatically
enable (pass through) the clock when test mode is enabled. The various syncram wrappers will dis-
able the RAM:s during shifting (when scanen and testen are high).

The syncram techmaps have an input vector called testin, containing testen, scanen, plus two extra
technology-dependent bits. The AMBA records contain a testin element that can be passed on directly
to the syncram. The tech dependent bits can be set using the testsig input signal to the AHB controller.
More bits can be added to the vector if necessary via a local GRLIB configuration option.

5.8.3 Usage for existing cores

For using the scan test support with existing cores in GRLIB, the test signals need to be supplied to
the AHB controller and the scan test support needs to be enabled in the IP cores.

5.8.4 Usage for new cores

For adding scan test support to an IP core, a couple of changes may be needed.

• A generic called scantest should be added that enables scan test support. If the core does not have any AHB or
APB interfaces, you will also need to add explicit inputs for any test signals that you need to implement the
below.

• If the core has asynchronous resets, these should be tied to testrst when testen is high. This is usually done by
a statement such as:

AEROFLEX GAISLER 61 GRLIB

 arst <= testrst when scantest/=0 and ahbsi.testen=’1’ else lrst;

• If the core controls output enables going directly to pads, these should be tied directly to testoen when testen is
high.

• If you invert or divide clocks internally, these should be bypassed in test mode so all flip-flops are clocked by
the same edge on the incoming clock:

 lnclk <= not clk;
 stgen: if scantest /= 0 generate
 m1: clkmux
 generic map (tech => tech)
 port map (io => lnclk, i1 => clk, sel => ahbsi.testen, o => nclk);
 end generate;
 nstgen: if scantest = 0 generate
 nclk <= lnclk;
 end generate;

• Pass on the scantest generic and test signals to any submodules, techmap instances and hard macros that need
them.

AEROFLEX GAISLER 62 GRLIB

6 GRLIB Design examples

6.1 Introduction

The template design examples described in the following sections are provided for the understanding
of how to integrate the existing GRLIB IP cores into a design. The documentation for the various IP
cores should be consulted for details.

6.2 NetCard

The NetCard design example described in this section is a simple PCI to Ethernet bridge. The design
is based on IP cores from GRLIB, including the GRPCI PCI bridge and the GRETH Ethernet MAC.
The VHDL code of the design is listed in its full hereafter, but has been split into sections to allow for
explanations after the source code. The design is located in grlib/designs/netcard.
library ieee;
use ieee.std_logic_1164.all;
library grlib;
use grlib.amba.all; -- AMBA AHB/APB components
library techmap;
use techmap.gencomp.all; -- technology
use grlib.stdlib.all; -- utilities
library gaisler;
use gaisler.uart.all; -- AMBA AHB/APB UARTs
use gaisler.misc.all; -- miscellaneous
use gaisler.pci.all; -- PCI
use gaisler.net.all; -- network cores
use work.config.all; -- design configuration

The GRLIB and GAISLER VHDL libraries are used for this design. Only the most important pack-
ages are explained. The AHB bus controller and the AHB/APB bridge components are defined in the
GRLIB.AMBA package. The technology selection is defined in the TECHMAP.GENCOMP package.
entity netcard is
 generic (

fabtech : integer := CFG_FABTECH;
 memtech : integer := CFG_MEMTECH;
 padtech : integer := CFG_PADTECH;
 clktech : integer := CFG_CLKTECH
);

The TECH and MEMTECH generics are used for selecting the overall technology and the memory
technology. It is possible to include optionally a debugger and a PCI signal tracer. It is possible to
select the functionality of the PCI bridge, either as target only or as combined initiator/target.
port (
 resetn : in std_ulogic;
 clk : in std_ulogic;

 dsutx : out std_ulogic; -- DSU tx data
 dsurx : in std_ulogic; -- DSU rx data

 emdio : inout std_logic; -- ethernet
 etx_clk : in std_logic;
 erx_clk : in std_logic;
 erxd : in std_logic_vector(3 downto 0);
 erx_dv : in std_logic;
 erx_er : in std_logic;
 erx_col : in std_logic;
 erx_crs : in std_logic;
 etxd : out std_logic_vector(3 downto 0);
 etx_en : out std_logic;
 etx_er : out std_logic;
 emdc : out std_logic;

 pci_rst : in std_ulogic; -- PCI
 pci_clk : in std_ulogic;
 pci_gnt : in std_ulogic;
 pci_idsel : in std_ulogic;
 pci_lock : inout std_ulogic;
 pci_ad : inout std_logic_vector(31 downto 0);
 pci_cbe : inout std_logic_vector(3 downto 0);
 pci_frame : inout std_ulogic;
 pci_irdy : inout std_ulogic;
 pci_trdy : inout std_ulogic;
 pci_devsel : inout std_ulogic;
 pci_stop : inout std_ulogic;
 pci_perr : inout std_ulogic;
 pci_par : inout std_ulogic;
 pci_req : inout std_ulogic;

AEROFLEX GAISLER 63 GRLIB

 pci_serr : inout std_ulogic;
 pci_irq : out std_ulogic;
 pci_host : in std_ulogic;
 pci_66 : in std_ulogic);
end;

The interface ports of the design are all defined as standard IEEE 1164 types.
architecture rtl of netcard is

signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector := (others => apb_none);

Local signal declarations for the APB slave inputs and outputs. The outputs are contained in a vector
and each APB slave drives it own element. Note that a default value is given to the APB output vector
in the architecture declarative part. This is generally not supported for synthesis, but all synthesis
tools supported by GRLIB generate all-zero values which makes the outcome determistic. If this
design style is not accepted by a tool or user, the unused entries in the vector should be assigned the
default value explicitly in the architecture statement part.

signal ahbsi : ahb_slv_in_type;
 signal ahbso : ahb_slv_out_vector := (others => ahbs_none);

Local signal declarations for the AHB slave inputs and outputs. The outputs are contained in a vector,
and each AHB slave drives it own element.

signal ahbmi : ahb_mst_in_type;
 signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

Local signal declarations for the AHB masters inputs and outputs. The outputs are contained in a vec-
tor, and each AHB masters drives it own element.

signal clkm, rstn, pciclk : std_ulogic;
 signal cgi : clkgen_in_type;
 signal cgo : clkgen_out_type;

signal dui : uart_in_type;
 signal duo : uart_out_type;

signal pcii : pci_in_type;
 signal pcio : pci_out_type;

signal ethi : eth_in_type;
 signal etho : eth_out_type;

signal irqn : std_logic;

The rest of the local signal declarations are used for the clock generation, debugger, PCI and Ethernet
interfaces.
begin

--
--- Reset and Clock generation -------------------------------------
--

cgi.pllctrl <= "00";
cgi.pllrst <= resetn;
cgi.pllref <= '0';

clkgen0 : clkgen -- clock generator
generic map (clk_mul => 4, clk_div => 2, pcien => pci, tech => tech)
port map (clk, pci_clk, clkm, open, open, open, pciclk, cgi, cgo);

rst0 : rstgen -- reset generator
port map (resetn, clkm, cgo.clklock, rstn);

The clock generator can be implemented using technology specific cells, which is controlled by the
CLKTECH generic.

--
--- AHB CONTROLLER --
--

ahb0 : ahbctrl -- AHB arbiter/multiplexer
 port map (rstn, clkm, ahbmi, ahbmo, ahbsi, ahbso);

The GRLIB GAISLER AHB bus controller is used for implementing the AHB arbiter, address
decoder and multiplexer. All AHB master and slave inputs/outputs are route through the controller.

--- ETHERNET ---

e0 : greth generic map(hindex => log2x(CFG_PCI),

pindex => 0, paddr => 11, pirq => 11, memtech => memtech)
 port map(rst => rstn, clk => clk, ahbmi => ahbmi, ahbmo => ahbmo(log2x(CFG_PCI)),

AEROFLEX GAISLER 64 GRLIB

apbi => apbi, apbo => apbo(0), ethi => ethi, etho => etho);

The GRETH Ethernet interface is an AHB master and an APB slave. The generic hindex defines its
AHB master number and the generic pindex defines its APB slave index. Note that hindex and the
index used for selecting the correct element in the AHBMO vector must be the same. The same
applies to pindex and apbo.. The two indices have no relation to the address mapping of the slave. The
address of the APB bank is specified by the paddr generic, and in this case its starting address will be
0x80000B00. The IRQ generic specifies that the device will generate interrupts on interrupt vector
element 11.

emdio_pad : iopad generic map (tech => padtech)
 port map (emdio, etho.mdio_o, etho.mdio_oe, ethi.mdio_i);
 etxc_pad : clkpad generic map (tech => padtech, arch => 1)

port map (etx_clk, ethi.tx_clk);
 erxc_pad : clkpad generic map (tech => padtech, arch => 1)

port map (erx_clk, ethi.rx_clk);
 erxd_pad : inpadv generic map (tech => padtech, width => 4)

port map (erxd, ethi.rxd(3 downto 0));
 erxdv_pad : inpad generic map (tech => padtech)

port map (erx_dv, ethi.rx_dv);
 erxer_pad : inpad generic map (tech => padtech)

port map (erx_er, ethi.rx_er);
 erxco_pad : inpad generic map (tech => padtech)

port map (erx_col, ethi.rx_col);
 erxcr_pad : inpad generic map (tech => padtech)

port map (erx_crs, ethi.rx_crs);

 etxd_pad : outpadv generic map (tech => padtech, width => 4)
port map (etxd, etho.txd(3 downto 0));

 etxen_pad : outpad generic map (tech => padtech)
port map (etx_en, etho.tx_en);

 etxer_pad : outpad generic map (tech => padtech)
port map (etx_er, etho.tx_er);

 emdc_pad : outpad generic map (tech => padtech)
port map (emdc, etho.mdc);

irqn <= ahbso(3).hirq(11);

 irq_pad : odpad generic map (tech => padtech, level => pci33)
 port map (pci_irq, irqn);

All Ethernet interface signals are mapped pads with tech mapping, selecting the appropriate pads for
the selected target technology. A pad is explicitly instantiated for the interrupt output, ensuring that an
open-drain output with PCI33 levels is being used.
--
--- AHB/APB Bridge ---
--

apb0 : apbctrl -- AHB/APB bridge
 generic map (hindex => 0, haddr => 16#800#)
 port map (rstn, clkm, ahbsi, ahbso(0), apbi, apbo);

The GRLIB AHB/APB bridge is instantiated as a slave on the AHB bus. The HINDEX generic spec-
ifies its index on the AHB slave bus, and the HADDR generic specifies that the corresponding APB
bus address area will be starting from AHB address 0x80000000.
--
--- AHB RAM --
--

ram0 : ahbram
 generic map (hindex => 2, haddr => 0, hmask => 16#FFF#,
 tech => memtech, kbytes => 8)
 port map (rstn, clkm, ahbsi, ahbso(2));

A local RAM is implemented as a slave on the AHB bus. The technology selection is made with the
MEMTECH generic. The size is specified to be 8 kbytes with the KBYTES generic, and the memory
is located at address 0x00000000 as specified by HADDR. The HMASK generic allocates a mini-
mum 1 Mbyte address space on the AHB bus.

--- PCI --

pp : if pci /= 0 generate
 pci_gr0 : if pci = 1 generate
 pci0 : pci_target
 generic map (hindex => 0,
 device_id => 16#0210#, vendor_id => 16#16E3#)
 port map (rstn, clkm, pciclk, pcii, pcio, ahbmi, ahbmo(0));
 end generate;
 pci_mtf0 : if pci = 2 generate
 pci0 : pci_mtf
 generic map (memtech => memtech, hmstndx => 0,

AEROFLEX GAISLER 65 GRLIB

 fifodepth => 6, device_id => 16#0210#,
 vendor_id => 16#16E3#, hslvndx => 1,
 pindex => 6, paddr => 2, haddr => 16#E00#,
 ioaddr => 16#400#, nsync => 2)
 port map (rstn, clkm, pciclk, pcii, pcio, apbi, apbo(2),
 ahbmi, ahbmo(0), ahbsi, ahbso(1));
 end generate;
 pci_trc0 : if pcitrc /= 0 generate
 pt0 : pcitrace
 generic map (memtech => memtech, pindex => 3,
 paddr => 16#100#, pmask => 16#f00#)
 port map (rstn, clkm, pciclk, pcii, apbi, apbo(3));
 end generate;
 pcipads0 : pcipads
 generic map (tech)
 port map (pci_rst, pci_gnt, pci_idsel, pci_lock, pci_ad, pci_cbe,
 pci_frame, pci_irdy, pci_trdy, pci_devsel, pci_stop,
 pci_perr, pci_par, pci_req, pci_serr, pci_host, pci_66,
 pcii, pcio);
 end generate;

If the PCI interface is implemented as a target only, the device is only implemented as a master on
AHB. This option does not require any on-chip memory and no technology selection is required. The
PCI device and vendor ID is specified by means of generics.

For an initiator/target PCI interface, the device is implemented as both master and slave on AHB. This
option implements on-chip memory for which the technology is selected with the MEMTECH
generic. The size of the memory is selected with the FIFODEPTH generic and it is located at
0xE0000000 as specified by HADDR. The I/O bank of the device is located at AHB address
0x40000000. This option also implements a APB slave, and the PINDEX generic is used for specify-
ing its APB bus number.

Not shown in this example is that there are several other generics specified for the PCI IP cores for
which default values are being used. What should be noted is that most of the generics are hard coded
in this example, not allowing the design to be changed by means of top level entity generics.

The pads for the PCI interface are implemented in the PCIPADS component, which only uses the
TECH generic since the signal levels are already determined.

As an option, a PCI signal trace buffer can be included in the design. The trace buffer samples PCI
signal activity and stores the data in a local on-chip memory. The trace buffer is accessible as an APB
slave I/O bank of 4 kBytes at AHB address 0x80010000 as specified by the PADDR and PMASK
generics. The 0x800 part of the address is specified by the AHB/APB bridge HADDR generic as
explained above.
--
--- Optional DSU UART ---
--

dcomgen : if dbg = 1 generate
 dcom0: ahbuart -- Debug UART
 generic map (ahbndx => 2, apbndx => 1, apbaddr => 1)
 port map (rstn, clkm, dui, duo, apbi, apbo(1), ahbmi, ahbmo(2));
 dui.rxd <= dsurx; dsutx <= duo.txd;
 end generate;

An option debug support unit serial interface can be included in the design. The DSU acts as an AHB
master and as an APB slave.

--- Boot message --

-- pragma translate_off

 apbrep : apbreport -- APB reporting module
 generic map (haddr => 16#800#)
 port map (apbo);

 ahbrep : ahbreport -- AHB reporting module
 port map (ahbmo, ahbso);

 x : report_version
 generic map (
 msg1 => "Network Card Demonstration design",
 msg2 => "GRLIB Version " & tost(LIBVHDL_VERSION/100) &
 "." & tost(LIBVHDL_VERSION mod 100),
 msg3 => "Target technology: " & tech_table(tech) &
 ", memory library: " & tech_table(memtech),
 mdel => 1
);
-- pragma translate_on
end;

AEROFLEX GAISLER 66 GRLIB

Finally, a component is added to the design which generates a report during simulation regarding the
GRLIB version and technology selections. The component is not included in synthesis, a indicated by
the pragma usage.

To simulate the default design, move to the grlib/designs/netcard directory and execute the ‘vsim’
command.
$ vsim -c netcard

Simulate the first 100 ns by writing ‘run’.
Ethernet/PCI Network Card Demonstration design
GRLIB Version 1.0.15, build 2194
Target technology: virtex2 , memory library: virtex2
ahbctrl: AHB arbiter/multiplexer rev 1
ahbctrl: Common I/O area disabled
ahbctrl: AHB masters: 3, AHB slaves: 4
ahbctrl: Configuration area at 0xfffff000, 4 kbyte
ahbctrl: mst0: Gaisler Research Fast 32-bit PCI Bridge
ahbctrl: mst1: Gaisler Research GR Ethernet MAC
ahbctrl: mst2: Gaisler Research AHB Debug UART
ahbctrl: slv0: Gaisler Research AHB/APB Bridge
ahbctrl: memory at 0x80000000, size 1 Mbyte
ahbctrl: slv1: Gaisler Research Fast 32-bit PCI Bridge
ahbctrl: memory at 0xe0000000, size 256 Mbyte
apbctrl: APB Bridge at 0x80000000 rev 1
apbctrl: slv0: Gaisler Research GR Ethernet MAC
apbctrl: I/O ports at 0x80000b00, size 256 byte
apbctrl: slv1: Gaisler Research AHB Debug UART
apbctrl: I/O ports at 0x80000100, size 256 byte
apbctrl: slv3: Gaisler Research 32-bit PCI Trace Buffer
apbctrl: I/O ports at 0x80010000, size 64 kbyte
apbctrl: slv6: Gaisler Research Fast 32-bit PCI Bridge
apbctrl: I/O ports at 0x80000200, size 256 byte
ahbuart1: AHB Debug UART rev 0
pci_mtf1: 32-bit PCI/AHB bridge rev 0, 2 Mbyte PCI memory BAR, 64-word FIFOs
greth1: 10/100 Mbit Ethernet MAC rev 01, EDCL 0, buffer 0 kbyte 8 txfifo
clkgen_virtex2: virtex-2 sdram/pci clock generator, version 1
clkgen_virtex2: Frequency 25000 KHz, DCM divisor 2/2

The report shows that the Xilinx Virtex-2 technology is used for pads, clock generation and memo-
ries. The PCI initiator/target bridge is implemented, and the optional PCI trace buffer is included.

Generics can be provided as command line arguments to ‘vsim’. It is simple to simulate an ASIC
instead of an Xilinx Virtex-2 implementation.
$ vsim -gtech=6 -gmemtech=3 -gclktech=0 -c netcard

Simulate the first 100 ns by writing ‘run’.
Ethernet/PCI Network Card Demonstration design
GRLIB Version 1.0.15, build 2194
Target technology: atc18, memory library: virage
ahbctrl: AHB arbiter/multiplexer rev 1
ahbctrl: Common I/O area disabled
ahbctrl: AHB masters: 3, AHB slaves: 4
ahbctrl: Configuration area at 0xfffff000, 4 kbyte
ahbctrl: mst0: Gaisler Research Fast 32-bit PCI Bridge
ahbctrl: mst1: Gaisler Research GR Ethernet MAC
ahbctrl: mst2: Gaisler Research AHB Debug UART
ahbctrl: slv0: Gaisler Research AHB/APB Bridge
ahbctrl: memory at 0x80000000, size 1 Mbyte
ahbctrl: slv1: Gaisler Research Fast 32-bit PCI Bridge
ahbctrl: memory at 0xe0000000, size 256 Mbyte
apbctrl: APB Bridge at 0x80000000 rev 1
apbctrl: slv0: Gaisler Research GR Ethernet MAC
apbctrl: I/O ports at 0x80000b00, size 256 byte
apbctrl: slv1: Gaisler Research AHB Debug UART
apbctrl: I/O ports at 0x80000100, size 256 byte
apbctrl: slv3: Gaisler Research 32-bit PCI Trace Buffer
apbctrl: I/O ports at 0x80010000, size 64 kbyte
apbctrl: slv6: Gaisler Research Fast 32-bit PCI Bridge
apbctrl: I/O ports at 0x80000200, size 256 byte
ahbuart1: AHB Debug UART rev 0
pci_mtf1: 32-bit PCI/AHB bridge rev 0, 2 Mbyte PCI memory BAR, 64-word FIFOs
greth1: 10/100 Mbit Ethernet MAC rev 01, EDCL 0, buffer 0 kbyte 8 txfifo

The report shows that the ACT18 technology is used for pads and Virage technology for the memo-
ries.

AEROFLEX GAISLER 67 GRLIB

6.3 LEON3MP

The LEON3MP design example described in this section is a multi-processor system based on
LEON3MP. The design is based on IP cores from GRLIB. Only part of the VHDL code is listed here-
after, with comments after each excerpt. The design and the full source code is located in grlib/
designs/leon3mp.

entity leon3mp is
 generic (
 ncpu : integer := 1;

The number of LEON3 processors in this design example can be selected by means of the NCPU
generic shown in the entity declaration excerpt above.

signal leon3i : l3_in_vector(0 to NCPU-1);
signal leon3o : l3_out_vector(0 to NCPU-1);
signal irqi : irq_in_vector(0 to NCPU-1);
signal irqo : irq_out_vector(0 to NCPU-1);
signal l3dbgi : l3_debug_in_vector(0 to NCPU-1);
signal l3dbgo : l3_debug_out_vector(0 to NCPU-1);

The debug support and interrupt handling is implemented separately for each LEON3 instantiation in
a multi-processor system. The above signals are therefore declared in numbers corresponding to the
NCPU generic.
signal apbi : apb_slv_in_type;
signal apbo : apb_slv_out_vector := (others => apb_none);
signal ahbsi : ahb_slv_in_type;
signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
signal ahbmi : ahb_mst_in_type;
signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

The multiple LEON AMBA interfaces do not need any special handling in this example, and the AHB
master/slave are therefore declared in the same way as in the previous example.
--
--- LEON3 processor and DSU ---
--
 cpu : for i in 0 to NCPU-1 generate
 u0 : leon3s -- LEON3 processor
 generic map (hindex => i, fabtech => FABTECH, memtech => MEMTECH,
 fpu => fpu, dsu => dbg, disas => disas,
 pclow => pclow, tbuf => 8*dbg,
 v8 => 2, mac => 1, nwp => 2, lddel => 1,
 isetsize => 1, ilinesize => 8, dsetsize => 1,
 dlinesize => 8, dsnoop => 0)
 port map (clkm, rstn, ahbmi, ahbmo(i), ahbsi, leon3i(i), leon3o(i));

 irqi(i) <= leon3o(i).irq;
 leon3i(i).irq <= irqo(i);
 leon3i(i).debug <= l3dbgi(i);
 l3dbgo(i) <= leon3o(i).debug;
 end generate;

The multiple LEON3 processors are instantiated using a generate statement. Note that the AHB index
generic is incremented with the generate statement. Note also that the complete AHB slave input is
fed to the processor, to allow for cache snooping.

 dcomgen : if dbg = 1 generate
 dsu0 : dsu -- LEON3 Debug Support Unit
 generic map (hindex => 2, ncpu => ncpu, tech => memtech, kbytes => 2)
 port map (rstn, clkm, ahbmi, ahbsi, ahbso(2), l3dbgo, l3dbgi, dsui, dsuo);

 dsui.enable <= dsuen;
 dsui.break <= dsubre;
 dsuact <= dsuo.active;

 dcom0: ahbuart -- Debug UART
 generic map (ahbndx => NCPU, pindex => 7, paddr => 7)
 port map (rstn, clkm, dui, duo, apbi, apbo(7), ahbmi, ahbmo(NCPU));

 dui.rxd <= dsurx;
 dsutx <= duo.txd;
 end generate;

There is only one debug support unit (DSU) in the design, supporting multiple LEON3 processors.

 irqctrl0 : irqmp -- interrupt controller
 generic map (pindex => 2, paddr => 2, ncpu => NCPU)
 port map (rstn, clkm, apbi, apbo(2), irqi, irqo);

AEROFLEX GAISLER 68 GRLIB

There is also only one interrupt controller, supporting multiple LEON3 processors.

To prepare the design for simulation with ModelSim, move to the grlib/designs/leon3mp directory
and execute the ‘make vsim’ command.
$ make vsim

To simulate the default design execute the ‘vsim’ command.
$ vsim -c leon3mp

Simulate the first 100 ns by writing ‘run’.
LEON3 Demonstration design
GRLIB Version 0.10
Target technology: virtex , memory library: virtex
ahbctrl: AHB arbiter/multiplexer rev 1
ahbctrl: Common I/O area at 0xfff00000, 1 Mbyte
ahbctrl: Configuration area at 0xfffff000, 4 kbyte
ahbctrl: mst0: Gaisler Research Leon3 SPARC V8 Processor
ahbctrl: mst1: Gaisler Research AHB Debug UART
ahbctrl: slv0: European Space Agency Leon2 Memory Controller
ahbctrl: memory at 0x00000000, size 512 Mbyte, cacheable, prefetch
ahbctrl: memory at 0x20000000, size 512 Mbyte
ahbctrl: memory at 0x40000000, size 1024 Mbyte, cacheable, prefetch
ahbctrl: slv1: Gaisler Research AHB/APB Bridge
ahbctrl: memory at 0x80000000, size 16 Mbyte
ahbctrl: slv2: Gaisler Research Leon3 Debug Support Unit
ahbctrl: memory at 0x90000000, size 256 Mbyte
ahbctrl: slv6: Gaisler Research AMBA Trace Buffer
ahbctrl: I/O port at 0xfff40000, size 128kbyte
apbmst: APB Bridge at 0x80000000 rev 1
apbmst: slv0: European Space Agency Leon2 Memory Controller
apbmst: I/O ports at 0x80000000, size 256 byte
apbmst: slv1: Gaisler Research Generic UART
apbmst: I/O ports at 0x80000100, size 256 byte
apbmst: slv2: Gaisler Research Multi-processor Interrupt Ctrl.
apbmst: I/O ports at 0x80000200, size 256 byte
apbmst: slv3: Gaisler Research Modular Timer Unit
apbmst: I/O ports at 0x80000300, size 256 byte
apbmst: slv7: Gaisler Research AHB Debug UART
apbmst: I/O ports at 0x80000700, size 256 byte
ahbtrace6: AHB Trace Buffer, 2 kbytes
gptimer3: GR Timer Unit rev 0, 16-bit scaler, 2 32-bit timers, irq 8
apbictrl: Multi-processor Interrupt Controller rev 1, #cpu 1
apbuart1: Generic UART rev 1, irq 2
ahbuart7: AHB Debug UART rev 0
dsu2: LEON3 Debug support unit + AHB Trace Buffer, 2 kbytes
leon3_0: LEON3 SPARC V8 processor rev 0
leon3_0: icache 1*1 kbyte, dcache 1*1 kbyte

AEROFLEX GAISLER 69 GRLIB

7 Using netlists

7.1 Introduction

GRLIB supports the usage of mapped netlists in the implementation flow. The netlists can be included
in the flow at two different points; during synthesis or during place&route. The netlists can have two
basic formats: mapped VHDL (.vhd) or a technology-specific netlist format (.ngo, .vqm, .edf). The
sections below outline how the different formats are handled.

GRLIB IP cores such as GRSPW, GRSPW2. GRFPU, GRFPU-lite, LEON3FT and GR1553B that
were traditionally available only as netlists are provided as encrypted RTL instead of netlist format.
The main remaining use for netlists are for GRFPU/GRFPU-lite evaluation. Some IP cores, such as
GRPCI2, may have parts of the IP core in netlist format in order to simplify constraints and timing
closure.

7.2 Mapped VHDL

A core provided in mapped VHDL format is included during synthesis, and treated the same as any
RTL VHDL code. To use such netlist, the core must be configured to incorporate the netlist rather
than the RTL VHDL code. This can be done in thexconfig configuration menu, or by setting the
‘netlist’ generic on the IP core. The benefit of VHDL netlists is that the core (and whole design) can
be simulated and verified without special simulation libraries.

7.3 Xilinx netlist files

To use Xilinx netlist files (.ngo or .edf), the netlist should be placed in the ‘netlists/xilinx/tech’ direc-
tories. During place&route, the ISE mapper will look in this location and replace and black-boxes in
the design with the corresponding netlist. Note that when using .ngo or .edf files, the ‘netlist’ generic
on the cores should NOT be set.

A special case exists for GRFPU and GRFPU-lite netlists. In GRLIB distributions that lack FPU
source code, the netlist version of the selected FPU core will always be instantiated. When the design
is simulated a VHDL netlist will be used (if available) and when the design is synthesized an EDIF
netlist will be used. This is done in order to speed up synthesis. Parsing and performing synthesis on
VHDL netlists is time consuming and using an EDIF netlist instead decreases the time required to run
the tools.

Some tool versions have bugs that prevent them from using EDIF netlists. In order to work around
such issues, convert the EDIF netlist to a .ngo netlist using theedif2ngdapplication in the ISE suite.
After a netlist has been converted to .ngo format the EDIF version can be removed from the library.

7.4 Altera netlists

To use Altera netlist files (.vqm), the netlist should be placed in the ‘netlists/altera/tech’ directories, or
in the current design directory. During place&route, the Altera mapper will look in these location and
replace and black-boxes in the design with the corresponding netlist. Note that when using .vqm files,
the ‘netlist’ generic on the cores should NOT be set.

A special case exists for GRFPU and GRFPU-lite netlists. In GRLIB distributions that lack FPU
source code, the netlist version of the selected FPU core will always be instantiated. When the design
is simulated a VHDL netlist will be used (if available) and when the design is synthesized a .vqm
netlist will be used. This is done in order to speed up synthesis and due to the synthesis tools not
always being able to handle VHDL netlists correctly.

7.5 Known limitations

Some tool versions have bugs that prevent them from using EDIF netlists. In order to work around
such issues, convert the EDIF netlist to a .ngo netlist using theedif2ngdapplication in the ISE suite.
After a netlist has been converted to .ngo format the EDIF version can be removed from the library

When synthesizing with Xilinx XST, the tool can crash when the VHDL netlist of GRFPU is used.
This is not an issue with recent GRLIB versions since the VHDL netlists are currently only used for
simulation.

AEROFLEX GAISLER 70 GRLIB

8 Extending GRLIB

8.1 Introduction

GRLIB consists of a number of VHDL libraries, each one providing a specific set of interfaces or IP
cores. The libraries are used to group IP cores according to the vendor, or to provide shared data struc-
tures and functions. Extension of GRLIB can be done by adding cores to an existing library, adding a
new library and associated cores/packages, adding portability support for a new target technology,
adding support for a new simulator or synthesis tool, or adding a board support package for a new
FPGA board.

8.2 GRLIB organisation

The automatic generation of compile scripts searches for VHDL libraries in the file lib/libs.txt, and in
lib/*/libs.txt. The libs.txt files contains paths to directories containing IP cores to be compiled into the
same VHDL library. The name of the VHDL library is the same as the directory. The main libs.txt
(lib/libs.txt) provides mappings to libraries that are always present in GRLIB, or which depend on a
specific compile order (the libraries are compiled in the order they appear in libs.txt):
$ cat lib/libs.txt
grlib
tech/atc18
tech/apa
tech/unisim
tech/virage
fpu
gaisler
esa
opencores

Relative paths are allowed as entries in the libs.txt files. The path depth is unlimited. The leaf of each
path corresponds to a VHDL libary name (e.g. ‘grlib’ and ‘unisim’).

Each directory specified in the libs.txt contains the file dirs.txt, which contains paths to sub-directo-
ries containing the actual VHDL code. In each of the sub-directories appearing in dirs.txt should con-
tain the files vhdlsyn.txt and vhdlsim.txt. The file vhdlsyn.txt contains the names of the files which
should be compiled for synthesis (and simulation), while vhdlsim.txt contains the name of the files
which only should be used for simulation. The files are compiled in the order they appear, with the
files in vhdlsyn.txt compiled before the files in vhdlsim.txt.

The example below shows how the AMBA package in the GRLIB VHDL library is constructed:
$ ls lib/grlib

amba/ dirs.txt modgen/ sparc/ stdlib/ tech/ util/

$ cat lib/grlib/dirs.txt

stdlib util sparc modgen amba tech

$ ls lib/grlib/amba

ahbctrl.vhd amba.vhd apbctrl.vhd vhdlsyn.txt

$ cat grlib/lib/grlib/amba/vhdlsyn.txt

amba.vhd apbctrl.vhd ahbctrl.vhd

The libraries listed in the grlib/lib/libs.txt file are scanned first, and the VHDL files are added to the
automaticaly generated compile scipts. Then all sub-directories in lib are scanned for additional
libs.txt files, which are then also scanned for VHDL files. It is therefore possible to add a VHDL
library (= sub-directory to lib) without having to edit lib/libs.txt, just by inserting into lib.

When all libs.txt files have been scanned, the dirs.txt file in lib/work is scanned and any cores in the
VHDL work library are added to the compile scripts. The work directory must be treated last to avoid
circular references between work and other libraries. The work directory is always scanned as does
not appear in lib/libs.txt.

AEROFLEX GAISLER 71 GRLIB

8.3 Adding an AMBA IP core to GRLIB

8.3.1 Example of adding an existing AMBA AHB slave IP core

An IP core with AMBA interfaces can be easily adapted to fit into GRLIB. If the AMBA signals are
declared as standard IEEE-1164 signals, then it is simple a matter of assigning the IEEE-1164 signal
to the corresponding field of the AMBA record types declared in GRLIB, and to define the plug&play
configuration information, as shown in the example hereafter.

The plug&play configuration utilizes the constants and functions declared in the GRLIB AMBA
‘types’ package, and the HADDR and HMASK generics.

Below is the resulting entity for the adapted component:
library ieee; use ieee.std_logic_1164.all;
library grlib; use grlib.amba.all;

entity ahb_example is
 generic (
 hindex : integer := 0;

haddr : integer := 0;
 hmask : integer := 16#fff#);
 port (

rst : in std_ulogic;
clk : in std_ulogic;
ahbsi : in ahb_slv_in_type;

 ahbso : out ahb_slv_out_type);
end;

architecture rtl of ahb_example is

-- component to be interfaced to GRLIB
component ieee_example
 port (
 rst : in std_ulogic;
 clk : in std_ulogic;
 hsel : in std_ulogic; -- slave select
 haddr : in std_logic_vector(31 downto 0); -- address bus (byte)
 hwrite : in std_ulogic; -- read/write
 htrans : in std_logic_vector(1 downto 0); -- transfer type
 hsize : in std_logic_vector(2 downto 0); -- transfer size
 hburst : in std_logic_vector(2 downto 0); -- burst type
 hwdata : in std_logic_vector(31 downto 0); -- write data bus
 hprot : in std_logic_vector(3 downto 0); -- protection control
 hreadyi : in std_ulogic; -- transfer done
 hmaster : in std_logic_vector(3 downto 0); -- current master
 hmastlock : in std_ulogic; -- locked access
 hreadyo : out std_ulogic; -- transfer done
 hresp : out std_logic_vector(1 downto 0); -- response type
 hrdata : out std_logic_vector(31 downto 0); -- read data bus
 hsplit : out std_logic_vector(15 downto 0)); -- split completion
end component;

-- plug&play configuration
constant HCONFIG: ahb_config_type := (

 0 => ahb_device_reg (VENDOR_EXAMPLE, EXAMPLE_AHBRAM, 0, 0, 0),
 4 => ahb_membar(memaddr, '0', '0', memmask), others => X"00000000");

begin
 ahbso.hconfig <= HCONFIG; -- Plug&play configuration
 ahbso.hirq <= (others => ‘0’); -- No interrupt line used

 -- original component
e0: ieee_example

 port map(
 rst, clk, ahbsi.hsel(ahbndx), ahbsi.haddr, ahbsi.hwrite, ahbsi.htrans, ahbsi.hsize,

ahbsi.hburst, ahbsi.hwdata, ahbsi.hprot, ahbsi.hready, ahbsi.hmaster,
ahbsi.hmastlock, ahbso.hready, ahbso.hresp, ahbso.hrdata, ahbso.hsplit);

end;

The files containing the entityahb_examplethe entity forieee_exampleshould be added to GRLIB by
listing the files in avhdlsyn.txtfile located in a directory that will be scanned by the GRLIB scripts, as
described in section 8.2. The paths invhdlsyn.txtcan be relative, allowing the VHDL files to be placed
outside the GRLIB tree. The entities and packages will be compiled into a library with the same name
as the directory that holds thevhdlsyn.txt file.

In theahb_exampleexample, the core does not have the ability to assert an interrupt. In order to assert
an interrupt, an AHB core must drive thehirq vector in theahb_slv_out_type(or ahb_mst_out_type)
output record. If the core is an APB slave, it should drive theapb_slv_out_typerecord’spirq vector.
Positionn of hirq/pirq corresponds to interrupt linen. All unused interrupt lines must be driven to ‘0’.

AEROFLEX GAISLER 72 GRLIB

8.3.2 AHB Plug&play configuration

As described in section 5.3, the configuration record from each AHB unit is sent to the AHB bus con-
troller via the HCONFIG signal. From this information, the bus controller automatically creates the
read-only plug&play area.

In theahb_exampleexample in the previous section, the plug&play configuration is held in the con-
stantHCONFIG, which is assigned to the outputahbso.hconfig. The constant is created with:

-- plug&play configuration
constant HCONFIG : ahb_config_type := (

 0 => ahb_device_reg (VENDOR_EXAMPLE, EXAMPLE_AHBRAM, 0, 0, 0),
 4 => ahb_membar(memaddr, '0', '0', memmask), others => X"00000000");

Theahb_config_typeis an array of 32-bit vectors. Each position in this array corresponds to the same
word in the core’s plug&play information. Section 5.3.1 describes the plug&play information in the
following way: The first word is called the identification register and contains information on the
device type and interrupt routing. The last four words are called bank address registers, and contain
address mapping information for AHB slaves. The remaining three words are currently not assigned
and could be used to provide core-specific configuration information.

The AMBA package (lib/grlib/amba/amba.vhd) in GRLIB provides functions that help users create
proper plug&play information. Two of these functions are used above. Theahb_device_regfunction
creates the identification register value for an AHB slave or master:
ahb_device_reg (vendor, device, cfgver, version, interrupt)

The parameters are explained in the table below:

If an IP core only has an AHB master interface, the only position inHCONFIGthat needs to be spec-
ified is the first word:
constant hconfig : ahb_config_type := (
 0 => ahb_device_reg (venid, devid, 0, version, 0),
 others => X"00000000");

If an IP core has an AHB slave interface, as in theahb_exampleexample, we also need to specify the
memory area(s) that the slave will map. Again, the HCONFIG constant fromahb_example is:

-- plug&play configuration
constant HCONFIG : ahb_config_type := (

 0 => ahb_device_reg (VENDOR_EXAMPLE, EXAMPLE_AHBRAM, 0, 0, 0),
 4 => ahb_membar(memaddr, '0', '0', memmask), others => X"00000000");

The last four words ofahb_config_type(positions 4 - 7) are called bank address registers (BARs), and
contain memory map information. This information determines address decoding in the AHB control-
ler (AHBCTRL core). Address decoding is described in detail under section 5.3.3. When creating an
AHB memory bank, theahb_membarfunction can be used to automatically generate the correct lay-
out for a BAR:
ahb_membar(memaddr, prefetch, cache, memmask)

To create an AHB I/O bank, theahb_iobar function can be used:

TABLE 41. ahb_device_reg parameters

Parameter Comments

vendor Integer Vendor ID. Typically defined inlib/grlib/amba/devices.vhd. It is recom-
mended that new cores be added under a new vendor ID or under the contrib
vendor ID.

device Integer Device ID. Typically defined inlib/grlib/amba/devices.vhd. The combi-
nation of vendor and device ID must not match any existing core as this may
lead to your IP core being initialized by drivers for another core.

cfgver Plug&play information version, only supported value is 0.

version Core version/revision. Assigned to 5-bit wide field in plug&plat information.

interrupt Set this value to the first interrupt line that the core drives. Set to 0 if core does
not make use of interrupts.

AEROFLEX GAISLER 73 GRLIB

ahb_iobar(memaddr, memmask)

The parameters of these functions are described in the table below:

An AHB slave can map up to four address areas (it has four bank address registers). Typically, an IP
core has one AHB I/O bank with registers and zero or several AHB memory banks that map a larger
memory area. One example is the GRLIB DDR2 controller (DDR2SPA) that has the following
HCONFIG:
constant hconfig : ahb_config_type := (
 0 => ahb_device_reg (VENDOR_GAISLER, GAISLER_DDR2SP, 0, REVISION, 0),
 4 => ahb_membar(haddr, '1', '1', hmask),
 5 => ahb_iobar(ioaddr, iomask),
 others => zero32);

Position four, the first bank address register, defines an AHB memory bank which maps external
DDR2 SDRAM memory. Position five, the second bank address register, defines an AHB I/O bank
that holds the memory controller’s register interface. On this core, thehaddr, hmask, ioaddr andiom-
ask values are set via VHDL generics.

For IP cores that map multiple memory areas, there is no need for the IP core to decode the address in
order to determine which bank that is accessed. The AHB controller decodes the incoming address
and selects the correct AHB slave via the HSEL vector. The AHB controller also indicates which
bank that is being accessed via the HMBSEL vector, when bankn is accessed HMBSEL(n) will be
asserted.

8.3.3 Example of creating an APB slave IP core

The next page contains an APB slave example core. The IP core has one memory mapped 32-bit reg-
ister that will be reset to zero. The register can be read or written from register address offset 0. The
core’s base address, mask and bus index settings are configurable via VHDL generics (pindex, paddr,
pmask). ThepaddrandpmaskVHDL generics are propagated to the APB bridge via theapbo.pconfig
signal and the index is propagated via theapbo.pindexsignal. These values are then used by the APB
bridge to generate the APB address decode and slave select logic.

Example of APB slave IP core with one 32-bit register that can be read and written:
library ieee; use ieee.std_logic_1164.all;
library grlib; use grlib.amba.all; use grlib.devices.all;
library gaisler; use gaisler.misc.all;

entity apb_example is
 generic (
 pindex : integer := 0;
 paddr : integer := 0;
 pmask : integer := 16#fff#);
 port (
 rst : in std_ulogic;
 clk : in std_ulogic;
 apbi : in apb_slv_in_type;
 apbo : out apb_slv_out_type);
end;

architecture rtl of apb_example is

 constant REVISION : integer := 0;

 constant PCONFIG : apb_config_type := (
 0 => ahb_device_reg (VENDOR_ID, DEVICE_ID, 0, REVISION, 0),
 1 => apb_iobar(paddr, pmask));

 type registers is record

TABLE 42. ahb_membar/ahb_iobar parameters

Parameter Comments

memaddr Integer value propagated to BAR.ADDR

memmask Integer value propagated to BAR.MASK

prefetch Std_Logic value propagated to prefetchable field (P) in bank address register.
Only applicable for AHB memory bars (ahb_membar function).

cache Std_Logic value propagated to cacheable field (C) in bank address register. Only
applicable for AHB memory bars (ahb_membar function).

AEROFLEX GAISLER 74 GRLIB

 reg : std_logic_vector(31 downto 0);
 end record;

 signal r, rin : registers;

begin

 comb : process(rst, r, apbi)
 variable readdata : std_logic_vector(31 downto 0);
 variable v : registers;
 begin
 v := r;

 -- read register
 readdata := (others => '0');
 case apbi.paddr(4 downto 2) is
 when "000" => readdata := r.reg(31 downto 0);
 when others => null;
 end case;

 -- write registers
 if (apbi.psel(pindex) and apbi.penable and apbi.pwrite) = '1' then
 case apbi.paddr(4 downto 2) is
 when "000" => v.reg := apbi.pwdata;
 when others => null;
 end case;
 end if;

 -- system reset
 if rst = '0' then v.reg := (others => '0'); end if;

 rin <= v;
 apbo.prdata <= readdata; -- drive apb read bus
 end process;

 apbo.pirq <= (others => '0'); -- No IRQ
 apbo.pindex <= pindex; -- VHDL generic
 apbo.pconfig <= PCONFIG; -- Config constant

-- registers
 regs : process(clk)
 begin
 if rising_edge(clk) then r <= rin; end if;
 end process;

-- boot message

-- pragma translate_off
 bootmsg : report_version
 generic map ("apb_example" & tost(pindex) &": Example core rev " & tost(REVISION));
-- pragma translate_on

end;
The steps required to instantiate theapb_example IP core in a system are:

• Add the file to a directory covered by the GRLIB scripts (vialibs.txt anddirs.txt)

• Add the file tovhdlsyn.txtin the current directory

• Modify the example to use a unique vendor and device ID (see creation of PCONFIG constant)

• Create a component for theapb_example core in a package that is also synthesized.

• Include the package in your design top-level

• Instantiate the component in your design top-level

For a complete example, see the General Purpose Register (GRGPREG) IP core located inlib/gaisler/
misc/grgpreg.vhd. That core is very similar to the example given in this section. The GRGPREG core
has a component declaration in the grlib.misc package located atlib/gaisler/misc/misc.vhd. Note that
both of these files are listed in thevhdlsyn.txt file located in the same directory.

8.3.4 APB plug&play configuration

APB slave plug&play configuration is propagated via theapb_slv_out_typerecord’spconfigmember.
The configuration is very similar to that of an AHB slave. The main difference is that APB slaves only
have one type of BAR and each APB slave only has one bank. The creation of the PCONFIG array in
the previous section looked like:
constant PCONFIG : apb_config_type := (
 0 => ahb_device_reg (VENDOR_ID, DEVICE_ID, 0, REVISION, 0),
 1 => apb_iobar(paddr, pmask));

AEROFLEX GAISLER 75 GRLIB

The ahb_device_regfunction has been described in section 8.3.2. Theapb_iobarfunction takes the
same arguments as theahb_iobar function, also described in section 8.3.2.

8.4 Using verilog code

Verilog does not have the notion of libraries, and although some CAD tools supports the compilation
of verilog code into separate libabries, this feature is not provided in all tools. Most CAD tools how-
ever support mixing of verilog and VHDL, and it is therefore possible to add verilog code to the work
library. Adding verilog files is done in the same way as VHDL files, except that the verilog file names
should appear invlogsyn.txt andvlogsim.txt.

The basic steps for adding a synthesizable verilog core are:

• Create a directory and add it tolibs.txt anddirs.txt as described in section 8.2, or use an existing directory.

• List the verilog files in avlogsyn.txt file located in the selected directory

• Create a VHDL component declaration for the verilog top-level

In case the verilog IP core will be instantiated directly in the design, the component can be added to a
package. This package can then be referenced in the design’s top-level and the verilog core can be
instantiated using the VHDL component.

In case the verilog IP core has an AMBA interface, it will likely require wrapping in order to add the
GRLIB AMBA plug&play signals. To do this, the procedure described in section 8.3.1 can be used,
where theieee_examplecomponent declaration would be the VHDL component for the verilog IP
core.

As mentioned above, all CAD tools may not support compiling verilog code into a library. Should the
strategy above not work, another option is to list the verilog files in theVERILOGSYNFILESvariable
defined in the (template) design’s Makefile and to create the VHDL component of the verilog IP core
in the design’s top-level.

Other issues that may arise include propagation problems of VHDL generics to Verilog parameters
(issues crossing the language barrier). Many tools handle propagation of integer and string values cor-
rectly. Should there be any problems, it is recommended to change the Verilog code to remove the
parameters.

8.5 Adding portabilty support for new target technologies

8.5.1 General

New technologies to support portability can be added to GRLIB without the need to modify any pre-
viously developed designs. This is achieved by technology independent encapsulation of components
such as memories, pads and clock buffers. The technology mapping is organized as follows:

• A VHDL library with the technology simulation models is placed in lib/tech/library

• Wrappers for memory, pads, PLL and other cells are placed under lib/techmap/library

• All ‘virtual’ components with technology mapping are placed in lib/techmap/maps

• Declaration of all ‘virtual’ components and technologies is made in lib/techmap/gencomp/gencomp.vhd

An entity that uses a technology independent component needs only to make the techmap.gencomp
package visible, and can then instantiate any of the mapped components.

8.5.2 Adding a new technology

A new technology is added in four steps. First, a VHDL library is created in the lib/tech/library loca-
tion. Secondly, a package containing all technology specific component declarations is created and
the source code file name is added to the ‘vhdlsyn.txt’ or ‘vlogsyn.txt’ file. Third, simulation models
are created for all the components and the source file names are added to the ‘vhdlsim.txt’ or
‘vlogsim.txt’ file. A technology constant is added to the GENCOMP package defined in the TECH-
MAP library. The library name is not put in lib/libs.txt but added either to the FPGALIBS or ASI-
CLIBS in bin/Makfile.

The technology library part is completed and the components need to be encapsulated as described in
the next section. As an example, the ASIC memories from Virage are defined in the VIRAGE library,
located in the lib/virage directory. The component declarations are defined in the VCOMPONENTS

AEROFLEX GAISLER 76 GRLIB

package in the virage_vcomponents.vhd file. The simulation models are defined in
virage_simprims.vhd.

8.5.3 Encapsulation

Memories, pads and clock buffers used in GRLIB are defined in the TECHMAP library. The encapsu-
lation of technology specific components is done in two levels.

The lower level handles the technology dependent interfacing to the specific memory cells or macro
cells. This lower level is implemented separately for each technology as described hereafter.

For each general type of memory, pad or clock buffer, an entity/architecture is created at the lower
level. The entity declarations are technology independent and have similar interfaces with only minor
functional variations between technologies. The architectures are used for instantiating, configuring
and interfacing the memory cells or macro cells defined for the technology.

A package is created for each component type containing component declarations for the aforemen-
tioned entities. Currently there is a separate memory, pad and clock buffer package for each technol-
ogy. The components in these packages are only used in the higher level, never directly in the designs
or IP cores.

The higher level defines a technology independent interface to the memory, pad or clock buffer. This
higher level is implemented only once and is common to all technologies.

For each general type of memory, pad or clock buffer, an entity/architecture is created at the higher
level. The entity declarations are technology independent. The architectures are used for selecting the
relevant lower level component depending on the value of thetech andmemtech generics.

A package is created for each component type containing component declarations for the aforemen-
tioned entities. Currently there is a separate memory, pad and clock buffer package. The components
declared in these packages are used in the designs or by other IP cores. The two level approach allows
each technology to be maintained independently of other technologies.

8.5.4 Memories

The currently defined memory types are single-port, dual-port, two-port and triple-port synchronous
RAM. The encapsulation method described in the preceding section is applied to include a technol-
ogy implementing one of these memory types.

For example, the ASIC memory models from Virage are encapsulated at the lower level i thelib/
tech/techmap/virage/mem_virage_gen.vhd file. Specifically, the single-port RAM is
defined in the VIRAGE_SYNCRAM entity:
entity virage_syncram is
 generic (

abits : integer := 10;
dbits : integer := 8);

 port (
 clk : in std_ulogic;
 address : in std_logic_vector(abits -1 downto 0);
 datain : in std_logic_vector(dbits -1 downto 0);
 dataout : out std_logic_vector(dbits -1 downto 0);
 enable : in std_ulogic;
 write : in std_ulogic);
end;

The corresponding architecture instantiates the Virage specific technology specific memory cell, e.g.
hdss1_256x32cm4sw0 shown hereafter:
architecture rtl of virage_syncram is
 signal d, q, gnd : std_logic_vector(35 downto 0);
 signal a : std_logic_vector(17 downto 0);
 signal vcc : std_ulogic;
 constant synopsys_bug : std_logic_vector(37 downto 0) := (others => '0');
begin

 gnd <= (others => '0'); vcc <= '1';
 a(abits -1 downto 0) <= address;
 d(dbits -1 downto 0) <= datain(dbits -1 downto 0);
 a(17 downto abits) <= synopsys_bug(17 downto abits);
 d(35 downto dbits) <= synopsys_bug(35 downto dbits);
 dataout <= q(dbits -1 downto 0);
 q(35 downto dbits) <= synopsys_bug(35 downto dbits);

 a8d32 : if (abits = 8) and (dbits <= 32) generate
 id0 : hdss1_256x32cm4sw0
 port map (a(7 downto 0), gnd(7 downto 0),clk,

AEROFLEX GAISLER 77 GRLIB

d(31 downto 0), gnd(31 downto 0), q(31 downto 0),
enable, vcc, write, gnd(0), gnd(0), gnd(0), gnd(0), gnd(0));

 end generate;
...

end rtl;

The lib/tech/techmap/virage/mem_virage.vhd file contains the corresponding compo-
nent declarations in the MEM_VIRAGE package.
package mem_virage is

component virage_syncram
generic (

abits : integer := 10;
dbits : integer := 8);

 port (
clk : in std_ulogic;

 address : in std_logic_vector(abits -1 downto 0);
 datain : in std_logic_vector(dbits -1 downto 0);
 dataout : out std_logic_vector(dbits -1 downto 0);
 enable : in std_ulogic;
 write : in std_ulogic);
 end component;

...
end;

The higher level single-port RAM model SYNCRAM is defined in thelib/gaisler/maps/
syncram.vhd file . The entity declaration is technology independent:
entity syncram is
 generic (

tech : integer := 0;
abits : integer := 6;
dbits : integer := 8);

 port (
 clk : in std_ulogic;
 address : in std_logic_vector((abits -1) downto 0);
 datain : in std_logic_vector((dbits -1) downto 0);
 dataout : out std_logic_vector((dbits -1) downto 0);
 enable : in std_ulogic;
 write : in std_ulogic);
end;

The corresponding architecture implements the selection of the lower level components based on the
MEMTECH or TECH generic:
architecture rtl of syncram is
begin

inf : if tech = infered generate
 u0 : generic_syncram generic map (abits, dbits)
 port map (clk, address, datain, dataout, write);
 end generate;

...
 vir : if tech = memvirage generate
 u0 : virage_syncram generic map (abits, dbits)
 port map (clk, address, datain, dataout, enable, write);
 end generate;

...
end;

Thelib/tech/techmap/gencomp/gencomp.vhd file contains the corresponding component
declaration in the GENCOMP package:
package gencomp is

component syncram
 generic (

tech : integer := 0;
abits : integer := 6;
dbits : integer := 8);

 port (
 clk : in std_ulogic;
 address : in std_logic_vector((abits -1) downto 0);
 datain : in std_logic_vector((dbits -1) downto 0);
 dataout : out std_logic_vector((dbits -1) downto 0);
 enable : in std_ulogic;
 write : in std_ulogic);
 end component;

...
end;

The GENCOMP package contains component declarations for all portable components, i.e. SYN-
CRAM, SYNCRAM_DP, SYNCRAM_2P and REGFILE_3P.

AEROFLEX GAISLER 78 GRLIB

8.5.5 Pads

The currently defined pad types are in-pad, out-pad, open-drain out-pad, I/O-pad, open-drain I/O pad,
tri-state output-pad and open-drain tri-state output-pad. Each pad type comes in a discrete and a vec-
torized version.

The encapsulation method described in the preceding sections is applied to include a technology
implementing these pad types.

The file structure is similar to the one used in the memory example above. The pad related files are
located in grlib/lib/tech/techmap/maps . The grlib/lib/tech/techmap/gen-
comp/gencomp.vhd file contains the component declarations in the GENCOMP package.

8.5.6 Clock generators

There is currently only one defined clock generator types named CLKGEN.

The encapsulation method described in the preceding sections is applied to include a technology
implementing clock generators and buffers.

The file structure is similar to the one used in the memory example above. The clock generator related
files are located in grlib/lib/tech/techmap/maps. The CLKGEN component is declared in the GEN-
COMP package.

8.6 Extending the xconfig GUI configuration

8.6.1 Introduction

Each template design has a simple graphical configuration interface that can be started by issuing
make xconfigin the template design directory. The tool presents the user with configuration options
and generates the fileconfig.vhd that contains configuration constants used in the design.

The subsections below describe how to create configuration menus for a core and then how to include
these new options in xconfig for an existing template design.

8.6.2 IP core xconfig files

Each core has a set of files that are used to generate the core’s xconfig menu entries. As an example
we will look at the GRGPIO core’s menu. The xconfig files are typically located in the same directory
as the core’s HDL files (but this is not a requirement). For the GRGPIO core the xconfig files are:
$ ls lib/gaisler/misc/grgpio.in.*

lib/gaisler/misc/grgpio.in
lib/gaisler/misc/grgpio.in.h
lib/gaisler/misc/grgpio.in.help
lib/gaisler/misc/grgpio.in.vhd

We will start by looking at thegrgpio.in file. This file defines the menu structure and options for the
GRGPIO core:

 bool 'Enable generic GPIO port ' CONFIG_GRGPIO_ENABLE
 if ["$CONFIG_GRGPIO_ENABLE" = "y"]; then
 int 'GPIO width ' CONFIG_GRGPIO_WIDTH 8
 hex 'GPIO interrupt mask ' CONFIG_GRGPIO_IMASK 0000
 fi

The first line defines a boolean option that will be saved in the variableCONFIG_GRGPIO_ENABLE.
This will be rendered as a yes/no question in the menu. If this constant is set to yes (‘y’) then the user
will be able to select two more configuration options. First the width, which is defined as an integer
(int), and the interrupt mask which is defined as a hexadecimal value (hex).

The GUI has a help option for each item in the menu. When a user clicks on the help button a help
text can be optionally displayed. The contents of the help text boxes is defined in the file that ends
with .in.help, in this casegrgpio.in.help:
GPIO port
CONFIG_GRGPIO_ENABLE
 Say Y here to enable a general purpose I/O port. The port can be
 configured from 1 - 32 bits, whith each port signal individually
 programmable as input or output. The port signals can also serve

AEROFLEX GAISLER 79 GRLIB

 as interrupt inputs.

GPIO port witdth
CONFIG_GRGPIO_WIDTH
 Number of bits in the I/O port. Must be in the range of 1 - 32.

GPIO interrupt mask
CONFIG_GRGPIO_IMASK
 The I/O port interrupt mask defines which bits in the I/O port
 should be able to create an interrupt.

As can be seen above, each help entry consists of a topic, the name of the variable used in the menu
and the help text.

The two remaining files (grgpio.in.handgrgpio.in.vhd) are used when generating theconfig.vhdfile
for a design.config.vhdtypically consists of a set of lines for each core where the first line decides if
the core should be instantiated in the design and the following lines contain configuration options. For
the GRGPIO core, the filegrgpio.in.vhddefines that the following constants should be included in
config.vhd:
-- GPIO port
 constant CFG_GRGPIO_ENABLE : integer := CONFIG_GRGPIO_ENABLE;
 constant CFG_GRGPIO_IMASK : integer := 16#CONFIG_GRGPIO_IMASK#;
 constant CFG_GRGPIO_WIDTH : integer := CONFIG_GRGPIO_WIDTH;

In the listing above, we see a mix of VHDL and the constants defined in the menus (see listing for
grgpio.inabove). The value we select forCONFIG_GRPIO_ENABLEwill be assigned to the VHDL
constantCFG_GRGPIO_ENABLE. In the menu we definedCONFIG_GRGPIO_IMASKas a hexa-
decimal value. The VHDL notation for this is to enclose the value in16#..#and this is done for the
CFG_GRGPIO_IMASK constant.

When exiting the xconfig tool, the.in.vhdfiles for all cores will be concatenated into one file. Then a
pre-processor will be used to replace all the variables defined in the menus (for instance
CONFIG_GRGPIO_ENABLE) into the values they represent. In this process, additional information
is inserted via the.in.vhd.h files. The contents ofgrgpio.in.h is:
#ifndef CONFIG_GRGPIO_ENABLE
#define CONFIG_GRGPIO_ENABLE 0
#endif
#ifndef CONFIG_GRGPIO_IMASK
#define CONFIG_GRGPIO_IMASK 0000
#endif
#ifndef CONFIG_GRGPIO_WIDTH
#define CONFIG_GRGPIO_WIDTH 1
#endif

This file is used to guarantee that theCONFIG_variable always exist and are defined to sane values.
If a user has disabledCONFIG_GRGPIO_ENABLEvia the configuration menu, then this variable and
all the other GRGPIO variables will be undefined. This would result in aconfig.vhdentry that looks
like:
-- GPIO port
 constant CFG_GRGPIO_ENABLE : integer := ;
 constant CFG_GRGPIO_IMASK : integer := 16##;
 constant CFG_GRGPIO_WIDTH : integer := ;

... and lead to errors during compilation. This is prevented bygrgpio.in.habove, where all undefined
variables are defined to sane values. It is also possible to place additional intelligence in the.in.h file
where dependencies between variables can be expressed in ways that would be complicated in the
menu definition in the.in file.

8.6.3 xconfig menu entries

The menu entries to include in xconfig is defined for each template design in the fileconfig.in. As an
example we will look at theconfig.infile for the designleon3-gr-xc3s-1500. In designs/leon3-gr-
xc3s-1500/config.inwe find the entry for the GRGPIO port (described in the previous section) as part
of one of the submenus:
mainmenu_option next_comment
 comment 'UART, timer, I/O port and interrupt controller'
 source lib/gaisler/uart/uart1.in
 if ["$CONFIG_DSU_UART" != "y"]; then
 source lib/gaisler/uart/uart2.in
 fi

AEROFLEX GAISLER 80 GRLIB

 source lib/gaisler/leon3/irqmp.in
 source lib/gaisler/misc/gptimer.in
 source lib/gaisler/misc/grgpio.in
 endmenu

These lines will create a submenu namedUART, timer, I/O port and interrupt controllerand under
this submenu include the options for the two UART cores, interrupt controller, timer unit and GPIO
port. When the.in file for a core is specified inconfig.in, the xconfig tool will automatically also use
the corresponding.in.h and.in.vhd files when generating theconfig.vhd file.

8.6.4 Adding new xconfig entries

In this section we will extend the menu in theleon3-gr-xc3s-1500design to include configuration
options for one additional core. Note that adding xconfig entries does not include IP core HDL files in
the list of files to be synthesized for a design. See section 8.3 for information on adding the HDL files
of an IP core to GRLIB.

When we start, theconfig.infile for leon3-gr-xc3s-1500has the following contents around the inclu-
sion of GRGPIO:
mainmenu_option next_comment
 comment 'UART, timer, I/O port and interrupt controller'
 source lib/gaisler/uart/uart1.in
 if ["$CONFIG_DSU_UART" != "y"]; then
 source lib/gaisler/uart/uart2.in
 fi
 source lib/gaisler/leon3/irqmp.in
 source lib/gaisler/misc/gptimer.in
 source lib/gaisler/misc/grgpio.in
 endmenu

and theconfig.vhd file has the following entries (also just around the GRGPIO port):

-- GPIO port
 constant CFG_GRGPIO_ENABLE : integer := 1;
 constant CFG_GRGPIO_IMASK : integer := 16#0000#;
 constant CFG_GRGPIO_WIDTH : integer := (8);

-- Spacewire interface
....

The core that we will add support for is the I2C2AHB core. We start by making copies of the existing
configuration files for the GRGPIO core (described in section 8.6.2) and modify them for I2C2AHB.
The resulting files are listed below:

i2c2ahb.in:
bool 'Enable I2C to AHB bridge ' CONFIG_I2C2AHB
 if ["$CONFIG_I2C2AHB" = "y"]; then
 bool 'Enable APB interface ' CONFIG_I2C2AHB_APB
 hex 'AHB protection address (high) ' CONFIG_I2C2AHB_ADDRH 0000
 hex 'AHB protection address (low) ' CONFIG_I2C2AHB_ADDRL 0000
 hex 'AHB protection mask (high) ' CONFIG_I2C2AHB_MASKH 0000
 hex 'AHB protection mask (low) ' CONFIG_I2C2AHB_MASKL 0000
 bool 'Enable after reset ' CONFIG_I2C2AHB_APB
 hex 'I2C memory address ' CONFIG_I2C2AHB_SADDR 50
 hex 'I2C configuration address ' CONFIG_I2C2AHB_CADDR 51
 fi

i2c2ahb.in.help:
GRLIB I2C2AHB core
CONFIG_I2C2AHB
 Say Y here to enable I2C2AHB

CONFIG_I2C2AHB_APB
 Say Y here to configure the core's APB interface

CONFIG_I2C2AHB_ADDRH
 Defines address bits 31:16 of the core's AHB protection area

... and so on ..

i2c2ahb.in.vhd:
-- I2C to AHB bridge

AEROFLEX GAISLER 81 GRLIB

 constant CFG_I2C2AHB : integer := CONFIG_I2C2AHB;
 constant CFG_I2C2AHB_APB : integer := CONFIG_I2C2AHB_APB;
 constant CFG_I2C2AHB_ADDRH : integer := 16#CONFIG_I2C2AHB_ADDRH#;
 constant CFG_I2C2AHB_ADDRL : integer := 16#CONFIG_I2C2AHB_ADDRL#;
 constant CFG_I2C2AHB_MASKH : integer := 16#CONFIG_I2C2AHB_MASKH#;
 constant CFG_I2C2AHB_MASKL : integer := 16#CONFIG_I2C2AHB_MASKL#;
 constant CFG_I2C2AHB_RESEN : integer := CONFIG_I2C2AHB_RESEN;
 constant CFG_I2C2AHB_SADDR : integer := 16#CONFIG_I2C2AHB_SADDR#;
 constant CFG_I2C2AHB_CADDR : integer := 16#CONFIG_I2C2AHB_CADDR#;
 constant CFG_I2C2AHB_FILTER : integer := CONFIG_I2C2AHB_FILTER;

i2c2ahb.in.h:
#ifndef CONFIG_I2C2AHB
#define CONFIG_I2C2AHB 0
#endif
#ifndef CONFIG_I2C2AHB_APB
#define CONFIG_I2C2AHB_APB 0
#endif
#ifndef CONFIG_I2C2AHB_ADDRH
#define CONFIG_I2C2AHB_ADDRH 0
#endif
#ifndef CONFIG_I2C2AHB_ADDRL
#define CONFIG_I2C2AHB_ADDRL 0
#endif
#ifndef CONFIG_I2C2AHB_MASKH
#define CONFIG_I2C2AHB_MASKH 0
#endif
#ifndef CONFIG_I2C2AHB_MASKL
#define CONFIG_I2C2AHB_MASKL 0
#endif
#ifndef CONFIG_I2C2AHB_RESEN
#define CONFIG_I2C2AHB_RESEN 0
#endif
#ifndef CONFIG_I2C2AHB_SADDR
#define CONFIG_I2C2AHB_SADDR 50
#endif
#ifndef CONFIG_I2C2AHB_CADDR
#define CONFIG_I2C2AHB_CADDR 51
#endif
#ifndef CONFIG_I2C2AHB_FILTER
#define CONFIG_I2C2AHB_FILTER 2
#endif

Once we have the above files in place, we will modifydesigns/leon3-gr-emaxc3s-1500/config.inso
that I2C2AHB is also included. The resulting entries in config.in looks like:
mainmenu_option next_comment
 comment 'UART, timer, I/O port and interrupt controller'
 source lib/gaisler/uart/uart1.in
 if ["$CONFIG_DSU_UART" != "y"]; then
 source lib/gaisler/uart/uart2.in
 fi
 source lib/gaisler/leon3/irqmp.in
 source lib/gaisler/misc/gptimer.in
 source lib/gaisler/misc/grgpio.in
 source lib/gaisler/misc/i2c2ahb.in
 endmenu

Where the inclusion ofi2c2ahb.in is made just before theendmenu statement.

We can now issuemake xconfig in the template design directory to rebuild the graphical menu:
user@host:~/GRLIB/designs/leon3-gr-xc3s-1500$ make xconfig
make main.tk
make[1]: Entering directory `/home/user/GRLIB/designs/leon3-gr-xc3s-1500'
gcc -g -c ../../bin/tkconfig/tkparse.c
gcc -g -c ../../bin/tkconfig/tkcond.c
gcc -g -c ../../bin/tkconfig/tkgen.c
gcc -g tkparse.o tkcond.o tkgen.o -o tkparse.exe
./tkparse.exe config.in ../.. > main.tk
make[1]: Leaving directory `/home/user/GRLIB/designs/leon3-gr-xc3s-1500'
cat ../../bin/tkconfig/header.tk main.tk ../../bin/tkconfig/tail.tk > lconfig.tk
chmod a+x lconfig.tk

As can be seen from the output above, the change ofconfig.intriggered a re-build oftkparse.exeand
lconfig.tk. tkparse.exeis used to parse the.in files andlconfig.tk is what is executed when issuing
make xconfig. In order to rebuildtkparse.exethe system must have a working copy of the GNU C
compiler installed.

Under some circumstances the menus may not be rebuilt afterconfig.inhas been modified. If this hap-
pens try to issuetouch config.in or remove the filelconfig.tk.

AEROFLEX GAISLER 82 GRLIB

Now that the xconfig menus have been re-built we can check underPeripherals > UART, timer, I/O
port and interrupt controllerto see our newly added entries for the I2C2AHB core. Once we save and
exit the xconfig tool a newconfig.vhdfile will be generated that now also contains the constants
defined in i2c2ahb.in.vhd:
-- GPIO port
 constant CFG_GRGPIO_ENABLE : integer := 1;
 constant CFG_GRGPIO_IMASK : integer := 16#0000#;
 constant CFG_GRGPIO_WIDTH : integer := (8);

-- I2C to AHB bridge
 constant CFG_I2C2AHB : integer := 0;
 constant CFG_I2C2AHB_APB : integer := 0;
 constant CFG_I2C2AHB_ADDRH : integer := 16#0#;
 constant CFG_I2C2AHB_ADDRL : integer := 16#0#;
 constant CFG_I2C2AHB_MASKH : integer := 16#0#;
 constant CFG_I2C2AHB_MASKL : integer := 16#0#;
 constant CFG_I2C2AHB_RESEN : integer := 0;
 constant CFG_I2C2AHB_SADDR : integer := 16#50#;
 constant CFG_I2C2AHB_CADDR : integer := 16#51#;
 constant CFG_I2C2AHB_FILTER : integer := 2;

-- Spacewire interface

These constants can now be used in all files that include thework.config VHDL package.

8.6.5 Other uses and limitations

There is nothing IP core specific in xconfig. Local copies of configuration files (*.in*) can be created
in the template design directory to create constants that are used to control other aspects of the design
and not just IP core configuration.

The graphical interface provided by xconfig can ease configuration but the tool has several limitations
that designers must be aware of:

1. When configuration options are saved and xconfig is exited, theconfig.vhd file is overwritten.

2. When a core is disabled, the present configuration is not restored when the core is re-enabled.

3. The tool does not provide a good solution for multiple instances of the same core.

The last item means that xconfig can not be used to configure two separate instances of the same core
(unless the cores should have the exact same configuration, if this is the case the same set ofcon-
fig.vhdconstants can be used in several instantiations). It is not possible to just include the same.in
file several times inconfig.in. This will lead to constants with the same name being created incon-
fig.vhd. One option is to make a local copy of a core’s configuration files (*.in*) and place them in the
template design directory. The local copies can then be edited to have all their variable names
changed (for instance by adding a2 to the end of the variable names) and a reference to the local files
can be added toconfig.in. This way a separate set of menu items, that will affect a separate set of con-
stants in config.vhd, can be included.

Aeroflex Gaisler AB tel +46 31 7758650

Kungsgatan 12 fax +46 31 421407

411 19 Göteborg sales@gaisler.com

Sweden www.aeroflex.com/gaisler

Copyright © 2013 Aeroflex Gaisler AB.

All information is provided as is. There is no warranty that it is correct or suitable for any purpose, neither
implicit nor explicit.

Information furnished by Aeroflex Gaisler AB is believed to be accurate and reliable.

However, no responsibility is assumed by Aeroflex Gaisler AB for its use, nor for any infringements of patents
or other rights of third parties which may result from its use.

No license is granted by implication or otherwise under any patent or patent rights of Aeroflex Gaisler AB.

GAISLER

AEROFLEX GAISLER 83 GRLIB

http://www.gaisler.com

	GRLIB IP Library User’s Manual
	1 Introduction
	1.1 Overview
	1.2 Library organization
	1.3 On-chip bus
	1.4 Distributed address decoding
	1.5 Interrupt steering
	1.6 Plug&Play capability
	1.7 Portability
	1.8 Available IP cores
	1.9 Licensing

	2 Installation
	2.1 Installation
	2.2 Upgrading
	2.3 Directory organization
	2.4 Host platform support
	2.4.1 Linux
	2.4.2 Windows with Cygwin

	3 LEON3 quick-start guide
	3.1 Introduction
	3.2 Overview
	3.3 Configuration
	3.4 Simulation
	3.5 Synthesis and place&route
	3.6 Simulation of post-synthesis netlist
	3.7 Board re-programming
	3.8 Running applications on target
	3.9 Flash PROM programming

	4 Implementation flow
	4.1 Introduction
	4.2 Using Makefiles and generating scripts
	4.3 Simulating a design
	4.3.1 Overview
	4.3.2 GRLIB_SIMULATOR environment variable

	4.4 Synthesis and place&route
	4.5 Skipping unused libraries, directories and files
	4.6 Encrypted RTL
	4.7 Tool-specific usage
	4.7.1 GNU VHDL (GHDL)
	4.7.2 Cadence ncsim
	4.7.3 Mentor ModelSim
	4.7.4 Aldec Active-HDL
	4.7.5 Aldec ALINT
	4.7.6 Aldec Riviera
	4.7.7 Symphony-EDA Sonata
	4.7.8 Synthesis with Synplify
	4.7.9 Synthesis with Mentor Precision
	4.7.10 Actel Designer
	4.7.11 Actel Libero
	4.7.12 Altera Quartus
	4.7.13 Xilinx ISE
	4.7.14 Xilinx PlanAhead
	4.7.15 Xilinx Vivado
	4.7.16 Lattice ISP Tools
	4.7.17 Synthesis with Synopsys Design Compiler
	4.7.18 Synthesis with Cadence RTL Compiler
	4.7.19 eASIC eTools

	4.8 XGrlib graphical implementation tool
	4.8.1 Introduction
	4.8.2 Simulation
	4.8.3 Synthesis
	4.8.4 Place & Route
	4.8.5 Additional functions

	5 GRLIB Design concept
	5.1 Introduction
	5.2 AMBA AHB on-chip bus
	5.2.1 General
	5.2.2 AHB master interface
	5.2.3 AHB slave interface
	5.2.4 AHB bus control
	5.2.5 AHB bus index control
	5.2.6 Support for wide AHB data buses

	5.3 AHB plug&play configuration
	5.3.1 General
	5.3.2 Device identification
	5.3.3 Address decoding
	5.3.4 Cacheability
	5.3.5 Interrupt steering

	5.4 AMBA APB on-chip bus
	5.4.1 General
	5.4.2 APB slave interface
	5.4.3 AHB/APB bridge
	5.4.4 APB bus index control

	5.5 APB plug&play configuration
	5.5.1 General
	5.5.2 Device identification
	5.5.3 Address decoding
	5.5.4 Interrupt steering

	5.6 GRLIB configuration package
	5.7 Technology mapping
	5.7.1 General
	5.7.2 Memory blocks
	5.7.3 Pads

	5.8 Scan test support
	5.8.1 Overview
	5.8.2 GRLIB support
	5.8.3 Usage for existing cores
	5.8.4 Usage for new cores

	6 GRLIB Design examples
	6.1 Introduction
	6.2 NetCard
	6.3 LEON3MP

	7 Using netlists
	7.1 Introduction
	7.2 Mapped VHDL
	7.3 Xilinx netlist files
	7.4 Altera netlists
	7.5 Known limitations

	8 Extending GRLIB
	8.1 Introduction
	8.2 GRLIB organisation
	8.3 Adding an AMBA IP core to GRLIB
	8.3.1 Example of adding an existing AMBA AHB slave IP core
	8.3.2 AHB Plug&play configuration
	8.3.3 Example of creating an APB slave IP core
	8.3.4 APB plug&play configuration

	8.4 Using verilog code
	8.5 Adding portabilty support for new target technologies
	8.5.1 General
	8.5.2 Adding a new technology
	8.5.3 Encapsulation
	8.5.4 Memories
	8.5.5 Pads
	8.5.6 Clock generators

	8.6 Extending the xconfig GUI configuration
	8.6.1 Introduction
	8.6.2 IP core xconfig files
	8.6.3 xconfig menu entries
	8.6.4 Adding new xconfig entries
	8.6.5 Other uses and limitations

