
Proceedings of the

Austrian Robotics Workshop ’13

University of Applied Sciences Technikum Wien

Höchstädtplatz 6
A-1200 Wien

Wilfried Kubinger, Alexander Hofmann, Friedrich Praus (Eds.)
ISBN: 978-3-200-03095-4

May 2013, Vienna

1 Preface

The Austrian Robotics Workshop seeks to bring together researchers, students, professionals
and practitioners to discuss recent developments and challenges in robotics and its applications.
Since the early days of the Austrian RoboCup workshop back in 2006, the workshop has been
a regional platform for networking and for the exchange of ideas and expertise between (mainly
Austrian) universities, universities of applied sciences, research centers and companies.

The contributions for the 2013 workshop cover a wide range of topics, ranging from industrial
robots, mobile and service applications to humanoid robots. A student session is dedicated to
ongoing or early work to encourage Master- and PhD-students to present and discuss their
research topics.

An industrial exhibition has been organized in conjunction with the workshop in order to
discuss or initiate collaborations between academia and industry.

We would like to thank all authors, reviewers, presenters and speakers for their contributions
to the workshop. Furthermore, we would like to thank UAS Technikum Wien, IEEE Austria
and IEEE Robotics and Automation Austria Section for their support and contributions to the
workshop.

Finally, we would like to thank ABB AG, Robotics Österreich, Brown Boveri Straße 1, 2351
Wr. Neudorf for their generous support of the workshop dinner at Martin Sepp Heurigen.

Wilfried Kubinger, Alexander Hofmann and Friedrich Praus

Vienna, May 2013

2

2 Program Committee

Horst Bischof Graz University of Technology
Michael Hofbaur UMIT
Jens Knoop Vienna University of Technology, Dept. of Computer Science
Wilfried Kubinger University of Applied Sciences Technikum Wien
Michael Naderhirn AeroSpy Sense & Avoid Technology GmbH
Pavel Petrovic Comenius University, Department of Applied Informatics
Andreas Pichler PROFACTOR GmbH
Friedrich Praus University of Applied Sciences Technikum Wien
Peter Rössler IEEE Austria Section
Fritz Schmöllebeck University of Applied Sciences Technikum Wien
Markus Schordan University of Applied Sciences Technikum Wien
Lukas Silberbauer taurob GmbH
Gerald Steinbauer Graz University of Technology
Markus Vincze Vienna University of Technology

3 Additional Reviewers

Angerer, Arthur
Capco, Jose
Gruber, Christoph
Ikeda, Markus
Kandlhofer, Martin
Maurer, Johannes
Mühlbacher, Clemens
Neumayr, Richard

4 Invited Talks

Branislav Borovac University of Novi Sad
Daniele Nardi Sapienza Università di Roma

5 Industry Talks

Martin Kohlmaier / ABB AG Trends and Innovations from ABB Robotics
Ronald Naderer / FerRobotics
Compliant Robot Technology
GmbH

Robot Handcraft (R) - Robotisation of manual work

Martin Schenk / taurob GmbH Overturn Prevention of a Mobile Robot with a Multi-DoF Arm

3

6 Table of Contents

Energy Efficiency and smoothness in robotics trajectory planning: numerical simulation
and comparison . 7

Paolo Boscariol, Andrea Gasparella, Alessandro Gasparetto, Nicola Lever, Dario
Richiedei, Alberto Trevisani and Renato Vidoni

Workspace Analysis of Cooperating Large Scale Manipulators. 13

Johannes Karl Eberharter and Gerhard Kaufmann

Innovative concepts in educational robotics: Robotics projects for kindergartens in Austria. 19

Johann Eck, Sabine Hirschmugl-Gaisch, Alexander Hofmann, Martin Kandlhofer,
Sabrina Rubenzer and Gerald Steinbauer

A ROS and Aria based framework for didactical analysis of behavioral control in mobile
Robotics . 25

Mario Grotschar and Clemens Doppler

Design, Modeling and Control of a Self-Balancing Two-Wheeled Vehicle 31

F. Johannes Kilian, Hubert Gattringer, Klemens Springer and Hartmut Bremer

In-pipe Cleaning Mechanical System for DeWaLoP Robot- Developing Water Loss
Prevention . 37

Luis Mateos and Markus Vincze

Improving the ROS Arm Navigation Stack by Using Stochastic Inverse Kinematics. 43

Clemens Mühlbacher, Gerald Steinbauer, Michael Reip and Stephan Gspandl

Generalizing the Control Number for 6-dof UCU Hexapods with classic or eccentric U-joints 49

Georg Nawratil

A Time Optimal Solution for the Waiter Motion Problem with an Industrial Robot 55

Matthias Oberherber, Hubert Gattringer and Klemens Springer

Optimal Path-Planning in the Special Case of Ball Throwing Using an Industrial Robot . . . 61

Thomas Raukamp, Klemens Springer and Hubert Gattringer

RoboCupJunior Soccer Demo League . 67

Georg Richter, Madeleine Redl, Dawn Alolino, Sandra Dertnig and Alexander Hofmann

Flexible Assistance System for Packaging Electronic Consumer Goods using Industrial
Robots . 69

Martijn Rooker, Alfred Angerer, Frank Wallhoff, Jürgen Blume, Alexander Bannat,
Paolo Ferrara, Aitor Olarra, Janne Kiirikki and Andreas Pichler

HOTINT - a Free Flexible Multibody System Simulator for Robotics Applications 75

Martin Saxinger, Peter Gruber and Johannes Gerstmayr

Levels of Integration between Low-Level Reasoning and Task Planning. 81

Peter Schüller, Volkan Patoglu and Esra Erdem

From tendrils to robots: kinematic study for a bio-inspired grasping system 87

Renato Vidoni, Tanja Mimmo and Camilla Pandolfi

Ambient Assitive Technologies: The mobile robot P3AAT . 93

Richard Wagner, Peter Wolff, Klaus Schäffer and Friedrich Praus

Automatic Modelling and Observers Generation for Model-Based Diagnosis System for
ROS-Based Robotic Systems . 98

Safdar Zaman and Gerald Steinbauer

Making Service Robots Safer - Affordable Tactile Sensing for Large Surface Areas 104

Michael Zillich, Walter Wohlkinger and Wendelin Feiten

4

7 Author Index

Alolino, Dawn 67
Angerer, Alfred 69

Bannat, Alexander 69
Blume, Jürgen 69
Boscariol, Paolo 7
Bremer, Hartmut 31

Dertnig, Sandra 67
Doppler, Clemens 25

Eberharter, Johannes Karl 13
Eck, Johann 19
Erdem, Esra 81

Feiten, Wendelin 104
Ferrara, Paolo 69

Gasparella, Andrea 7
Gasparetto, Alessandro 7
Gattringer, Hubert 31, 55, 61
Gerstmayr, Johannes 75
Grotschar, Mario 25
Gruber, Peter 75
Gspandl, Stephan 43

Hirschmugl-Gaisch, Sabine 19
Hofmann, Alexander 19, 67

Kandlhofer, Martin 19
Kaufmann, Gerhard 13
Kiirikki, Janne 69
Kilian, F. Johannes 31

Lever, Nicola 7

Mateos, Luis 37
Mimmo, Tanja 87
Mühlbacher, Clemens 43

Nawratil, Georg 49

Oberherber, Matthias 55
Olarra, Aitor 69

Pandolfi, Camilla 87
Patoglu, Volkan 81
Pichler, Andreas 69
Praus, Friedrich 93

Raukamp, Thomas 61
Redl, Madeleine 67
Reip, Michael 43

5

Richiedei, Dario 7
Richter, Georg 67
Rooker, Martijn 69
Rubenzer, Sabrina 19

Saxinger, Martin 75
Schäffer, Klaus 93
Schüller, Peter 81
Springer, Klemens 31, 55, 61
Steinbauer, Gerald 43, 19, 98

Trevisani, Alberto 7

Vidoni, Renato 87, 7
Vincze, Markus 37

Wagner, Richard 93
Wallhoff, Frank 69
Wohlkinger, Walter 104
Wolff, Peter 93

Zaman, Safdar 98
Zillich, Michael 104

6

Energy Efficiency and smoothness in robotics trajectory planning:
numerical simulation and comparison

Paolo Boscariol3, Andrea Gasparella1, Alessandro Gasparetto3, Nicola Lever1,
Dario Richiedei2, Alberto Trevisani2 and Renato Vidoni1

Abstract— In this paper, the most widely adopted industrial
off-line non model-based trajectories together with optimum
time-jerk and time-energy algorithms are considered and eval-
uated in terms of energy efficiency and smoothness.

First of all, a robotic dynamic simulator able to run different
laws of motion, to simulate the robot dynamic behavior and to
evaluate the amount of mechanical energy, torque and jerk, has
been developed and implemented in Matlab.

After that, both point-to-point and pick-and-place trajecto-
ries have been simulated by comparing different motion laws
whose results have been evaluated and ranked from both the
energy efficiency and smoothness point of view.

Finally, a performance index able to take into account the
energetic and vibrational performance has been defined to
compare the different trajectory planning algorithms.

I. INTRODUCTION

Trajectory planning is a fundamental issue for robotics
and mechatronics applications. Indeed, the ability to generate
trajectories with prescribed features is a crux to ensure effec-
tive results in terms of quality and feasibility of performing
the required motion. Different criteria aimed at optimizing
the motion have been proposed in literature [1],[2] and
attention has been mostly paid on performing fast motions
and, eventually, ensuring adequate smoothness. In contrast,
only few works address the optimization of the energy con-
sumption, although energy-based optimal trajectory planning
criteria can cover an important role in the frame of a green-
mechatronic approach and sustainable vision.

Indeed, the concept of energy efficiency and conservation
in automation industry and robotics has become in focus only
in the recent years, due to the increasing of the energy costs
and to the problems and rules fixed to limit or control the
climate change. Thus, at today, the energy saving target is not
just a mere economic implication, but also an ethical issue
and a possible add-on for the market competitiveness of the
industrial products and applications. Among the techniques
to reduce energy consumption in robotic and mechatronics
systems, the development of energy efficient trajectories
shows promising results since it does not rely on hardware

*This work is supported by the Free University of Bolzano under
the project TN5050 - Energy Efficiency Techniques for Mechatronic and
Robotic Systems

1 R. Vidoni, A. Gasparella and N. Lever are with the Faculty of Science
and Technology, Free University of Bozen-Bolzano, Bolzano, Italy corr.
author: renato.vidoni, at unibz.it

2 D. Richiedei and A. Trevisani are with the DTG of Vicenza (I),
University of Padua (I)

3 P. Boscariol and A. Gasparetto are with the DIEGM of the University
of Udine (I)

modifications and therefore can be easily implemented in
both new and existing systems to improve their efficiency.

Besides energy efficiency optimization, for planning an
effective trajectory other features have to be achieved. In
particular, it has to be taken into account that severe vibra-
tions can arise in manipulators when they are moved along
a non-smooth trajectory. In that case worsening of accuracy,
premature joint wear and mechanical failures might occur
[3].

To test this purposes, in this work, the simultaneous eval-
uation of both the energy efficiency and the smoothness in
off-line trajectory planning in robotics and, more in general,
in industry is addressed.

In literature, extensive surveys on trajectory planning
techniques can be found [1], [2], but rarely a comparative
performance analysis and a performance index definition
have been proposed (e.g. [4]). In general, a possible solution
to accomplish a given task using a robotic manipulator is
to synthesize the optimal motion with respect to a relevant
criterion. Thus, focusing on generating off-line movements to
perform tasks known a priori and in a defined environment,
it is possible to find different optimality criteria based on the
minimization of the execution time, actuator effort or jerk.

A fundamental distinction between the methods available
in literature is the use of a model-based or of a model-free
approach. Model-based approaches can achieve good results
(e.g. [5], [6]) in specific cases but they lack of generality,
which is a fundamental requirement for most industrial
applications. As a matter of fact, usually, most industrial
facilities are not adequately modeled to address model-based
approaches, and the personnel training investment is not
reputed to be profitable. Therefore model-free approaches,
as the ones considered in this paper, are more appealing for
todays market. Thus, the most significant off-line non-model
based methods and algorithms currently adopted in industrial
robotics and mechatronic systems are here considered. In
particular, both the state-of-the-art trajectory planning algo-
rithms such as trapezoidal and double-s methods [7], and
ad-hoc developed methods with high orders of continuity or
synthesized through optimization functions, are considered.

The investigated trajectory planning techniques are evalu-
ated, compared and ranked both in terms of energy costs for
clearly quantifying the possible performance enhancement
and energy savings, and smoothness to evaluate the capa-
bility to provide fast motion while reducing low induced
vibrations. Finally, a performance index synthesizing both
energy efficiency and smoothness is proposed to provide a

7

straightforward comparison of all the motion laws investi-
gated.

II. DYNAMIC SIMULATOR

In order to perform the comparison of the different motion
laws, an ad-hoc dynamic simulator for robotic systems has
been implemented and developed in Matlab.

The dynamic simulator takes into account the geometrical
and inertial parameters of the robot in use; in particular, a
Newton-Euler approach has been implemented.

The simulator allows both selecting among classical rigid-
link robots, e.g. Anthropomorphic and cartesian, or creating
particular robots starting from a single-link configuration.
Classical and ad-hoc trajectory primitives can be run and the
system output are the position, velocity, acceleration and jerk
profiles at the joints, and the actuator and system effort in
terms of requested torques, work and power.

Thanks to this simulator, a straightforward evaluation of
the required effort for each trajectory can be performed.

In Fig.1, the simulator user interface and an example of
the simulator result experimental validation, i.e. comparison
of the simulated and measured torque on a joint of a real
robot, are shown.

Two robots have been chosen for the numerical evaluation:
a cartesian robot and an anthropomorphic robot.

Tab. I, II and III report the main DH and mechanical
parameters of the robots.

TABLE I
DH TABLE, CARTESIAN AND ANTHROPOMORPHIC ROBOTS

Cartesian α[deg] a[m] θ[deg] d[m]

Base frame 0 0 0 0.75
Joint1 90 0 0 d1
Joint2 90 0 90 d2
Joint3 0 0 0 d3
Joint4 −90 0 θ4 0
Joint5 90 0 θ5 0
Joint6 0 0 θ6 0.1

Anthrop. α[deg] a[m] θ[deg] d[m]

Base frame 0 0 0 0.75
Joint1 90 0 θ1 0
Joint2 0 0.71 θ2 0
Joint3 90 0 θ3 0
Joint4 −90 0 θ4 0.859
Joint5 90 0 θ5 0
Joint6 0 0 θ6 0.1

TABLE II
ROBOT ARMS MASSES

Arm base 1 2 3 4 5 6

Cartesian [kg] 10 10 10 10 10 10 10
Anthrop. [kg] 190 45 45 40 18 8 4

III. PRIMITIVE TRAJECTORIES

Different industrial relevant robots and paths have been
evaluated in order to effectively compare the motion laws.

(a) Dynamic simulator

(b) Simulator validation

Fig. 1. Dynamic simulator: a- user interface; b- validation

As far as robot type is concerned, three main systems
have been simulated: a single-link single-motor system, an
Anthropomorphic robot and a Cartesian robot. As for the
paths both point-to point and complex path motions have
been considered.

As regards as the industrial trajectory primitives, the
following and most exploited methods have been evaluated
[7]:

• Trapezoidal (T), linear trajectory with parabolic blends
(three segments).

• Double-S (2S), trajectory with double S velocity profile
(seven segments).

• Harmonic (H), trigonometric trajectory with an accel-
eration profile proportional to the position profile with
opposite sign.

• Cycloidal (C), trigonometric trajectory with a continu-
ous acceleration profile.

• Quadratic poly (PQ), parabolic trajectory.
• Cubic poly (P3), polynomial trajectory of degree three,

four parameters.
• Quintic poly (P5), polynomial trajectory of degree five,

8

TABLE III
INERTIA MATRIX AND CENTER OF GRAVITY (COG) FOR EACH ARM OF THE ANTHROPOMORPHIC ROBOT

Arm base 1 2 3

Inertia matrix [kg ·m2]

70.59 0 0
0 70.59 0
0 0 18.12

2.60 0 0
0 1.71 2.67
0 2.67 1.98

0.84 0 −9.09
0 10.56 0

−9.09 0 9.91

1.75 0 0.51
0 2.05 −1.04

0.51 −1.04 1.19

CoG [m]
(
0 0 −0.55) (

0 −0.125 0
) (−0.36 0 0

) (
0.08 0 0.09

)

Arm 4 5 6

Inertia matrix [kg ·m2]

0.66 0 0
0 0.03 0
0 0 0.65

0.016 0 0
0 0.012 9.95
0 9.95 0.007

0.004 0 0
0 0.004 0
0 0 0.0006

CoG [m]
(
0 0.16 0

) (
0 0 −0.003) (

0 0 −0.027)

six parameters.
• SPLINE, spline trajectory with cubic primitive.
Among the optimum trajectory planning techniques, the

following trajectory primitives have been implemented and
simulated:
• Minimum acceleration (effort), trajectory that mini-

mizes the integral of the square value of the joint
accelerations,

• Continuous-jerk 445 [8],
• Minimum time-jerk minS3 [1], [4], this algorithm is

based on cubic splines.
• Minimum time-jerk minBS5 [1], [4], this algorithm is

based on quintic splines
In the Minimum time-jerk trajectories, either the parame-
ters are properly chosen or the trajectory time is scaled
or elongated through a time scale process to obtain the
desired motion time. Moreover, these two optimum time-jerk
trajectories, minS3 and minBS5, based on the minimization
of a two-term objective function, have been simulated to
evaluate their effectiveness in terms of energy and energy-
jerk efficiency. The jerk contribute is taken into account in
the minimization function as the integral of its squared value.

As previously stated, only off-line non-model based meth-
ods have been considered since their synthesis is independent
from the particular robotic system under investigation and
does not rely on the knowledge of any dynamic parameter
or model of the system.

IV. COMPARISON

The first test has been made by considering a point to point
motion along the X-axis of a cartesian robot, i.e. a single-
link, single-motor system; the total displacement was 0.5 m.
The gravity acceleration, 9.81 m/s2, has been simulated on
the Z-axis while friction has been considered in its static and
dynamic effect. Tab. IV shows the numerical results.

The T1/2 and T1/3 trajectories are symmetric trapezoidal
trajectories with the λ parameter, which defines the accelera-
tion time, set to 1/2 and 1/3 of the motion time respectively.

The comparison of the results shows that, for a point-to-
point linear motion, the P3 trajectory is the most efficient in
terms of energy, measured through W. This can be viewed as
a confirmation of the properties of this polynomial primitive

TABLE IV
POINT TO POINT MOTION WITH ZERO INITIAL AND FINAL VELOCITIES

AND ACCELERATIONS FOR A SINGLE-LINK SINGLE-MOTOR SYSTEM -
MOTION TIME = 6 S; P = POWER, W = WORK, τ = TORQUE, J = JERK

T1/2 T1/3 2S H C P3 P5
PRMS 57.45 39.39 42.89 34.08 61.78 30.89 52.74
W 11.51 9.87 10.15 9.45 13.09 8.98 12.04
τRMS 100.00 92.09 102.21 87.66 110.52 87.46 102.99∫

J2 ∞ ∞ 411.08 ∞ 195.01 ∞ 180.72
JRMS ∞ ∞ 20.27 ∞ 13.96 ∞ 13.44

that minimizes the quality index
∫ tf
0
τ2dt, where tf is the

total time of the trajectory.
Since if the jerk is limited or minimized the tracking accu-

racy increases and the excitation of the resonant frequencies
is reduced, this value has an important significance in the
trajectory algorithm performance.

As far as the jerk is concerned, only three trajectories show
a finite value. Among the motion laws with finite jerk, the 2S
trajectory is the less energy expensive, providing an increase
of the 13% compared with the energy required by the P3.

The second test has been made by performing a pick and
place motion with both a Cartesian and an Anthropomorphic
robot. The same motion time has been considered for all the
motion laws. The points to follow in the operative space are
reported in Tab. V.

TABLE V
POINTS OF THE PICK AND PLACE MOTION IN THE CARTESIAN SPACE

Point X [m] Y [m] Z [m]
P0 0.5 0.5 0.5
P1 0.5 0.5 0.25
P2 0.5 0.5 0.5
P3 0.2 0.1 0.5
P4 0.2 0.1 0.25
P5 0.2 0.1 0.5
P6 0.5 0.5 0.5

Tab. VI shows the corresponding joint values, solution of
the inverse kinematics for the Anthropomorphic robot.

As can be seen, the angular values of two of the wrist
joints remain constant along the whole trajectory.

9

TABLE VI
POINTS OF THE PICK AND PLACE MOTION IN THE JOINT SPACE FOR THE

ANTHROPOMORPHIC ROBOT

Point J1 J2 J3 J4 J5 J6
[deg] [deg] [deg] [deg] [deg] [deg]

P0 45 61.69 -36.15 180 25.54 225
P1 45 38.82 -28.50 180 10.32 225
P2 45 61.69 -36.15 180 25.54 225
P3 26.57 81.09 -73.49 180 7.61 225
P4 26.57 31.30 -57.78 180 -26.48 225
P5 26.57 81.09 -73.49 180 7.61 225
P6 45 61.69 -36.15 180 25.54 225

Tab. VII and Tab. VIII report the simulation results in
terms of energy and smoothness parameters.

Even if the performed motion is a pick and place, the
movements made by the joints of the two robots are substan-
tially different. Indeed, in the case of a cartesian robot, the
main joint movements are point-to-point thus no continuous
motion along the linear joints is planned. Indeed, if the
motion along the Z-axis is considered, only the vertical linear
joint is in charge to perform the action. On the contrary, in
the Anthropomorphic robot, some joints have to move along
the whole trajectory.

Thanks to this consideration, the results in Tab. VII and
Tab. VIII can be better understood.

For the Cartesian robot movement (see Tab. VII), the P3
trajectory allows again the best result in terms of required
power, work and torque. Among the optimal trajectories, it
can be appreciated how the minimum time-jerk trajectories
allow the best performances both in work and in jerk content.

If smoothness is also accounted for, the 2S represents,
among the other industrial trajectories, the best compromise
since it allows a good behavior in terms of energetic perfor-
mances and a finite jerk RMS value.

As for the Anthropomorphic robot, the analysis of Tab.
VIII leads to different considerations: the minimum time-jerk
trajectories allow the best performance both for the energy
and jerk parameters.

In both the simulations, the worst “energy” case is rep-
resented by the 445 law. This result can be easily justified
since the overall path length to be run by the robot has to
be noticeably increased to allow the smoothness required by
the trajectory algorithm.

In Tab. IX the laws of motion are ranked and the deviation
with respect to the best one is given in percentage for the
Anthropomorphic robot.

As can be appreciated from the results, important savings
and performance enhancements can be achieved by imple-
menting the proper law of motion. Indeed, even if the torque
requirements does not show important deviation from the
minimum value, i.e. the minBS5, both the work, W, and
jerk, JRMS , values show great differences. As an example,
the minS3 trajectory results the best choice in terms of energy
and allows, for the simulated path, a reduction of more
than the 10% with respect to a classical and widely adopted
SPLINE, while providing a jerk finite value.

TABLE IX
TRAJECTORY RANK

Position W τRMS JRMS

Traj Inv Traj Inv Traj Inv

1 minS3 - minBS5 - minBS5 -
2 P3 0.3% P3 2.1% minS3 14%
3 H 1.0% mins3acc 2.2% SPLINE 39%
4 T1/3 1.4% H 2.3% 445 59%
5 2S 2.2% T1/3 2.7% P5 220%
6 T1/2 3.8% minS3 3.1% C 233%
7 P5 4.1% SPLINE 3.1% 2S 384%
8 C 5.1% 2S 3.4% minS3acc 1455%
9 minBS5 9.8% T0.5 3.4% - -
10 minS3acc 10.2% P5 4.2% - -
11 SPLINE 10.5% 445 4.8% - -
12 445 43.4% C 5.0% - -

It can be added that, as a general remark, the optimum
methods allow the best results both in terms of energy
and jerk, and should be preferred when no point-to-point
motions have to be performed. On the contrary, when point-
to-point movements are requested along the trajectory, the
effect of the optimization is reduced and the “classical”
trajectory algorithms that allow a finite jerk value show
a good compromise in terms of algorithm complexity and
performances.

A. PERFORMANCE INDEX

In order to define and propose a synthetic criteria to
classify the performance of a trajectory by taking into
account both the energetic and vibrational requirements, a
performance index (PI) has been defined.

The 2S trajectory has been chosen as the reference law
due to its main characteristics: simplicity, industrial imple-
mentation and continuity in acceleration, hence finite jerk
value.

The chosen PI takes into account the weighted relative
values achieved by the considered trajectory in terms of
energy and jerk with respect to the reference ones:

PI = ke ∗
Wi

Wref
+ kj ∗

Ji
Jref

where ke+kj=1. By setting to zero one of the two weights,
the motion laws are classified either with respect to the
energy efficiency or to the minimum jerk.

In order to be able to compare all the simulated trajecto-
ries, thus have a finite PI also for the laws with discontinuous
acceleration, infinite jerk values have been included in PI by
replacing them in the JRMS with a high but finite upper-
limit jerk value. This means that for each infinite peak a
finite value has been accounted for a prescribed duration,
i.e. 500m/s3 for 5 ms.

In this way, all the motion laws can be evaluated and
compared on a same benchmark path, e.g. a pick and place
or a smooth circular paths, allowing a direct comparison in
terms of energy efficiency, smoothness or their combination
with respect to the 2S standard law.

10

TABLE VII
CARTESIAN ROBOT - PICK AND PLACE; MOTION TIME = 6 S

T1/2 T1/3 2S H C P3 P5 SPLINE 445 minS3 minBS5

PRMS 141.34 135.24 139.17 134.35 149.96 132.35 145.68 143.96 222.21 145.19 165.66
W 70.83 70.24 70.93 70.29 72.92 69.95 71.86 75.29 97.53 64.95 77.35
τ1RMS 590.62 589.31 590.63 590.12 591.15 590.09 590.84 588.69 591.96 588.43 589.41
τ2RMS 47.06 43.47 48.20 41.41 51.80 40.69 48.43 36.23 45.93 23.78 25.92
τ3RMS 28.28 26.13 28.96 24.90 31.10 24.47 29.09 21.91 27.65 14.33 15.62
τtotRMS 665.96 658.91 667.79 656.43 674.05 655.25 668.36 646.83 665.54 626.54 630.95∫
J2 ∞ ∞ 1231.96 ∞ 584.55 ∞ 540.23 114.35 204.62 70.19 50.40

JRMS ∞ ∞ 14.33 ∞ 9.87 ∞ 9.48 4.36 5.84 3.42 2.89

TABLE VIII
ANTHROPOMORPHIC ROBOT - PICK AND PLACE; MOTION TIME = 6 S

T1/2 T1/3 2S H C P3 P5 SPLINE 445 minS3 minBS5 minS3acc

PRMS 278.87 262.17 270.37 259.32 297.53 254.68 286.41 268.10 311.93 240.57 260.44 222.88
W 128.60 125.65 126.69 125.12 130.30 124.33 129.02 136.99 177.73 123.93 136.02 136.62
τ1RMS 13.79 13.29 15.19 12.75 15.69 12.78 14.77 10.85 14.22 9.87 10.18 10.05
τ2RMS 434.16 431.57 434.83 430.39 439.10 429.67 436.50 428.79 435.35 421.72 414.73 415.68
τ3RMS 98.88 98.02 99.03 97.67 100.21 97.50 99.44 105.64 104.25 113.50 103.72 114.48
τ5RMS 0.33 0.56 0.59 0.54 0.64 0.53 0.62 0.55 0.73 0.55 0.57 0.54
τtotRMS 547.16 543.44 546.96 541.36 555.65 540.51 551.33 545.84 554.55 525.64 529.2 540.77∫
J2 ∞ ∞ 2.34x107 ∞ 1.11x107 ∞ 1.02x107 1.93x106 2.52x106 1.29x106 9.99x105 2.42x108

JRMS ∞ ∞ 1976.12 ∞ 1361.15 ∞ 1308.48 567.72 648.12 465.31 408.37 6352.12

TABLE X
CARTESIAN ROBOT - PICK AND PLACE - PI

T1/2 T1/3 2S H C P3 P5 SPLINE 445 minS3 minBS5

W 70.8 70.2 70.9 70.3 72.9 70.0 71.9 75.3 97.5 64.9 77.3
JRMS 76 76 14.3 50.1 9.9 58.0 9.5 4.4 5.8 3.4 2.9
Wi/Wr 1.00 0.99 1.00 0.99 1.03 0.99 1.01 1.06 1.38 0.92 1.09
Ji/Jr 5.30 5.30 1.00 3.50 0.69 4.05 0.66 0.30 0.41 0.24 0.20
npeak 28 28 0 12 0 12 0 0 0 0 0
we wj

0.2 0.8 4.44 4.44 1.00 3.00 0.76 3.44 0.73 0.46 0.60 0.37 0.38
0.5 0.5 3.15 3.15 1.00 2.24 0.86 2.52 0.84 0.68 0.89 0.58 0.65
0.9 0.1 1.43 1.42 1.00 1.24 0.99 1.29 0.98 0.99 1.28 0.85 1.00

TABLE XI
ANTHROPOMORPHIC ROBOT - PICK AND PLACE - PI

T1/2 T1/3 2S H C P3 P5 SPLINE 445 minS3 minBS5 minS3acc

W 128.6 125.65 126.69 125.12 130.3 124.33 129.02 136.99 177.73 123.93 136.02 136.62
JRMS 10309 10309 1976 6251 1361 6271 1308 568 648 465 408 6352
Wi/Wr 1.02 0.99 1.00 0.99 1.03 0.98 1.02 1.08 1.40 0.98 1.07 1.08
Ji/Jr 5.22 5.22 1.00 3.16 0.69 3.17 0.66 0.29 0.33 0.24 0.21 3.21
npeak 28 28 0 12 0 12 0 0 0 0 0 0
we wj

0.2 0.8 4.38 4.37 1.00 2.73 0.76 2.73 0.73 0.45 0.54 0.38 0.38 2.79
0.5 0.5 3.12 3.10 1.00 2.08 0.86 2.08 0.84 0.68 0.87 0.61 0.64 2.15
0.9 0.1 1.44 1.41 1.00 1.21 0.99 1.20 0.98 1.00 1.30 0.90 0.99 1.29

11

Tab. X and Tab. XI show the results for different sets of
weights for the pick and place trajectory for the Cartesian
and Anthropomorphic robots.

The best PI are highlighted in the two tables.
Thanks to the defined PI it is possible to have a direct

comprehension of the effectiveness of the chosen trajectory
and its possible benefits in terms of performance, if any. If the
case with weights equal to 0.5 is considered, the minS3 and
minBS5 have the smallest PI while the most implemented
industrial trajectories show a very high PI.

V. CONCLUSIONS

In this work the most adopted industrial trajectory plan-
ning techniques together with some minimum acceleration
and jerk approaches have been considered and compared
from an energy-smoothness performance point of view. Dif-
ferent trajectories have been simulated by means of an ad-hoc
dynamic simulator and, after that, compared and ranked.

The results show that important savings in terms of energy
can be achieved if the proper law of motion is selected,
in particular if the minimization of the jerk content is
considered as a performance improvement factor.

An energy-jerk performance index has been also defined in
order to directly compare the different trajectory algorithms
with respect to a classical double-S assumed as the reference.

Future work will cover the evaluation of the possible
energy savings with respect to the kind of robot together
with the quantification of the possible energy savings by
regenerative braking systems.

REFERENCES

[1] A. Gaspaertto, P. Boscariol, A. Lanzutti, R. Vidoni, Trajectory Plan-
ning in Robotics, Mathematics in Computer Science, 2012, DOI
10.1007/s11786-012-0123-8

[2] AA Ata, OPTIMAL TRAJECTORY PLANNING OF MANIPULA-
TORS: A REVIEW, Journal of Engineering Science and Technology,
2 (1), 32-54, 2007

[3] P.J. Barre, R. Bearee, P. Borne, E. Dumetz, Influence of a jerk
controlled movement law on the vibratory behaviour of high-dynamics
systems, Journal of Intelligent and Robotic Systems, 42(3):27593,
2005.

[4] A. Gasparetto, A. Lanzutti, R. Vidoni, V. Zanotto, Experimental
validation and comparative analysis of optimal time-jerk algorithms for
trajectory planning, Robotics and Computer-Integrated Manufacturing,
28, 164181, 2012

[5] Z. Shiller, Time-energy optimal control of articulated systems with
geometric path constraints, J. Dyn. Syst. Meas. Control 11(8), 139143,
1996

[6] B.J. Martin, J.E. Bobrow, Minimum effort motions for open chain ma-
nipulators with task-dependent end-effector constraints. Int. J. Robot.
Res. 18(2), 213224, 1999.

[7] L. Biagiotti and C. Melchiorri, Trajectory Planning for Automatic
Machines and Robots, Springer-Verlag Berlin Heidelberg, 2010.

[8] K Petrinec, Z. Kovacic, Trajectory planning algorithm based on
the continuity of jerk, In Control and Automation, 2007. MED07.
Mediterranean Conference on, IEEE, pp. 15, 2007

12

Workspace Analysis of Cooperating Large Scale Manipulators

Johannes Karl Eberharter1 and Gerhard Kaufmann1

Abstract— Cooperating large scale manipulators are becom-
ing more and more important to handle long or heavy parts.
Therefore, it is important to know the exact workspace to
plan a complete heavy lift. The focus of this paper is the
visualization of the workspace under the compliance of large
scale manipulators and lift boundary conditions. The analysis
focuses on the projected two-dimensional workspace where
the calculations are performed analytically. The maximum
workspace is described with boundary points of the workspace,
calculated from intersections of geometric relations, depending
on several parameters: dimensions of the manipulators, weight,
size and orientation of the load/cross-beam. The workspace
boundary is then defined by these boundary points connected
via arcs and line segments which visualize the workspace. As an
interesting result we can report a separation of the workspace
under certain circumstances.

I. INTRODUCTION

The demand to lift heavy or extreme long parts in-
creased dramatically over the last years. These lifts need
large manipulators like harbor mobile cranes, mobile cranes,
crawler cranes, etc.. The costs of these machines increase
exponentially in size. A common way to overcome these
challenges is to utilize two or more large scale manipulators,
see Fig. 1. In addition, for mobile manipulators like cranes,

Fig. 1. A multi-crawler crane lift.

the maximum load needs to be reduced by 25 % [1].
However, this can be avoided if the synchronization of the
manipulators can be guaranteed. Special automation systems
have been developed within the last years to control such
cooperating large scale manipulators [2], [3], [4]. It is very
common to plan each lift in advance [5], [6]. Therefore

*This work was supported by Liebherr-Werk Nenzing GmbH
1University of Applied Sciences Vorarlberg, Department of

Mechatronics Dornbirn, Austria. Hannes at Eberharter.us
Gerhard.Kaufmann at students.fhv.at

the exact workspace of the cooperating manipulators needs
to be known. The lift-planning process, in general, had
been investigated by Varghese et al. [7]. They defined a
visualization of an environmental walkthru, where also the
first steps for the best position of the crane was developed.
However, a special insight into the workspace analysis was
not presented. Several lift planning software packages for
cranes [8], [9], [10] are available on the market, but none
of them considers the workspace of multi-crane lifts. The
novel idea is to look at the workspace of two cooperating
large scale manipulators. The workspace of cooperating
manipulators is not as simple as known from a conventional
industrial robot, as shown below the shape is quite complex.
The shape depends on (i) the dimensions and topology of
the large scale manipulators, (ii) the weight and (iii) the
size of the load. Also new to conventional workspaces of
robots, is that the shape will change, depending on (iv) the
desired cooperated motion (orientation) of the load. (v) Also,
the workspace can change its topology, in other words it
can consist of one or two regions. The visualization of the
work environment is depicted in different representations in
order to provide a better insight of the possible workspace
[11]. A brief remark about the function of such machines:

M1 M2

Load/

Cross-Beam

Safety Area

Workspace

Boundary

Max.

Outreach

Max.

Outreach

Min.

Outreach

Boom

Min.

Outreach

Safety Area

Workspace

Fig. 2. Definition of the workspace.

Cooperating large scale manipulators do not have six d.o.f. to
move a load/cross-beam. The motion is limited to translate in
three-space and orientate about a vertical axis. For example,
this axis can either be about the hook of a manipulator or
about the center of the connecting horizontal line between
the hooks [3].

II. BOUNDARY POINTS OF THE WORKSPACE
The workspace will be computed under observance of

the given input parameters. Furthermore, the procedure for

13

calculating the boundary points of the workspace will be
discussed in this section. The computation algorithm shall
work for offline and online computation; for instance, a
path planning or visualization tool. The workspace boundary
describes the maximum working range depending on the
selected point on the load/cross-beam. Figure 2 shows a
possible workspace boundary for two manipulators M1 and
M2. The workspace boundary is defined by arc and line

M1 M2

P1/19

P2
P3

P6
P7

P8/814

P31

P5

P10
P12

P13
P14P131

P9

P4

P11

Fig. 3. Boundary points.

segments. In Fig. 3 the points for M1 and M2 are shown.
The points P1−P8 describe the workspace boundary for M1
and the points P19− P814 for M2. All calculations of the
points are carried out analytically. To obtain the intersection
points of the defined points; lines and/or arcs are used, see
Fig. 4. Significant are the load/cross-beam length Lt, the
point of interest (POI), which is an arbitrarily elected point,
e.g. the center of gravity xs and the load/cross-beam with
its angle ϕ. To calculate the point P1, a line goes through
the origin of M1 with the angle of the load/cross-beam. The
same applies to the second manipulator M2. The center of
the circle (max. working radius of M1) is shifted by the
distance xs in positive direction on the line. For M2, the
center of the circle is (within the radius of M2) shifted by
the distance Lt − xs in negative direction on the line. The
resulting intersections of the two circles describe the points
P1, P8 and P19, P814. The points P2 − P7 of M1 and

M1 M2

Lt

xs
Line

m1

Lt

ϕ

Fig. 4. Auxiliary line calculation, Parallel shift.

P10 − P14 of M2 (Fig. 3) can be calculated without data

of each other. If the maximum outreach of the manipulator
changes, then the element of a circle will move as well. In
Fig. 5 the element of a circle is shifted to the right (distance
between the manipulator is raised). Therefore it must be
checked with which line element or element of a circle it
intersects. If both elements of a circle cut themselves, one
receives the points P31 and P4. The points in the bracket
are congruent and are equated with the intersections. If the
points do not exist, this does not mean that they lie beyond
the workspace. According to the intersection of the element
of a circle several points can lie on top of each other. For the

M1

M2

P2

P3 (P2)

P7

P5(P6,P7)

P4(P5,P6,P7)

P31(P3,P2)

P1

P8(P2,P3,P31,

P4,P5,P6,P6)

Fig. 5. Change of the manipulator distance.

calculation of the intersections the circles must be shifted by
a defined distance. The movement always occurs on a straight
line. This line passes through the origin of the respective
manipulator and is in parallel to the load/cross-beam (Fig. 4).
According to the intersection the center m1 of the circle is
shifted by xs or Lt − xs along the line.

III. BOUNDARY ELEMENTS

For the calculation of the workspace the data of both
manipulators and the load/cross-beam are required. In the
workspace calculation the POI is determined first. In the next
step the points are calculated for M1 and M2. At the end,
the points of both manipulators are combined and hence, the
points of the workspace boundary are given.

A. Parameters

The parameters enclose the manipulator data and the
load/cross-beam. First, the manipulator data contain the
maximum outreach depending on the load, the minimum
outreach, the safety circle and the distance between both
manipulators. The second parameter block load/cross-beam
contains the length, center of gravity or the elective point on
the load/cross-beam and the angle of the load/cross-beam.

B. Points of Manipulator M1

The calculation of the points of M1 occurs as depicted
on the program flowchart in Fig. 6. In the first step the
parameters from the file which are needed in the following
steps are loaded. Then the points P1 to P8 are calculated, see
Fig. 3. The branching out ϕ < α checks the angle α. The
variable ϕ describes the angle of the load/cross-beam and
α the angle of the tangent to the safety circle with radius
r1s, which goes through the center of manipulator M2. The

14

Calculate Points

(P1 – P8)

φ < α

Recalculation

(P5 – P7)

yes

no

Circle || Line

Anti-Collision

Lt Restrict

M1

Circle

Line

Calculate

Intersections

r2

Start

Load

Parameters

P4(y) < P5(y)

Traverse to short

no

yes

Recalculation

(P6)

End

Calculate

Intersections

r2

Calculate

Intersections

r2

Fig. 6. Points of manipulator M1.

described variables are evident in Fig. 7. The angle can be
calculated with the following equation:

α = arcsin
(r1s
d

)
. (1)

If the angle ϕ < α, then the points P5 to P7 must be

M1

M2
α

d

r1
s

Fig. 7. Angle α.

calculated again, see Fig. 3. If the angle of the load/cross-
beam ϕ > α, then it must be verified if the load/cross-beam
is not too short. This occurs if the y- value from P5 is smaller
than P4; therefore P6 must be calculated again. With the
next branching it is checked whether the maximum outreach
of M2 intersects the safety circle r1s or the line between P4
and P5. This takes into account the displacement of the circle
center m1 (Fig. 4). In Fig. 8 the required parameters are
shown. If the length xC is longer than the distance d between
both manipulators, an intersection with the connecting line
is possible. The length xk is calculated with the following
equation:

xk =
xs

cos(ϕ)
. (2)

In the boxes ”Calculate Intersections r2” the intersections
with the maximum outreach of M2 are calculated. It is
checked with which line element or circle segments the

M2

xc

x
s

d

M1

φ

Fig. 8. Difference line - circle.

maximum outreach of M2 intersects, see Fig. 5. If all points
are calculated, the workspace boundary must be checked for
possible collision areas. After the operation ”Collision” the
constraints must be checked. Every point of the workspace
boundary is checked by M1 under the consideration of the
load/cross-beam on their attachment point. If the attachment
point of M1 is beyond the maximum outreach of M1, the
point is calculated once more.

C. Points of Manipulator M2

The calculation of the points for M2 occurs after the
same principle and procedure as with M1. The points are
calculated by the input dimensions of M2. P1 and P19 are
similar in their behavior, but they are in general different
in the input dimensions, for instance, the outreach or the
manipulator position. Conceptual the points of M1 can be
turned 180◦ about a pivot pin to receive the workspace
boundary of M2. This is only valid if both manipulators are
precisely the same.

D. Points of the Workspace Boundary

The outcome of the calculation are the points for the
workspace boundary. These points are for a load/cross-beam
angle from 0◦ to 120◦. To receive the workspace boundary
for negative load/cross-beam angles, the points must be
reflected about the y-axis.

E. Workspace Separation

If the movement with the load/cross-beam through both
manipulators is not possible anymore, it comes to a
workspace separation. The additional points P15 and P16

M1 M2

P15

P16

P1

P2(P3)
P31

P12
P9(P10,P11)

P4P7(P6,P5) P131
P14(P13)

P8

Fig. 9. Workspace separations.

15

which are needed for the workspace separation are illustrated
in Fig. 9. To recognize a workspace separation, intersections
need to be determined and checked. The intersections are
shown in Fig. 10. If the circles C1, C2 in Fig. 10(a) or the

M1
M2

C1

C2

m2

m1

(a) Circles.

M1

M2

C1

C2

L1

L2

m2

m1

(b) Lines and circles.

Fig. 10. Intersection of the workspace separation.

lines L1, L2 with the circles C1, C2 intersect, see Fig. 10(b),
then a workspace separation is given. If the center of a circle
m1(x) > m2(x), then the circles change their sides. The
marked points in Fig. 11 must be calculated.

M1

M2

C1

C2

L1

L2

m1

m2

L3

L4

Fig. 11. Change of sides.

F. Collision

The physical boundaries of a manipulator do not allow
moving with a boom over or under the other one. Due to
this known collision areas, this must also be considered with
the workspace boundary and finally has to be excluded. The
collision area of M1 is shown in Fig. 12 with the points
of the workspace boundary. To define the collision area, the

P7

P1

P2

P8

P4

P3(P31)

P5
P6

P71

M1
M2

Workspace

Boundary

Collision

Area

Fig. 12. Collision area.

point P71 must be introduced, in addition. The point P7 is
checked for his angle in dependence of the base coordinate
system. According to the size of the load/cross-beam, the
angle ϕ must be distinguished:

ϕTr =

{
ϕ : 0 6 ϕ 6 π

4

ϕ− π
4 : ϕ > π

4 .
(3)

The angle ϕP7 of the point P7 is calculated with the
following equation:

ϕP7 = arctan

(
P7(y)

P7(x)

)
. (4)

To check whether a collision is possible, both angles are
compared. If ϕTr > ϕP7, then it comes to a collision. The
point P71 must be calculated and P7 is shifted (Fig. 12).

IV. MERGING OF THE BOUNDERY ELEMENTS

After calculation of all points for M1 and M2, they will
be merged as shown in Fig. 13 and finally the topology of
the workspace is checked and plotted via a 3D plot.

A. Merging the Points

In the first step the parameters from the file are loaded.
They contain information for merging the single points. If a
restriction of M1 and/or M2 occurs, the points are calculated
again. A restriction is not given if the points are congruent.
For M1 these are the points P1, P21 and for M2 the points
P1, P141 and P8. In the next box the points are checked for

Start

Load

Parameters

End

no

Restriction

M1

no

Recalculation

(P1, P21)

yes

Restriction

M2

no

Recalculation

(P1, P141, P8)

yes

Check Points

No Workspace

Workspace

Separation

Calculate Points

(P15,P16, ...)

yes

Save

Points

Fig. 13. Merging points.

correctness and are changed if they are not correct. The major
task of the control lies at very high load/cross-beam angles.
If no workspace exists, the points are put on the coordinates
(0, 0). This concerns all points of the workspace boundary.
The branching ”Workspace Separation” checks whether it
comes to a possible workspace separation. If the movement

16

with the load/cross-beam through both manipulators is not
possible anymore, it comes to a workspace separation. New
points (P15, P16) are defined and existing points are recal-
culated.

B. Connected / Disconnected Workspace

Depending on the angle and length of the load/cross-
beam, the workspace can have different topologies, either one
closed/connected or two separated regions, see Fig. 14. The

M1 M2

C1

C2

m1

m2

(a) Connected.

M1
M2

C1

C2

L1

L2

m1

m2

(b) Disconnected.

Fig. 14. Workspace.

critical points, where the topology changes can be computed
via:

C1 : (x− xs cos(ϕ))2 + (y − xs sin(ϕ))2 = r21m (5)

C2 : (x− (Lt − xs) cos(ϕ))2+
(y − (Lt − xs) sin(ϕ))2 = r22m (6)

argmin
ϕ

({(x, y) : C1(x, y) = C2(x, y)} = ∅) (7)

where x, y are the coordinates of the circle centers. The
formula is valid for angles from ϕ = 0◦ to 120◦. To find
the solution for ϕ = 0◦ to −120◦, take the mirror image
about the y-axis from before.

C. 3D-PLOT

In addition to the 2-dimensional plot of the workspace a
third dimension is added, the load/cross-beam angle ϕ. The

Fig. 15. 3D-Plot.

angle ϕ is varied within the range of ±120◦. The plot holds
for the following set:

ϕ = {k · 3|k ∈ Z ∧ −40 ≤ k ≤ 40}. (8)

The hole represents the disconnected workspace. If there is
no hole, then it is always possible to move through both
manipulators for any angle within ±120◦. Another three-

Fig. 16. Three-dimensional LML and workspace.

dimensional plot is possible for a fixed angle ϕ for the
LML (load moment limitation) and the workspace of the
POI including the possible maximal height see Fig. 16.

V. MAXIMUM CROSS-BEAM LENGTH

The maximum cross-beam length (e.g. length between
hooks) describes the largest distance where a motion through
both large scale manipulators is possible. There are two
different positions for the load possible, which are the two
critical positions, see Fig. 17. Only with the shorter length
it is possible to move from one side to the other. The
longer length can move up to a certain degree between the
manipulators, however not further, since the other shorter
one is the limiting factor during a motion through both
manipulators. The maximum length can be computed via:

y

z x

M1

M2
r2

r1

r1m

r2m
r1s

r2s

d

Fig. 17. Maximum cross-beam length.

L1 =

√
(d− rjm)

2 −
(
rks +

Bt
2

)2

(9)

L2 =

√
r2k −

(
rks +

Bt
2

)2

, (10)

and finally:
Lmax = min

j,k
(L1 + L2), (11)

17

z

1

Fig. 18. Side extension of the load/cross-beam.

with j ∈ {1, 2}, k ∈ {1, 2}, j 6= k. In the case that the load
extends (e.g. the hook anchor points) by a distance Lu, see
Fig. 18, then the maximum side extension is calculated via:

L1min = min
j,k

(L1) (12)

and finally as:

Lu = L1min −
√

(d− rjs)2 − (rks +Bt)2, (13)

with j ∈ {1, 2}, k ∈ {1, 2}, j 6= k. If Lu < 0, then the
length Lu needs to be subtracted from the maximum length
Lmax.

VI. APPENDIX

In the appendix same mathematical methods are described,
which are needed for the computation of the workspace.

A. Chordal Lines

The intersection of two circles can be computed with the
help of chordal lines (dt.: Potenzgerade, Potenzachse) [12].
The chordal line is the set of all points where the exponent of
both circles is equal. It is orthogonal to the line connecting
the origins of the circle. For equal radii it is equal to the
bisecting line, see Fig. 19. The chordal line is not defined for
concentric circles. The general form of the circle equations

P1

P2

m2

x

y

0

Chordal Line

r1

m1

r2

C1 C2

Fig. 19. Chordal line.

for the circles C1 and C2 are (14) and (15) as follows:

C1: (x− xm1)
2 + (y − ym1)

2 = r21 (14)
C2: (x− xm2)

2 + (y − ym2)
2 = r22 (15)

Subtracting both equations gives the equation of the chordal
line (16):

y =
xm1 + xm2

ym1 − ym2︸ ︷︷ ︸
k

x+
x2m2 + y2m2 − r22 − x2m1 − y2m1 + r21

2 (ym1 − ym2)︸ ︷︷ ︸
d

.

(16)
Substitution of the chordal line (16) into a circle equation
(14) solve for x and then plug into the chordal equation(16)

to achive the intersection points of the circles. Substitution
into the circle equation would give two solutions, where only
one is valid.

B. Tangent Line at a Circle
To compute the touching point point of a tangend line to

a circle (Fig. 20) intersect a circle C and a line L. Given is
the circle equation and the slope of the line. Substitute the

x

y

PB

0

r1m1

C

L

Fig. 20. Tangent line.

circle equation (17) into the line equation (18) and solve for
y to get the intersection point (19).

C: (x− xm1)
2 + (y − ym1)

2 = r21 (17)

L: y = k x+ d (18)

y =
−k d+ x1 + k y1

1 + k2
± (19)

√
−2kdx1 + 2x1ky1 − y21 + r21 + 2dy1 − d2 + k2r21 − k2x21

1 + k2

The tangent line has only one point in common, a so
called double point with the circle. Therefore the expression
within the square root needs to be equal to zero. Hence, the
following expression can be found for d.

d = −x1 k + y1 ±
√
r21 + k2 r21 (20)

Plugging in the solution into Eq. 20 into the line equation
(18) and then into the circle equation (17) gives the inter-
section point PB .

REFERENCES

[1] International Organization for Standardization, ISO 12480-1: Cranes
Safe Use, Part 1: General, 1997.

[2] Eberharter, J. K. and Schneider, K., Tandem Control, Yokohama, 2009.
[3] Eberharter, J. K., Rajek, M. and Schneider, K., Synchronisierte

Mehrkranhübe, Internationales Forum Mechatronik, 2009.
[4] Vaughan, J., Yoo , J., Knight, N. and Singhose, W., Multi-Input

Shaping Control for Multi-Hoist Cranes, Amer. Control Conf., 2013.
[5] Hamilton, M.R., Preplanning Analysis and Computer Animation of

Dual Crane Lifts in Highway Construction, thesis, The University of
Texas at Austin, 1992.

[6] Haas, C. and O’Conner, J., Computer aided critical construction
operations, 8, 1999.

[7] Varghese, K., Dharwadkar, P., Wolfhope, J. and O’Conner, J.T., A
Heavy Lift Planning System for Crane Lifts, Microcomputers in Civil
Engineering, 12 p. 31-42, 1997.

[8] KranXpert, http://www.kranXpert.com.
[9] Liftplaner software, http://www.liftplanner.net.

[10] Liebherr Crane-Planner, http://www.crane-planner.com.
[11] Kaufmann, G., Analyse des Arbeitsraumes für den Tandemhub, Thesis,

University of Applied Sciences, Dornbirn, Austria, 2012.
[12] Coxeter, H.S.M. and Greitzer, S.L., Klett-Studienbücher, Klett,

ISBN=9783129833902, 1983.

18

Innovative concepts in educational robotics: Robotics projects for
kindergartens in Austria

Johann Eck1, Sabine Hirschmugl-Gaisch2, Alexander Hofmann4, Martin Kandlhofer3,
Sabrina Rubenzer4 and Gerald Steinbauer3

Abstract— Using robotics platforms for kindergarten children
to interest them for computer science is a rather new idea in
educational robotics. In this paper we present two different
robotics projects in kindergartens. The Department of Com-
puter Science at the University of Applied Sciences Technikum
Wien established a course setting for children aged four to six
years. Within the project they compared the performance of
those kindergarten kids who received the robotics workshop
with those who did not attend the training in order to analyze
the effects of the course on the children’s cognitive processes.
The second project, initialized by the Graz University of
Technology and the University of Teacher Education Styria,
focuses the cross-generational aspect involving kindergarten
kids, pupils as well as senior citizens. Within the project
a robotics day in a kindergarten offering eleven different
hands-on experiments for children was organized and a first
qualitative feedback was obtained.

I. INTRODUCTION

Educational robotics has gained increased attention in
the last decades. Several conferences and workshops deal
with the use of robotics in education [21]. Initiatives like
RoboCupJunior (RCJ) aim to interest young children and
pupils up to the age of nineteen in science and technol-
ogy [25]. On the contrary educational robotics with spe-
cial focus on children aged between three and six years
is less widespread. Science and technology are changing
rapidly and young children have to be prepared for this
development. The idea behind the concept of educational
robotics in kindergarten is to use the robot as pedagogical
tool to familiarize children in pre-school age with science and
technology in a playful way. By presenting two innovative
projects for kindergartens in Austria this paper discusses
how different robotics platforms could be integrated in the
education of children between three and six years of age.
Furthermore, it presents first results of an empirical study
evaluating the effects of using robotics in kindergarten.

The remainder of the paper is structured as follows:
Chapter II deals with related research whereas chapter III
gives a brief overview of the current situation of educational

*Authors listed in alphabetical order.
1J. Eck is with the University of Teacher Education Styria, Austria

hans.eck at ainet.at
2S. Hirschmugl-Gaisch is with the University of Teacher Educa-

tion Styria and the Kindergarten Rosental a.d. Kainach, Styria, Austria
hirschmugl.gaisch at aon.at

3M. Kandlhofer and G. Steinbauer are with the Institute for Software
Technology at Graz University of Technology, Austria [mkandlho,
steinbauer] at ist.tugraz.at

3A. Hofmann and S. Rubenzer are with the University of Ap-
plied Sciences Technikum Wien, Austria [alexander.hofmann,
sabrina.rubenzer] at technikum-wien.at

robotics in kindergartens in Austria. Chapter IV provides a
detailed description of the kindergarten projects followed by
the presentation of preliminary results aiming at this goal
in chapter V. Chapter VI discusses conclusions and future
work.

II. RELATED RESEARCH

As the level of awareness and importance of educational
robotics rose over the last decades a great number of confer-
ences, workshops, papers and books address this topic [20],
[3], [21]. Alimisis and colleagues [1] for instance provide
in their book an extensive overview of the theoretical back-
ground as well as practical aspects of robotics in education.

The paper in [23] describes how robotics can act as a tool
to teach pupils the basics of engineering and programming.
In addition they conducted empirical studies in order to
investigate why robots seem to motivate children, even if
they were not technically interested beforehand.

Whereas the use of robotics in pre-school education is not
as wide-spread as in primary and secondary school various
papers and articles exist which describe robotics platforms
and projects for young children. For example the authors of
[6] present the experiences made introducing robotics in a
kindergarten using Lego WeDo. Children had to build a small
robot step by step. Afterwards they interacted with the robot,
which was actually programmed by a teacher.

The article in [2] describes the integration of robotics
in early childhood education following a constructionist
strategy (learning by designing, using concrete objects to
explore, identification of powerful ideas, self-reflection [2]).

Janka [15] presents the use of the programmable robot-
toy Bee-Bot in pre-school education. Different activities and
games for kindergarten children and teachers were designed
and qualitatively evaluated. The focus of this research was
based on robot programming instead of construction and
design. It turned out that although all children involved in
the study basically enjoyed playing with the Bee-Bot and
were not afraid of using this new technology the robot itself
was not interesting to them for a longer period of time.
The author also states that some of the children showed a
basic understanding of the robot’s control principles whereas
others seemed to be too cautious to increase their self
confidence during the work with the Bee-Bot [15].

III. CURRENT STATUS

Educational robotics for primary and secondary schools is
well established in Austria. Among other initiatives a nation-
wide network of RoboCupJunior regional centers provides

19

support for schools, teachers and pupils [13]. On the contrary
only a few initiatives and projects can be found which use
robotics in kindergarten and pre-school education.

One example would be the robotics course ”Robots for
Kids”. In 2010 the Department of Computer Science at the
University of Applied Sciences Technikum Wien set up this
course in cooperation with ”Kinderfreunde Wien”. The target
group for this course are kindergarten children at the age of
four to six years.

As another example the project ”Technical and natural
science in playschool” of Vienna University of Technology
could be mentioned. Children aged between four and six
have the opportunity to visit different departments of the
university and participate in experiments. Within this project
one of the main topics is robotics.

Additionally, different scientific institutions and universi-
ties offer training courses and workshops for educators and
children. For instance the Austrian Computer Society offers
robotic workshops in order to teach kindergarten pedagogues
how to integrate robotics into teaching. The ”Technisches
Museum Wien” organizes workshops for children between
the age of four and seven to teach them the basics of
programming and robotics.

Fig. 1. Two children working with the Bee-Bot

The initiative ”Children visit Science” is an innovative
approach within the context of kindergarten pedagogy in
Austria. The intergenerational, cross-organizational project
was originally initiated in 2010. The basic aim of this
initiative is to provide pre-school children and pupils with
access to different scientific fields and furthermore to give
an insight into the research sector at different scientific
institutions [14], [12].

In the first year the initiative comprised five educational
modules, focusing on different topics (bioscience,
experimental physics, criminalistics, chemistry, paper
manufacturing). In spring 2012 a scientific project day on
the subject of electrostatics and electricity was organized.
Secondary school students in cooperation with their teachers
prepared different hands-on experiments. Pupils acted as
guides explaining the experiments to kindergarten children.
This concept formed the basis of the scientific robotics day
described in section IV-B [5], [11], [14], [12].

Almost all above mentioned robotics projects and work-
shops use the Bee-Bot, manufactured by the British company
PrimaryICT, as a learning tool (see Figure 1). The small
programmable wheeled robot, designed for pre-school and
lower primary school children, is a widely adopted tool
within the context of educational robotics in kindergarten.
It can be controlled according to the principles of the
Logo programming language [22]. Using the buttons on the
back of the robot (forward, backward, rotate left, rotate
right) children can enter a sequence of commands. Each
forward/backward instruction moves the robot 15cm in the
corresponding direction whereas each rotation instruction
turns the robot by 90 degrees without changing its current
position [15].

IV. PROJECT DESCRIPTION

The two robotics projects for kindergartens presented
in this paper were carried out in Vienna and Graz. The
following subsections provide a detailed description of each
project.

A. Evaluation of the robotics course ”Robots for Kids” for
kindergarten children

The idea of evaluating this course arose while questioning
whether the settings and the used contents are reasonable and
helpful to teach first principles in programming using robots
as a learning environment.

As a consequence it was decided to redesign the course
in order to accomplish a setting, which can be evaluated by
students of the Faculty of Psychology at the University of
Vienna during the period from March to June 2012.

Therefore, the goal was to analyze the effects of the
course on children’s cognitive processes in the context
of executive functions. These are important parts when
coping with the everyday school routine and are utilized
for planning and initiating actions. The main issue was
to evaluate whether the training with the robots has an
influence on the performance of the executive functions [28].

Settings and content: There have been four kinder-
gartens (private as well as public) involved in the project.
Two of them with a group size of 12 to 16 children par-
ticipated in the course, whereas the other two kindergartens
with a group size of 27 children in total have not attended
the course and have been used as a control group in order
to compare the results. As a condition to participate in the
project, the minimum age of the children was defined with
54 months (four-and-a-half-years). An absence of more than
two lessons led to an exclusion of the target group.

The training was divided into six units, which were held
in the morning at weekly intervals and lasted one hour. Four
students of the University of Applied Sciences Technikum
Wien executed the redesigned and standardized training
schedule. Because of their simple user interfaces and the
possibility to utilize them in team constellations, Bee-Bot
robots have been chosen as training objects. The tasks
which should be fulfilled each training have been defined

20

in advance in order to guarantee that the two kindergartens
have been subjected to the same terms. Additionally, the
students recorded on a prepared sheet how many children
were able to solve the specific tasks to get an overview of
the performance of the kids.

Aims and hypotheses: The aim was to compare the
performances of the pre-school children before and after the
training. Therefore, four hypotheses were formulated [28]:

Hypothesis 1. The performances of the children who
attended the robot course have improved in the post-test
compared to those of the pre-test. If the result is significant it
has to be worked out whether the increase can be explained
by the robotics training. Therefore, the results have to be
compared with those of the control group (children who were
tested without having attended the training).

Hypothesis 2. After attending the training the performance
of the executive functions is significantly better in the test
group than in the control group.

Hypothesis 3. The statistical connection between the
variables inhibition, shifting and planning is significant.

Hypothesis 4. Demographic factors have an influence on
the performance at the pre-test.

B. A cross-generational robotics project day in kindergarten

In November 2012 a scientific kindergarten experiment
day with special focus on robotics was organized as a
joint project between the New Secondary School Voitsberg,
the Kindergarten Rosental a.d.Kainach (both in Styria), the
University of Teacher Education Styria and Graz University
of Technology (TUG). The structure of the robotics day
was based on the concept ”Children visit Science” and
the scientific project day on electrostatics and electricity
described in section III.

One main objective of the robotics project day was to
prepare contents of the area of robotics respecting peda-
gogical and didactic aspects as well as principles of ed-
ucational robotics ([7], [27], [24], [1]). Therefore, mem-
bers of the robotic lab at TUG together with kindergarten
pedagogues and teachers developed eleven different hands-
on experiments and educational games applying methods of
research-based learning ([19]) and the technique of story-
telling ([14], [17]). Respecting fundamental principles of
educational robotics as stated by Frangou and colleagues
in [7] children could actively participate, explore, test and
interact with the robots.

During the project day at the kindergarten each experiment
was carried out at a separate hands-on area, also referred
to as ’experiment station’. According to the concept of
an education partnership ([26]), secondary school students
carried out and explained the experiments to kindergarten
children and their grandparents. Pupils slip into the part of
a teacher, accompanying the kindergarten children through
their way of discovering and experiencing. In preparation
for their tasks pupils attended a half-day robotics workshop.
In this workshop the young students were first introduced to
the basic concepts of robotics and the scientific background

of each robotics experiment (e.g. explanation of sensor,
motors, robot programming, and so forth). Afterwards they
got detailed instructions on how to carry out and guide the
different experiments. In parallel kindergarten pedagogues
plan and carry out extensional framework-projects in order
to prepare the pre-school children.

To give the different age groups participating (pre-school
children, pupils, senior citizens) a basic understanding of
robotics and artificial intelligence the experiment stations
were structured around following major items using
different robotics platforms: The programmable wheeled
robot Bee-Bot [15], functionality of sensors using the LEGO
Mindstorms NXT 2.0 robotic kit [16], the humanoid robot
on the example of the Hitec RoboNova [10] and finally
mapping and object tracking using the Pioneer 3 DX robot
[9]. Figure 2 shows the excitement of children and pupils at
the different stations. Following a short description of each
topic.

1) Telling a story using the Bee-Bot: Based on the
functionality of the Bee-Bot described in chapter III two
educational games were developed. In the first game children
had to program the robot to follow a certain path on a special
square grid mat. The path represented the different produc-
tion stages in a glass factory (also see Figure 1). The research
question to the children was: ”Can you teach the Bee-Bot
how to make glass?”. The task of the second game was to
program the robot so that it moves from a starting point
to an endpoint, stopping at certain intermediate positions
on a square grid mat with fairy-tale motifs imprinted. The
research question for this task was: ”Can you tell the story of
the bad wolf and the three little piglets whereby the Bee-Bot
is acting the wolf?”

2) Functionality of sensors: Seven hands-on experiments
demonstrated the use and the functionality of the ultrasonic-,
the light-, the sound- and the color-sensor. Children could
interact with the different robots which were build using
Lego Mindstorms. Research topics included: ”Follow the
light”, ”Don’t drop from the table”, ”Avoid collisions”,
”Sweet-serving service robot” (Figure 2c), ”Find and grab
the can”, ”Sort the color bricks” (Figure 2a) and ”Follow
the noise”.

3) Humanoid robots: Using the example of the RoboNova
the basics of humanoid robots were demonstrated. Pupils
could control the robot by sending commands via the in-
frared remote controller. Children had to watch the robot
carefully and afterwards imitate its movements (Figure 2b).
The research question was: ”Is a robot better at dancing than
me?”

4) Mapping and object tracking: This experiment station
dealt with the topics of mapping and object detection
using the Pioneer 3 robot with a SICK laser scanner and
a Microsoft Kinect camera (Figure 2d). The tasks for the
children were formulated as follows: ”Supporting the rescue
robot” and ”Playing football with a real robot”

21

(a) Brick sorter (b) Humanoid dancing robot (c) Service robot (d) Rescue robot

Fig. 2. Kindergarten children and pupils together carrying out hands-on robotics experiments

V. PRELIMINARY EVALUATION AND RESULTS

This section describes the methodology used and results
of the evaluation of the robotics course ”Robots for Kids”.
Subsequently the outcome and preliminary qualitative eval-
uation results of the cross-generational kindergarten robotics
project day will be presented.

A. ”Robots for Kids”: Evaluation methodology and results

Both the test group as well as the control group have been
pre- and post-tested. The pre-tests took place in March and
April 2012 with a time gap of one week minimum before the
training started and the duration was announced with about
50 minutes (with a break after the first 20 minutes) for each
participant.

To operationalize the second hypothesis a mixed design
analysis with repeated measurements was chosen. Indepen-
dent variables are the variables of the test- and control group
as well as the two time measurements of the pre- and post-
test. The dependent variables have been constituted by the
performances of the children at the tests to determine the
executive functions.

For the pre-test and post-test, following psychological
instruments have been chosen:

• Kaufmann Assessment battery for Child [18]: displays
the intelligence level and the language skills of the
children. This instrument was just used for the pre-test.

• Dimension change card sorting test [29]: determines the
shifting (cognitive flexibility), which means to display
if the children are able to apply to newly learned rules.

• Day-Night-Stroop [8]: measures the inhibition respec-
tively the endurance and the ability to concentrate over
a certain period of time.

• Truck Load [4]: used to work out if the participants are
able to plan their next steps (pushing the right button
of the Bee-Bot).

After the six-week training the post-tests have been
executed from May to June 2012. These have been
conducted by other students of the Faculty of Psychology
to avoid an influenced testing effect and the duration was
20 minutes.

The outcome of the evaluation of the robotics workshop
for kindergarten children can be summarized as followed.

Regarding the performance of the test-group it could be
figured out that there have been improvements in the area
of planning and cognitive flexibility, but these have not been
significant. However, the efforts concerning inhibition were
significant. As a result it can be stated that the performance
of the children who attended the robot course has been im-
proved in the field of endurance and the ability to concentrate
over a certain period of time.

On the contrary it could not be proved that performance
after the training in the test group is significantly better than
in the control group. The improvements have been nearly
equally. Nevertheless this could be affiliated by a learning
effect caused by the use of the same testing instruments at
the pre- and post-test.

The third hypothesis can be proved right; there is a statis-
tical connection between the three variables. This implicates
that they can be matched with the construct of executive
functions. An improvement in one of the areas (inhibition,
planning, or cognitive flexibility) could therefore lead to an
improvement in one of the others as well.

Concerning the demographic factors, simply the level
of education of the participant’s parents had a significant
effect on the different performances (of the test group in
comparison to the control group) at the pre-test in the field
of planning.

Summing up, the results do not show statistically signifi-
cant improvements (despite the field of inhibition). Reasons
for that could be affiliated by the used tests. It is possible that
the tests have not been sensible enough to show the changes
of the executive functions caused by the robotic training [28].

B. Kindergarten robotics day: Outcome and preliminary
results

Respecting pedagogical and didactic aspects the first cross-
generational robotics day was conducted. In sum twenty-
five kindergarten children, divided into groups of three,
and ten pupils participated. Each group of children was
accompanied by at least one grandparent. The described
approach combined two major benefits: On the one hand
pupils learned about scientific topics not only during the
preparation process but also afterwards by guiding and
explaining the experiments to kindergarten children. On the
other hand kindergarten children had the opportunity to

22

learn and gather practical experiences together with pupils
and senior citizens. In this context one important aspect
was that pre-school children could actively participate in
the experiments. Furthermore the integration of different
age groups and different educational institutions fostered a
vital social process between kindergarten children, young
students, senior citizens as well as mentors, teachers and staff
members of participating institutions. In general the concept
of discovering and experimenting represents a valuable ped-
agogical approach within the area of pre-school education,
fostering the learning process of children in a holistic way.
In addition the robotics day formed the basis for a follow-up
project at the kindergarten in order to deepen what children
have seen and experienced [14], [12].

During the robotics day pictures were taken and exper-
iments were videotaped to gather qualitative data. Con-
sidering ethical and legal aspects all collected data was
treated confidentially. Beforehand parents were informed and
asked for their permission to take pictures and to videotape
experiments. Gathered data is still being analyzed, findings
will be published and discussed at a later date.

Right after the robotics day qualitative feedback from
kindergarten pedagogues, grandparents, parents and children
was obtained. This feedback was mainly positive. For in-
stance some parents reported that both children and their
grandparents were motivated to build robots on their own
after participating in the robotics day (i.e. using Lego Mind-
storms). One teacher told about a child with special needs
which also participated in the robotics day. The day after both
the child’s occupational therapist and psychologist noticed
a significant improvement of it’s behaviour. Kindergarten
pedagogues reported that children were very enthusiastic
about their first robotics-experience and still, almost half a
year later, asking when the robots will return.

Science and technology develop rapidly. In order to pre-
pare children it is important to familiarize them already in
kindergarten with science and technology in a playful way.
As first comments and qualitative feedback from the robotics
day indicate, using robots as pedagogical tools could be one
way to achieve this goal.

VI. CONCLUSIONS AND FUTURE WORK

In this paper two concepts of integrating robotics in
kindergartens in Austria have been presented. Furthermore,
quantitative results of an evaluation of a robotics workshop
for kindergarten children as well as preliminary qualita-
tive evaluation results of a cross-generational kindergarten
robotics day have been discussed.

A future evaluation project will use different psychological
instruments for pre- and post-testing while evaluating a
robotics course in order to avoid learning effects. More-
over, other tests, which measure the competencies used in
robotics training in a more detailed way, could be applied
[28]. In addition effects of robotics courses on emotional
understandings can possibly be displayed. This is currently
being analyzed.

In order to refine and improve the contents of the kinder-
garten robotics day presented in this paper qualitative inter-
views with participating children, pupils and teachers will
be conducted. Based on the findings of those interviews and
the lessons learned from the first robotics day further project
days in different kindergartens in Styria will be organized.
In addition a more detailed quantitative and qualitative eval-
uation on the impact of such robotics days in kindergartens
is planned.

ACKNOWLEDGEMENTS

The work has been partly funded by the European Fund
for Regional Development (EFRE), the federal government
of Slovenia and the Land Steiermark under the Tedusar grant.
The robotic day at the Kindergarten Rosental was a module
from the series ”Children visit Science” in cooperation with
the Interdisciplinary Center for Teaching Methodology at the
University of Teacher Education Styria

REFERENCES

[1] D. Alimisis and C. Kynigos. Constructionism and robotics in ed-
ucation. In D. Alimisis, editor, Teacher Education on Robotics-
Enhanced Constructivist Pedagogical Methods. School of Pedagogical
and Technological Education (ASPETE), 2009. ISBN 978-960-6749-
49-0.

[2] M. U. Bers, I. Ponte, C. Juelich, A. Viera, and J. Schenker. Teachers
as designers: Integrating robotics in early childhood education. Infor-
mation Technology in Childhood Education, 2002(1):123–145, 2002.

[3] A. Bredenfeld, A. Hofmann, and G. Steinbauer. Robotics in education
initiatives in europe - status, shortcomings and open questions. In
International Workshop ’Teaching robotics, teaching with robotics’,
SIMPAR 2010, Darmstadt, Germany, November 2010.

[4] S. Carlson, L. Moses, and L. Claxton. Individual differences in exec-
utive functioning and theory of mind: An investigation of inhibitory
control and planning ability. Experimental Child Psychology, 87:299–
319, 2004.

[5] H. Eck and W. Gaggl. IMST Regionales Netzwerk Steiermark, Bericht
2011/2012. Final annual report, 2012.

[6] F. Ferreira, A. Dominguez, and E. Micheli. Twitter, robotics and
kindergarten. In M. Moro and D. Alimisisi, editors, Proceedings of
3rd International Workshop ’Teaching robotics, teaching with robotics.
Integrating Robotics in School Curriculum, Riva del Garda, Italy, April
20 2012.

[7] S. Frangou, K. Papanikolaou, L. Aravecchia, L. Montel, S. Ionita,
J. Arlegui, A. Pina, E. Menegatti, M. Moro, N. Fava, S. Monfalcon,
and I. Pagello. Representative examples of implementing educationa
robotics in school based on the constructivist approach. In Workshop
Proceedings of SIMPAR 2008; Intl. Conf. on SIMULATION, MOD-
ELING and PROGRAMMING for AUTONOMOUS ROBOTS, pages
54–65, Venice, Italy, November 2008.

[8] C. Gerstad, Y. Hong, and A. Diamond. The relationship between
cognition and action: performance of children 3 1/2-7 years old on a
stroop-like day-night test. Cognittion, 53:129–153, 1994.

[9] G. Grisettiy, C. Stachniss, and W. Burgard. Improving grid-based
slam with rao-blackwellized particle filters by adaptive proposals and
selective resampling. In Proceedings of the 2005 IEEE International
Conference on Robotics and Automation, Barcelona, Spain, April
2005.

[10] D. Grunberg, R. Ellenberg, Y. E. Kim, and P. Y. Oh. From robonova
to hubo: Platforms for robot dance. Progress in Robotics; Communi-
cations in Computer and Information Science, 44:19–24, 2009.

[11] S. Hirschmugl-Gaisch and H. Eck. Von magischen Koepfen und
leuchtenden Wanzen. 2012.

[12] S. Hirschmugl-Gaisch, H. Eck, and H. Jungwirth. Kinder reisen
durch die wissenschaft. In Fachtagung fuer elementare Bildung, Graz,
Austria, September 2011.

[13] A. Hofmann and G. Steinbauer. The regional center concept for
robocupjunior in austria. In First International Conference on Robotics
in Education, Bratislava, Slovakia, 2010.

23

[14] IMST. Kinder reisen durch die Wissenschaft. Report, 2011. Report
by the IMST initiative (Innovations make schools top).

[15] P. Janka. Using a programmable toy at preschool age: Why and
how? In Teaching with robotics: didactic approaches and experiences.
Workshop of International Conference on Simulation, Modeling and
Programming Autonomous Robots (SIMPAR 2008), 2008.

[16] S. H. Kim and J. W. Jeon. Programming lego mindstorms nxt
with visual programming. In International Conference on Control,
Automation and Systems, Seoul, Korea, October 2007.

[17] S. Masemann and B. Messer. Improvisation und Storytelling in
Training und Unterricht. Beltz, 2009.

[18] P. Melchers and U. Preuss. Kaufmann Assessment Battery for Children.
Frankfurt/Main: Pearson Assessment, 2009.

[19] R. Messner. Schule forscht: Ansaetze und Methoden zum forschenden
Lernen. edition Koerber-Stiftung, 2009.

[20] M. Moro and D. Alimisisi, editors. Proceedings 3rd International
Workshop ’Teaching robotics, teaching with robotics’, Riva del Garda,
Italy, April 20 2012.

[21] D. Obdrzalek, editor. Proceedings of the 3rd International Confer-
ence on Robotics in Education (RiE 2012), Prague, Czech Republic,
September 2012.

[22] S. Papert. Mindstorms: Children, Computers, and Powerful Ideas.
Basic Books, 1993.

[23] M. Petre and B. Pricer. Using robotics to motivate back door learning.
Education and Information Technologies, 9(2):147–158, 2004.

[24] E. Romero, A. Lopez, and O. Hernandez. A pilot study of robotics
in elementary education. In 10th Latin American and Caribbean
Conference for Engineering and Technology, Panama City, Panama,
July 2012.

[25] E. Sklar. A long-term approach to improving human-robot interaction:
Robocupjunior rescue. In IEEE International Conference on Robotics
and Automation, 2004. Proceedings. ICRA ’04, 2004.

[26] M. Textor. Bildungs- und Erziehungspartnerschaft in Kindertagesein-
richtungen. Books on Demand, 2011.

[27] M. Virnes and E. Sutinen. Topobo in kindergarten: educational robotics
promoting dedicated learning. In Proceedings of the 17th International
Conference on Computers in Education, Hong Kong, November 2009.

[28] L. Wulf. Effects of Robotics. Master’s thesis, University of Vienna,
Austria, 2012.

[29] P. Zelazo, D. Frye, and T. Rapus. An age-related dissociation between
knowing rules and using them. Cognitive Development, 1:37–63, 1996.

24

A ROS and Aria based framework for didactical analysis of behavioral
control in mobile Robotics

Mario Grotschar Departments of Mechatronics
University of Applied Sciences Technikum

Wien
Hoechstaedtplatz 5, 1200 Wien, Austria, Europe

mario.grotschar@technikum-wien.at

Clemens Doppler Departments of Mechatronics
University of Applied Sciences Technikum

Wien
Hoechstaedtplatz 5, 1200 Wien, Austria, Europe

clemens.doppler@technikum-wien.at

Abstract— Due to the ever increasing complexity of software
development in the field of robotics, so called ”Robotic Devel-
opment Environments (RDE)” constantly gain importance [8].
Falling in this category the ”Robot Operating System (ROS)”
from Willow Garage, Inc. [13] allows an abstract view of
robotic problems. Above that ROS can be considered a ”Meta
Operating System” that provides tools and methods to simplify
the creation of robotic applications.

The primary goal of this work is to supply students with
the benefits of this ”Meta Operating System” together with the
means of creating applications for autonomous robot behavior.
Based upon the three-tiered architecture described by [5] and
[6] a framework for the behavioral control layer is presented
in this work. Because all other layers of a control architecture
for more complex robots are building on this layer, it is crucial
for students to get a deeper insight and understanding of such
a system. The best way of achieving this, is the possibility to
experiment freely on this topic. Therefor this work presents
a full package for doing so. By overcoming the need for
caring about robot program structure, odometry, sensor data
acquisition, or motor control, students can address their whole
attention to small code-blocks for developing new behaviors and
parameterizing the framework. For testing and verification of
the created behavioral control, the package of the framework
also comprises a simulator and a software compatible mobile
robot platform. Concluding, an exemplary application of the
framework is given in this paper.

I. INTRODUCTION

One purpose for research in mobile robotics is the use of
autonomous robots in the field of service applications. These
service applications, like e.g. guiding people through build-
ings [1], or transport of items [2], [3], [4], mostly happen to
take place in unstructured environments including dynamic
changes and obstacles. Due to this fact, mobile robots have to
be able to cope with all of these influencing factors in nearly
real-time. Only if the robot control architecture allows the
robot to react appropriate to every likely situation it is able
to act really autonomous. According to [5], [6] one approach
for a capable control system is the three-tiered architecture
(3T). The schematic diagram in Figure 1 shows the basic idea
behind the 3T model. There are three layers which have to
manage different control tasks. Each of these tiers does only
directly interact with neighboring tiers. The robot hardware
consists of the body, actors and sensors. As [7] stated in
his work, the differentiation between the tiers can be seen
in a spatial scope as well as in a time related scope. This
means the closer a layer is connected to the robot hardware,

the closer the vicinitiy is, it’s considering. Accordingly, the
transient time for control tasks needs to be shorter for lower
layers. This issue can also be seen as a matter of knowledge.
The higher a tier is located in den 3T model, the more
knowledge it needs to fulfill its task. E.g. for path planning
there is a need for a global map and the robots latest pose
whereas for collision detection current sensor information is
sufficient.

The base tier, so called behavioral control, including the
communication with actor motion control (PID), serves as
a direct interface to the robot hardware. It controls the
movement of joints and receives data from intrinsic and
extrinsic sensors. Furthermore it contains a set of behavior
functions that drive robot actions and shall lead to a more
robust execution of tasks in ambiguous situations. E.g. if the
robot has to move around in an unstructured environment it
needs to have a collision avoidance behavior and a behavior
that moves the robot in a general direction. Behaviors work
similar to human reflexes. There is no time-consuming rea-
soning but an instantaneous reaction of the robot - like a blink
of the human eye. Predefined rules or functions determine
a direct actor control output in a short loop according to
current sensor readings and high level routine data. If there
are two or more behaviors working in parallel, there also
has to be a merging function that fuses the control output of
all active behaviors in a reasonable way. A different set of
behaviors can be used for different situations.

The middle tier, called Executive, acts like a mediator
between behavioral tier and planning tier. It receives global
goals from the upper layer, reports the current status of the
robot to the upper layer, and decomposes the global plan into
sets of subtasks that can be managed by reactive behaviors.
It controls which behaviors or which sequence of behaviors
is needed to achieve the goal. In [5] and [7] this layer is also
referred to as tactical intermediate planner. It may manage
a temporary local map that comprises dynamic changes in
the environment. The executive layer may also recognize
failures in a current maneuver and handle a recovery action.
Depending by the implementation of the architecture, this
may also be done by the planner.

The upmost tier, the task planner, is responsible for the
strategic long-term planning of tasks. This layer reasons
about optimal tasks from a global point of view. It deals
with high level tasks and does not care much about real-

25

time constraints. Usually the strategic long-term goal is
not changing within computation cycle-times. There can be
found various implementations of the 3T model or similar
tiered models for autonomous mobile robots throughout
literature. Some examples can be found in [5], [6], and
[7]. Whatever differences there are, all of them have a fast,
reactive control layer that interacts directly with the robots
hardware and provides basic behaviors.

Task Planning

Executive

Behavioral control
Behavior

1

Behavior

2

Behavior

n
...

PID Motion Control

Real World

Robot Hardware

Fig. 1. Three tiered (3T) robot control architecture (author’s representation
derived from [5] and [6])

For students in robotics it is important to understand how
this layer is working and what challenges there are. Some of
these insights might be:

• What behaviors do I need for a specific task in a specific
environment?

• How many behaviors should be combined?
• How can the outputs of several individual behaviors be

fused in a successful way?
• What parameters can be changed in a behavioral con-

trol?
• What effect does randomization have on control?
• What are the downsides of parallel processed behaviors?
• Which difficulties are encountered at debugging?

Understanding this is crucial for students for further de-
velopment of more complex robot control architectures.

Therefor a package containing a combination of a state of
the art and manageable robot control software, a simulator,
and compatible robot hardware has to be created. If provided,
students could concentrate on getting used to behaviors and
instantaneous assessment of their code within the simulation.
Furthermore if the simulation shows the desired action of the
robot, same code could be evaluated on real robot hardware
in the real world environment. Integrating these components
into a framework shall facilitate the behavioral approach to
robot control a lot in education. Overcoming the need for
caring about robot program structure, odometry, sensor data
acquisition, or motor control, students could address their
whole attention to small code-blocks for developing new
behaviors and parameterizing the framework.

II. SYSTEM DESIGN

A. Mobile robot

The AmigoBotTMH8 mobile robot platform was chosen to
test the behavior framework and ROS environment. Because
the AmigoBot is a very cost-effective differential-drive robot
it perfectly serves education and collaboration projects. It
comes with 8 sonar sensors and can be controlled wirelessly.
Differential drive movement allows pivot turns and rotation
speed of 100◦/s. The swing radius is 16,5cm and the maxi-
mum forward speed is 1m/s. Two RS-232 Comm ports and
three ADCs are supplied by the 44MHz z Renesas SH2-7144
microprocessor. Figure 2 shows the AmigoBots’ schematic
sketch. The robots’ dimensions and crucial components and
interfaces are displayed in this image.

13cm

33cm

28cm

Fig. 2. AmigoBots’ schematic sketch [16]

B. Middleware

Middleware is described by [9] as following:
... a class of software technologies designed

to help manage the complexity and heterogeneity
inherent in distributed systems. It is defined as a
layer of software above the operating system but
below the application program that provides a com-
mon programming abstraction across a distributed
system.

But above that ROS can also be considered a ”Meta Op-
erating System” [10] which provides a standardized toolset
and APIs. There are a couple of middleware frameworks
that help to develop robotic applications. Ayssam Elkady
and Tarek Sobh [11] offer a comprehensive literature sur-
vey on different robotics middleware. For this work ROS
was chosen, as it supports the AmigoBot by supplying a
wrapper for the ”Advanced Robot Interface for Applications”
(ARIA) Framework. Latter one comes with the AmigoBot
and offers extensive AmigoBot functionality. Aria is a C++
library (software development toolkit or SDK) for all Mo-
bileRobots/ActivMedia platforms. It can control the robot’s
velocity, heading, and other parameters either through simple
low-level commands or its high-level Actions infrastructure
[12]. The wrapper comes as a so called ”package”, namely
ROSARIA [14]. Furthermore ROS is a very thin layer and
thus runs on embedded devices. Besides ROS is peer-to-
peer based and open-source. In ROS the ”name service”

26

fulfills the task of the required lookup mechanism. Because
ROS is language neutral several programming languages can
be support. ROS natively comes with C++, Python, Octave
and LISP support. Through IDLs (Interface Definition Lan-
guage) messages can be passed between different modules
independently from the physical system. ROS follows the
scheme of a microkernel design, meaning a lot of separate
software components collaborate to offer a solution to a
specific problem.

C. Behavior Framework

Based upon an early prototype of a previous student
project the behavior framework was redesigned and embed-
ded into ROS. It was designed to be easily reused and to be
extended further by prospective students. The parameters of
the behaviors can be set using text files. Also new behaviors
can be added and different behaviors can be combined using
a configuration file. Basically the framework consists of a
sorted behavior queue. Every behavior has a priority that
decides when the behavior is executed. Behaviors with higher
priorities are executed before the ones with lower priority.
If two or more behaviors have the same priority the mean
value of their outcomes are passed to the motors. No behavior
directly sets the values of the motor values, but adds up to
them. The flowchart of the behavior frame work is depicted
in figure 3.

Read parameters and sensor data

Condition for behavior met?

Return 0 to behavior library Process sensor data
Calculate motor values

Set motor values

Return 1 to behavior library

Fig. 3. Flowchart behavior framework

A very simple behavior is the bGotoXY() behavior. It first
parses the robots’ pose and reads the target location from the
configuration file.

arget.setX(readParam(2,0));
target.setY(readParam(2,1));
current = robot->getPose();

The next step is to check, whether the robot is still out of
range of the target.

if(current.findDistanceTo(target) >
dProximity) {
...
}

If this is the case then the angle to the target is calculated.
Depending on whether the final destination is to the left or

to the right of the robot the appropriate wheel velocities are
added to the left and right wheels.

if(current.findAngleTo(target) >
current.getTh() + dAccuracy)
{
dVelRight -= dRotVel;
dVelLeft += dRotVel;
}
else if(current.findAngleTo(target) <
current.getTh() - dAccuracy)
{
dVelRight += dRotVel;
dVelLeft -= dRotVel;
}
...

If the target is just in front of the robot both wheels are
set with the same value.

else
{
dVelRight += dMaxVel;
dVelLeft += dMaxVel;
}

If the robot is not within the targets’ range, 1 is returned.
This triggers another execution of the behavior in the next
iteration. Otherwise 0 is returned. The variable dAccuracy
is of importance, as the robots movement is affected by
odometric errors in the real world.

D. Simulator

MobileSim [15], which also is provided by Adept Mo-
bileRobots, was used as a simulator to test the behaviors. As
both, the AmigoBot and the Simulator support TCPI/IP for
communication, the connection is transparent. This means
that from the programmers point of view, there is no differ-
ence between the connection to the robot or the simulator.
Therefore no modification had to be performed to the simu-
lator or the users programs. It offers a 2D environment and
an GUI.

E. behavior-amigo

The created ROS package ”behavior-amigo” is basi-
cally a wrapper that combines the behavior framework and
the ROSARIA package. It consists of the three classes
AmigoBehavior, AmigoSensors and AmigoTeleoperation.
The AmigoBehavior class provides all the functionalities of
the behavior framework and the ROSARIA package while
the latter two classes can be used to display sensor data or
to remotely control the robot manually.

III. IMPLEMENTATION

In the course of this project the behavior-framework was
embedded into ROS by creating a new package ”behavior-
amigo”. Like the ROSARIA package its merely a wrapper
for the behavior-framework. It influences the software’s
extensibility, modularity, reusability and compatibility.

Extensibility is increased as new robot functions can be
implemented by either combining existing behaviors in a

27

configuration file or by adding new routines to the function
’beLib()’ which selects the next behavior. Both methods
don’t interfere with any other parts of the software. This is
very handy in the educational fields, as students really can
focus on the actual robotic task instead of coding aspects.

Modularity is achieved by using ROS. Each node, in our
case each program instance, is a well defined component
that only communicates with other nodes using ROS topics
to receive or transmit predefined messages. Further more
ROS offers a tool named rxgraph that can visualize how
nodes interconnect with each other in real-time. Thus very
complex problems can be identified early and enventually
tracked down very easily. Furthermore complex, meaning
large, student projects can be split into isolated parts. These
parts can be designed and tested by separate student groups
and eventually be blended to create large scale applications
that could otherwise not come to fruition.

Maintainability is the logic implication of the latter two
features, modularity and extensibility.

Being able to add any number of existing ROS packages
to this framework contributes to reusability.

Compatibility is also an implication of using well-defined
messages between single nodes and by connecting only a
fixed set of behaviors. But in this case the term compatibility
exceeds the meaning of ”interoperability” between different
versions of the same software or other software. It also
comprises the comparability of gathered empirical results.

A. Design process using framework

By using the behavior framework in conjunction with ROS
the development process of new robotic application can be
facilitated. The whole development process will be composed
of the following sequential steps:

1) Requirement analysis
2) Software design
3) Check if the task can be achieved with an existing

behavior. If so then solving the problem reduces to
setting the appropriate parameters in the behavior
configuration file. Otherwise proceed to the next step.

4) Check if the task can be achieved by combining exist-
ing behaviors. If so then solving the problem reduces
to connecting the suitable behaviors and setting the
parameters in the individual behavior configuration
files. Otherwise proceed to the next step. If one could
solve the problem at this point the implementation is
complete.

5) Check if the problem can be solved by incorporating
an existing ROS package. This can be the case if
functionality beyond the robot behavior is required, e.g
accessing new hardware. If this is sufficient then the
implementation is completed. If there is no package
then one has to proceed to the next step.

6) Check if either a new behavior or a new software
functionality. e.g accessing new hardware, is necessary.
Either wise the desired functionality has to be coded.

One can see that the necessity to actually code can be
circumvented in most cases. This allows students to focus on

actual robotic tasks. The previously described process is de-
picted in figure 4. Blue process boxes comprise coding work,
whereas grey process boxes require either only manipulation
of behavior configuration files or plugins of ROS packages.
The white processes only represent conceputal work, includ-
ing the requirement analysis and software design. Only the
latter phase is influenced indirectly by the framework.

Start

Basic behavior
sufficient?

Requirement analysis

Complex behavior
sufficient?

Non behavior
functions required?

ROS package
available?

Software design

Modify parameters

Connect behaviors

Code new behavior

Use ROS package

Code new software functions

End

No

No

No

No

Yes

Yes

Yes

Yes

Fig. 4. Flowchart of design process using framework

B. Design process without framework

1) Requirement analysis
2) Software design
3) Check if there any libraries that supply the desired

functionality. This can either happen on the internet
or university intranet. If there aren’t any libraries then
one has to implement them by writing code. Otherwise
one has to proceed to the next step.

4) Now one has to verify if the libraries are compatible.
Meaning that they are available for the desired plat-
form. Either way they have to be integrated or ported
to fit the project.

The previously described process is depicted in figure 5.

C. Comparison

Figures 4 and 5 make it obvious, that without the frame-
work the necessity to write programm code can never be
avoided. In figure 4 one can identify three out of five possible
paths that don’t require coding at all.

D. Example implementation process

Now an example will be given by showing an actual
implementation using the framework. In this example the

28

Start

Are there appropriate
libraries?

Requirement analysis

Are they compatible?

Software design

Code new behavior or function

Write glue code / wrapper

Write code integrating the libraries

End

No

No

Yes

Yes

Fig. 5. Flowchart of design process without framework

robot’s task is to reach a certain point without collisions. Two
behaviors are supplied for this purpose, namley a behavior
called ’bSimpleAvoid()’ and one named ’bGotoXY()’. The
second behavior navigates the robot to a given point in
the global reference system. After the design phase one
has to identify the appropriate behaviors and adapt their
configuration files. The structure of a file is very simple and
looks like in the listing below.

Destination X:6000
Destination Y:-5000
Maximum Speed:200
Proximity:50
Rotational Speed:10
Accuracy:1
Mean:1
Sigma:0

The mean and the sigma value allow to blend some ran-
domnes into the calculated values. This can be helpful if the
robot got stuck in a deadlock. Such situations can occur, in
case of a sensor toggling between collision and a distance
above the trigger distance. Taking a turn at a corner is an
example for such a case.

Different behaviors are then combined by putting them
into the behaviors’ queue configuration file together with
their priority. The listing below describes how this is done
for this example.

2:5
1:5

Every behavior has an ID, which is identical to the
configurations file name. In this case the IDs are 1 and 2.
Both behaviors have the same priority of five. This means
that both contribute to the motor value. So implementing an
individual behavioral control layer only requires the textual
manipulation of three textfiles. Figure 6 shows the structure
of the application shown by the ROS software rxgraph. Each
node is an instance of an application that communicates by
the means of ROS topics. There is no difference if these

nodes run on the same physical machine or are distributed
in a network. Rxgraph allows real-time information on the
topic values and the status of the nodes. If communication
fails it can easly be pinpointed. If one would not use the ROS
enviroment debugging communication related issues become
very hard as one would have to crawl logfiles or network
dumps. The picture also shows that the individual nodes
are encapsulated and only communicate through predefined
messages. In this case the topics are /amigo behavior/sonar,
/amigo behavior/pose and /rosout.

/amigo_behaviour

/amigo_sonar

/rosout

/amigo_behaviour/pose

/amigo_behaviour/sonar

/rosout

/rosout

Fig. 6. ROS strucutre of application

IV. RESULTS

The result of this work is a framework that allows students
a very structured but still flexible implementation process
of robotic applications. This is essential for the students
learning success. Figure 7 shows the simulations’ result when
blendig both behaviors. With very litte effort a quite complex
behavior can be implemented. Summing up the framework
comprises the following components and thus offering a
complete RDE:

• A ”Meta Operating System” namley ROS.
• Robot behaviors that can easily be modified and con-

nected.
• The ROS package ”behavior-amigo” that embeds the

behavior framework into ROS.
• The simulator ”MobileSim” that transparently connects

to the software.
• Robotic hardware that is supported by the framework.

Compatible hardware comprises robots supplied by
Adept MobileRobots and especially the AmigoBot.

Another test has been conducted using a simple test
environment. The result of the simulation and the real robots’
behavior were then compared. Figure 8 shows the outcome of
the test. The plot was created by using the ”behavior-amigo”
packages’ logging features. From the programs point of view
there was no difference between both test runs. The colored
arrows indicate the sensor’s values.

In the top plot the data of the simulation is displayed. An
obstacle to the left of the robot is detected by the sensors.
This circumstance is represented by shorter sonar vector
values. In contrast to the smooth and ordered outcome of the
simulation, the real world results are less accurate. Despite of
this, the simple behavior accomplishes the robots’ mission.

29

Fig. 7. Simulation result of both behaviors combined

Fig. 8. Comparison simulation and real world behavior

V. FUTURE WORK

Until now the framework hasn’t been inserted into any
curriculum. However the Departments of Mechatronics is
currently working on providing a course, which includes
several tasks that can be solved with the framework, for the
upcoming term. Once the framework is in use, other projects
that investigate the benefit of the framework would be of
interest. The students’ feedback could then be incorporated
into future versions of the framework.

A graphical user interface would also be a desirable
component to increase the usability of the framework. A
graphical behavior design program would help to visualize
complex interactions between behaviors. It would have to be
able to parse the configuration files and then visualize the
behaviors interactions in a state machine like representation.
Alternatively one should be able to connect different behav-
iors in a drag and drop like fashion.

Real time feedback on the different behavior’s activities
would be beneficial for debugging purposes. Furthermore,
extending the available behaviors pool would be another goal
for future work.

VI. CONCLUSION

Because of the increasing complexity of software de-
velopment in the field of robotics ”Robotic Development
Environments (RDE)” have gained more and more impor-
tance [8]. The complexity of the implementation process
could be reduced dramatically. This is essential, so that
students can really focus on robotic related problems, such
as navigation and mapping. Supplying students with ready
to use frameworks goes with this design paradigm.

ACKNOWLEDGMENT

This work was supported by ”Stadt Wien Kompetenzteam
für Mobile Roboter” at UAS Technikum-Wien. According
to the aim of this grant program, bringing together research
and education, the outcome of this work will be used at the
bachelor program for mechatronics at UAS Technikum Wien.

REFERENCES

[1] S. Thrun, M. Beetz, M. Bennewitz, W. Burgard, A. B. Cremers,
F. Dellaert, D. Fox, D. Hhnel, C. Rosenberg, J. Schulte, and D.
Schulz,”Probabilistic algorithms and the interactive museum tour-guide
robot Minerva,” Int. J. of Robotics Research (IJRR) 19(11):972-999,
2000.

[2] Y. Hada, K. Takase, H. Gakuhari, and E. I. Hemeldan, ”Delivery ser-
vice robot using distributed acquisition, actuators and intelligence,” in
Proceedings of 2004 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2004, pp. 2997-3002.

[3]] F. Sandt and L.-H. Pampagnin, ”Perception for a transport robot in
public environment,” in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, IROS’97, vol. 1, Sep 1997, pp. 360-365.

[4] Swisslog, ”Integrated logistics solutions for warehouses,
distribution centers and hospitals [online],” Available from
http://www.swisslog.com/ [accessed 13 March 2013], 2013.

[5] R. Siegwart, I. R. Nourbakhsh, and D. Scaramzza, Autonomous Mobile
Robots. MIT Press, 2nd ed, 2011

[6] B. Siciliano et al., Handbook of Robotics. Springer, 2008
[7] Arkin, R.C., Behavior-Based Robotics. Cambridge MA, MIT Press,

1998
[8] J. Kramer and M. Scheutz, “Development environments for autonomous

mobile robots: A survey,” in Autonomous Robots, vol. 22, pp. 101–132.
[9] D. E. Bakken and M. Api, “Middleware,” 2001.
[10] S. Rainwater. [Online]. (08.03.2013). Available:

http://www.willowgarage.com/pages/software/ros-platform
[11] A. Elkady and T. Sobh, “Robotics middleware: A comprehensive

literature survey and attribute-based bibliography,” Journal of Robotics,
vol. 2012, no. 5, p. 115, 2012.

[12] Aria - mobilerobots research and academic customer support. (2013).
[Online]. Available: http://robots.mobilerobots.com/wiki/ARIA

[13] Ros — willow garage. [Online]. (08.03.2013). Available:
http://www.willowgarage.com/pages/software/ros-platform

[14] Rosaria - ros wiki. [Online]. (12.03.2013). Available:
http://www.ros.org/wiki/ROSARIA

[15] Mobilesim robot simulators. (12.03.2013). [Online]. Available:
http://www.mobilerobots.com/software/mobilesim.aspx

[16] Team AmigoBot Operations Manual, 4th ed., MobileRobots Inc.,
Amherst, NH, 2007, pp. 14

30

Design, Modeling and Control of a Self-Balancing
Two-Wheeled Vehicle

F. Johannes Kilian1, Hubert Gattringer1, Klemens Springer1 and Hartmut Bremer1

Abstract— The following contribution introduces the design,
modeling and control of a two-wheeled self-balancing vehicle.
This mobile robot is about 60cm tall and uses two wheels
actuated by two DC gear drives to execute transport tasks. An
embedded board and a microcontroller enable the control of the
wheels and assume the path planning. Several sensors, such as
a Microsoft Kinect as well as a gravitation and an angular rate
sensor, stabilize the robot and make a communication between
robot and humans possible.
Due to the nonholonomic constraints of the wheels, only few
modeling methods are feasible. The obtained model serves as
basis for the following control design. A flatnessbased approach
provides an excellent possibility to follow a trajectory, but
requires an underlaid velocity controller and continuous cur-
vature paths. The combination of the well designed trajectory
controller and the applied paths, which are composed by
straight lines, circles and clothoids, enable a good performance
in simulation and experiment.

I. INTRODUCTION

The two-wheeled, self-balancing Segway PT found one’s
way into everyday life of human transport. Dean Kamen
introduced this vehicle in 2001 and therefore changed the
focus of personal transport. The Institute of Robotics of
the Johannes Kepler University Linz researches for several
years on the design and control of small two-wheeled,
self-balancing, Segway-similar mobile robots, see [1], [2]
and [3] for further details. The main tasks of this research
project is the advancement of autonomous, mobile robots
with two wheels. Compared with conventional three-
or four-wheeled robots, this self-balancing two wheeled
robot requires only two drives and resolves transport tasks
in comparative good way. Beyond the motion control
challenges, all other modules of an autonomous robot, such
as localization, path planning and human-machine-interface,
only may draw small spatial and computing resources. The
considered robot is shown in Fig. 1. It is about60 cm tall,
25 cm wide and has a weight of4.6 kg.
The paper is organized as follows. In section 2, we give
an overview of the mechanical and electrical design of
the robot. Section 3 introduces a kinematic and dynamic
model, which is used for the control design in section 4.
A stabilization and a trajectory controller demonstrate the
potential of this mobile robot for transport tasks. Section5
deals with the path planning and passes to the experimental
results in section 6, which concludes this contribution.

1Institute for Robotics, Johannes Kepler University Linz, Altenbergerstr.
69, 4040 Linz, Austria.

Fig. 1. The two-wheeled, self-balancing mobile robot in front of the newly
built Science Park of the Johannes Kepler University Linz

II. DESIGN

The contemplated robot consists of three bodies: the two
wheels and the corpus. The corpus includes the battery and
the Microsoft Kinect in the top and the electronic box at
the bottom. This box contains two20W Maxon motors
connected to planetary gears transmitting the motor speed
by a gear ratio of27. Furthermore, all sensors and electronic
devices can be found in the electronic box.
The electrical design of the robot is shown in Fig. 2.
The computational heart of the controller is an embedded
computer board (ADVANTECH PCM-9362) including a
1.67GHz processor. This board exercises the control al-
gorithms and the interface processing. An Infineon C167
microcontroller communicates with the motor amplifier and
evaluates the sensors - an accelerometer sensor as well as
an angular rate sensor and two encoders. Furthermore, it
receives and delivers the signals to the embedded board via

31

a self-defined protocol using a parallel port interface. The
embedded board communicates with several human-machine
interfaces (HMIs) via USB or Wifi. The Microsoft Kinect and
Android applications on any compatible hardware provide a
possibility to control the behavior of the mobile robot.

microcontroller

motor

motor current
motor angle

accelerometer
angular rate sensor

embedded computer board

with RTAI linux

encoder signals
motor current

amplifier

human-machine interface

amplifier and motor

external sensors

Fig. 2. The electric design of the two-wheeled, self-balancing mobile robot

The upward angle of the corpus is measured by means of
complementary filtering, see [4]. Measuring the accelerations
in two directions provides a good estimation for the angle
in terms of a statical process. The dynamic effects (high
frequencies) are taken into account by using angular rate
measurements, see [2] and [5]. Because the microcontroller
is aware of all necessary information, an implemented LQR
controller stabilizes the mobile robot, if the embedded board
is not active. Therefore, stabilization and resulting intactness
of the robot can be guaranteed at any time.

III. KINEMATIC AND DYNAMIC MODELING

It is in the nature of things that conventional wheels are
unable to move lateral to the front direction. This fact leads
to the resulting condition

vQ = 0, (1)

see Fig. 4. Due to this nonholonomic constraint, only those
modeling methods can be considered which take these
special constraints into account. Hence, for instance the
Lagrange II formalism leads to incorrect dynamic equations.
Common modeling methods, such as the Maggi equation

or the Hamel-Boltzmann equations, insert the nonholonomic
constraint only in the last step and therefore require the
modeling with a higher dimension as actual necessary. The
Projection Equation

N∑

i=1

∂Rvc

∂ṡ
∂Rωc

∂ṡ

T

i

(Rṗ+R ω̃IR Rp−R fe)i(
RL̇+R ω̃IR RL−R Me

)
i

 = 0

(2)
has proved itself to be an excellent approach to deriving the
equations of motion for multibody, nonholonomic systems
and minimizes simultaneously the dimensions of the minimal
velocities, see [6] for details. This method projects the linear
(p = mvc) and angular (L = Jωc) momenta of theith
body in the space of the minimal velocitiesṡ, see [1] for
a comparative study of modeling methods for such a robot.
The choice of the minimal velocities

ṡT =
(
α̇− θ̇ β̇ − θ̇ θ̇

)
=

(
ṡT1 ṡ2

)
, (3)

and the minimal coordinates

qT =
(
x y γ θ

)
, (4)

using the wheel anglesα and β and the inclination angle
θ, implies already the nonholonomic contstraintvQ = 0.
The in general nonlinear kinematical relationship between
the minimal coordinatesq and the minimal velocitieṡs is
given by

ṡ = H (q) q̇. (5)

Carrying out the Projection Equation, we obtain the equa-
tions of motion

M (q) s̈+ g (q, ṡ)−Bu = 0, (6)

which serve as basis for the following control design.

IV. CONTROL

The control of the self-stabilizing mobile robot is split into
two different tasks: on the one hand, the stabilization of the
inclination angle is the most important challenge. An overlaid
trajectory controller seems to be indispensable for transport
tasks on the other hand. Both controllers are discussed in
detail within the following section.

A. Stabilization and Velocity Controller

In order to safe the mobile robot from damage, the
stabilization of the inclination angle is absolutely necessary.
Therefore, a partial feedback linearization gives the possi-
bility to combine the stabilization with a velocity controller,
which deals as basis for the following trajectory control.
The structure of the equations of motion

M11 s̈1 +M12 s̈2 + h1 = B1 u
M21 s̈1 +M22 s̈2 + h2 = 0,

(7)

using the motor torquesuT =
(
Mα Mβ

)
, allows the

linearization by using the new system inputv

u = B−1
1

(
M11 v + h2

)
(8)

32

Ix

Iz

Bx

Bz

Kx

Kz

θ

O

α
β

Fig. 3. Sketch of the considered mobile robot (front view)

x

y

Ix

Iy

Kx

Ky

vQ

vL

O

γ

Fig. 4. Sketch of the considered mobile robot (horizontal view)

with the abbreviations

M11 = M11 −M12 M
−1
22 M21

h1 = h1 −M12 M
−1
22 h2.

(9)

The input transformation of Eq. 8 leads to a partially
linearized system

s̈1 = v
s̈2 = −M−1

22 (M21 v + h2) ,
(10)

which can be linearized around the inclination angleθ = 0.
As a result, a LQR controller can be introduced based on
the minimization of the cost function

J =

∞∑

k=1

(
xT
k Qxk + vT

k Rvk

)
, (11)

time in s

v L
in

m
/
s

measured
desired

0

0

0.2

0.4

−0.2

−0.4

−0.6
5 10 15 20 25

Fig. 5. Experimental results of the velocity control with the calculation of
the desired inclination angle

Ix

Iy

dx

dy

Kx
Ky

γd

γ

δ

r

rd

y

desired path

current path

xd

yd

x

y

O

y1

y2

Fig. 6. Kinematical model of the vehicle along a trajectory

using the system statesxT =
(
qT ṡT

)
and the inputv.

The LQR control design yields the state feedback control

v = −Kx. (12)

The desired minimal coordinatesq and minimal velocities
ṡ result from the kinematic relationships between the motor
angles and the longitudinal and rotational velocity.
In order to increase the maximum speed of the mobile
robot, an acceleration-proportional inclination angleθ deals
as controller input. Therefore, a linearization of Eq. 6 along
the desired longitudinal accelerationv̇L,d enables an explicit
calculation

θd = θ0 + h (q, ṡ) v̇L,d (13)

of the desired inclination angle. Experimental results of
the partial feedback linearization are shown in Fig. 5 and
demonstrate the high coincidence between the desired and
measured robot speed.

33

B. Trajectory Controller

Based on the established velocity controller, the trajectory
tracking control relies on the kinematic model (see Fig. 6)

ẋ
ẏ
γ̇

 =

vL cos γ
vL sin γ

γ̇

 (14)

of the mobile robot and uses the velocities

η =

(
vL
γ̇

)
=

(
η′1
η′2

)
σ̇ (15)

as input. The variableσ denotes the path coordinate and′

the spatial derivative∂ /∂σ. Rudolph [7] and Woernle [8]
show that the tracking erroryT =

(
y1 y2

)
, represented

in the desired local frame of the path (dx, dy), emerges as flat
output. Hence, all states and inputs of the kinematic model
can be expressed as a function of the outputsy1, y2 and
their spatial derivatives. Therefore, the position of the mobile
robot can be expressed as
(

x
y

)
=

(
xd

yd

)
+

[
cos γd sin γd
− sin γd cos γd

]

︸ ︷︷ ︸
AId

(
y1
y2

)
, (16)

whereas the orientation

γ = γd + δ = γd + arctan

(
y′2 − c2 (x, y, σ)

y′1 − c1 (x, y, σ)

)
(17)

requires the spatial derivatives of the flat output

y′ = A′T
Id

(
x− xd

y − yd

)
+AT

Id

(
η′1 cos γ − x′

d

η′1 sin γ − y′d

)

y′ =

(
c1 (x, y, σ)
c2 (x, y, σ)

)
+

(
cos δ
sin δ

)
η′1,

(18)

see [5] and [8] for more details. The flat representation of
the system input emerges from Eq. 18 and results in

η′1 =
y′1 − c1 (x, y, σ)

cos δ

η′2 = γ′
d + δ′ = γ′

d +
(y′′2 − c′2) cos δ − (y′′1 − c′1) sin δ

η′1
,

(19)
see [8] for details. By eliminating the highest spatial deriva-
tive by a new system input

y′1 → w1

y′′2 → w2,
(20)

asymptotic stability by choosing an additional error feedback

w1 = y′1,d + a0 (y1,d − y1)

w2 = y′′2,d + b1

(
y′2,d − y′2

)
+ b0 (y2,d − y2)

(21)

is obtained. Compared to conventional control algorithms,
this feedback method offers its error dynamics in the local
reference frame. This approach distinguishes itself due tothe
nonholonomic constraint of the two-wheeled, mobile robot
and therefore enables much higher velocities. In comparison
with a control algorithm using the initial frame for the error

error

feedback

Eq.21

flat trans-

formation

Eq.19

partial feedback

linearization

Eq.8

LQR - state

controller

Eq.12

kinematic

equations

Eq.14

α, β, θ

q, ṡ
u

vL, γ̇

w1, w2

xd, yd

v

Fig. 7. Sketch of the overall trajectory control scheme.

dynamics, the velocityvL can be increased from0.1m/s
up to 0.4m/s. Regarding the derivativeγ′

d in the feedback
algorithm (see Eqns. 19 and 21), the desired trajectory
requires continuous curvature paths. Therefore the geometric
path planning must be discussed in detail, see section V.

C. Overall control scheme

To sum up the trajectory control, Fig. 7 shows the overall
control scheme of the trajectory controller. The desired path
deals as input for the error feedback of Eq. 21. These results
serve as input again for the flat transformation and further
on for the velocity control, see Eq. 8. The system states
and velocities are calculated by the kinematic equations
using the measurement ofα, β andθ, see Eq. 14. Apparent
from Eq. 19, the desired path(xd, yd) has to satisfy several
conditions and is therefore discussed in the following section.

34

x

y

clothoid

clothoid

circle

τ

φcl

φci
r
ci

κcircle

send

κ

clo
th

oi
d

circle

s

clothoid

Fig. 8. Sketch of a circle-clothoid combination and its continuous
curvature path.

V. PATH PLANNING

The geometric path of the desired trajectory is split into
the basic elementsline and circle. Using combinations
of these, almost all arbitrary paths can be generated.
However, the assembly of these two elements causes a
discontinuous curvature due to the constant curvature of
the circle. Therefore, clothoids (resp. Euler spirals), which
are characterized by a continuous curvature, are required to
obtain a smoother run of the geometrical path and enable
the control law of Eqns. 19 and 21.
As shown in Fig. 8, the curvature of the clothoid changes
linear with the arc length. Hence, the constant curvature
of the circle can be reached continuously. For this reason
a circle-element of the path consists of the assembly
clothoid-circle-clothoid. For more information on path
planning using clothoids, please refer to [9], [10] and [11].

VI. MEASUREMENTS AND CONCLUSIONS

The flatnessbased trajectory controller as well as the
continuous curvature path planning are implemented on the
embedded board of the mobile robot (Fig. 1). Figure 9 shows

er
ro

r
in
m

radial error inm
tangential error inm

time in s
2 4 6 8 10 12 14 16 18

0.2

0.1

0

0

−0.1

−0.2

−0.3

x in m
y

in
m

−0.5

−0.2

−0.4

−0.6

−0.8

−1

0

0

0.2

0.5 1 1.5 2

measurement
desired

Fig. 9. Measurement results along a desired path with an initial error

measurement results of the vehicle tracking a desired path
with an initial error of 200mm in radial direction. After
the compensation of the initial error, the vehicle follows
the desired trajectory in a very accurate way and achieves a
radial error less than10mm. The combination of the partial
feedback linearization with the aid of the velocity control
and the trajectory controller enables a maximum longitudinal
speed for this specific trajectory of0.4m/s. Fortunately,
the trajectory controller uses an error dynamics in the local
reference frame and allows therefore high velocities and
precision during trajectory tracking.
By means of this good experimental results, this control con-
cept is suitable for many applications in the field of mobile
robotics. Following works will intensify the integration of
HMIs and their tasks in terms of gesture recognition, voice
control and path planning.

ACKNOWLEDGMENT

The authors gratefully acknowledge support of the peer-
reviewed Austrian Center of Competence in Mechatronics
(ACCM) for the present work.

REFERENCES

[1] W. Höbarth, H. Gattringer and H. Bremer, Methodenvergleich bei der
Modellierung eines Mini Segway, PAMM Special Issue: 77th Annual
Meeting of the International Association of Applied Mathematics and
Mechanics (GAMM), WILEY-VCH Verlag, Berlin, 2006, pp. 95-96.

[2] H. Gattringer, A. Rohrhofer and W. Höbarth, Modelling and Control of
a Mini Segway, Proceedings of 5th International Conferenceon Com-
putational Intelligence, Robotics and Autonomous Systems, CIRAS
2008, Linz, 2008, pp. 199-203.

35

[3] F. J. Kilian, H. Gattringer and H. Bremer, Modeling and Quasi-Static
Trajectory Control of a Self-Balancing Two-Wheeled Vehicle, PAMM
Special Issue: 83rd Annual Meeting of the International Association of
Applied Mathematics and Mechanics (GAMM), WILEY-VCH Verlag,
Darmstadt, 2012.

[4] A.J. Baerveldt and R. Klang, A Low-cost and Low-weight Attitude
Estimation System for an Autonomous Helicopter, Intelligent Engi-
neering Systems, Hungary, 1997, pp. 391-395.

[5] H. Gattringer, Starr-elastische Robotersysteme - Theorie und Anwen-
dung, Springer, 2011.

[6] H. Bremer, Elastic Multibody Dynamics - A Direct Ritz Approach,
Springer Science+Business Media, 2008.

[7] J. Rudolph, Flachheitsbasierte Folgeregelung, Lecture Notes Johannes
Kepler University Linz, Linz, 2003.

[8] C. Woernle, Flatness-Based Control of a Nonholonomic Mobile Plat-
form, Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 78
Suppl. 1, 1998, pp. 43-46.

[9] A. Scheuer, T. Fraichard, Continuous-Curvature Path-Planning for
Car-Like Vehicles, IEEE-RSJ International Conference on Intelligent
Robots and Systems, Vol. 2, Grenoble, 1997, pp. 997-1003.

[10] A. Scheuer, T. Fraichard, From Reeds and Shepp’s to Continuous-
Curvature Paths, IEEE Internation Conference on Advanced Robotics,
Tokyo, 1999, pp. 585-590.

[11] B. Müller, J. Deutscher, S. Grodde, Continuous Curvature Trajectory
Design and Feedforward Control of Parking a Car, IEEE Transactions
on Control Systems Technology, Vol. 15(3), 2007, pp. 541-553.

36

In-pipe Cleaning Mechanical System for
DeWaLoP Robot - Developing Water Loss Prevention

Luis A. Mateos and Markus Vincze

Abstract— After more than 50 years the connections between
fresh water pipes (800-1000mm diameter) need to be repaired
due to aging and dissolution of the filling material. Only in
Vienna 3000km of pipes need to be improved, which requires
a robotic solution. This paper describes the in-pipe cleaning
system used by the DeWaLoP robot, its configurations, mechan-
ical properties, kinematics and preliminary cleaning test results.
This new approach for in-pipe cleaning mechanism, mimicking
a double cylindrical robot. With an end effector, such as a
power tool (grinder) mounted on one of the arms, while a drive
wheel is located on the second arm, enabling rotation to the
entire cleaning system with high resolution steps. Additionaly,
our approach prevents the cleaning mechanism from damaging
the pipe, reacting to overcome any excessive force. To do so,
its mechanical arrangement includes a suspension system on
the double cylindrical arm to react similar as the arms from
a human operator when working with a cleaning tool over
corroded surfaces, enabling the tool to retract if vibrates or
jumps back, instead of passing all these noxious forces to the
pipe.

I. INTRODUCTION

Fresh water pipelines are prone to damages due to aging,
excessive traffic and geological changes. Resulting from
these damages, the pipe-joints may not be completely her-
metic and water loss along the pipeline may occur. Leakage
is not only a problem in terms of wasting an important
resource, it also results in an economic loss in form of
damages to the supplying system and to foundations of roads
and buildings too [1] [2].

The installation or replacement of pipelines implicates
high cost and use of heavy machinery, such as cranes. In
addition, side effects may occur, such as constructions sites
placed along streets, blocking pedestrian and traffic tracks
[3]. The size of pipes transporting water between residential
areas and industrial parks is normally ranged from 800mm
to 1200mm in diameter, which make it possible for one man
to enter. Consequently, human operators can access the pipe
and attempt to clean and repair it, as shown in figure 1.
Nevertheless, this creates a special situation that presents
safety and health risk to the human operator [4].

Currently, the applications of robots for the maintenance
of the pipeline utilities are considered as one of the most at-
tractive solutions available. Nevertheless, to substitute skilled
human operators, pipe redevelopment requires mechanisms
with high degree of mobility, able to move along the pipeline,
overcoming obstacles, extreme environments, and with high

Luis A. Mateos and Markus Vincze are with Automation and Con-
trol Institute (ACIN), Vienna University of Technology (TU WIEN),
Gusshausstrasse 27 - 29 / E376, A - 1040, Austria. {mateos,vincze} at
acin.tuwien.ac.at

accuracy clean and repair specific areas of the pipe [5] [6]
[7].

Pipe cleaning methods, such as: water pressure and clean-
ing by friction from rotating flails are commonly used among
in-pipe robots. For DeWaLoP project, the water pressure
methods is not the best option. Since the required cleaning
must take into account not to damage the pipe-joint hemp
pack, caulked up with a lead ring in the 1920’s. Thus,
the only available cleaning method is by friction with wire
brushes disks and grinding heads to remove the corrosion
from the joint socket.

This paper presents related work from in-pipe cleaning
mechanism developed by academia and industry and com-
pare them to our proposed cleaning mechanism. Following
the state-of-the-art, an overview of the DeWaLoP in-pipe
robot is given, to explain its overall design and functionality.
Then, a detailed description of the developed cleaning mech-
anism is presented, its configurations, mechanical properties,
kinematics and preliminary test results.

II. RELATED WORK

In-pipe cleaning robots can be categorized to two types:
1) Pressure-based cleaning robots and 2) Tool-based cleaning
robots. In this section, we present the typical in-pipe cleaning
robots developed both from academia and industry.

A. Pressure-based cleaning methods

J. Saenz [8] presents a cleaning system able to work
efficiently and control the pressure of the nozzle through
a relative accurate positioning to the pipe wall. They com-
mented ”A common risk when cleaning with high pressure
water is the possible damage to the surface from overly
applied pressure. This risk can be minimized with such a
cleaning system where the cleaning parameters can be care-
fully controlled and monitored”. Even if the pressure can be
controlled, for cleaning pipe-joint this is not recommended,
due to the pressure exerted by the water, pushing the hermetic
seal of the pipe-joint.

B. Tool-based cleaning - Impact abrasion methods

1) GRISLEE - Gasmain Repair and Inspection System for
Live Entry Environments: The GRISLEE is designed to be
modular, so different kinds of in situ repairs are possible.
The cleaning system consists of flails, which expand when
rotates and cleans the surface by impact abrasion method.
The system has a compact size, and is able to work in
different pipe sizes [9].

37

Fig. 1. DeWaLoP robot fixed inside the pipe, creating a rigid structure from its six wheeled-legs, cleaning with an angle grinder - wire brushes disk
(left). Human operator inside the pipe, cleaning the pipe wall with an angle grinder - cutting disk (right).

2) Umbrella mechanism: The umbrella mechanism con-
sists of a structure able to increase its height in order to adapt
to different pipe diameters. The cleaning system is similar to
an umbrella kind open-and-close mechanism, which makes
the robot highly adaptable to different pipe sizes [10].

Commercial cleaning system such as Robocutter [11],
KASRO robot [12], OptiCut [13] and IMS Turbo cutter [14]
are smaller robots but use similar design like the umbrella
mechanism. Lacking of stability, due to the push back effects
and vibration caused in the cleaning process.

C. Tool-based cleaning - Cutting methods

1) Cutter cleaner arm: N. T. Thinh [15] describes an in-
pipe robot for cleaning and inspecting, in which the cleaning
mechanism is an arm consisting of small cutting plates. The
arm is located on the front of the robot, perpendicular to
the pipe’s horizontal with the same length as the inner-
pipe’s diameter. From this configuration, the cleaning method
consists of rotating the arm, milling all corrosion while the
robot moves inside the pipe. Although the mechanism is able
to remove strongly incrusted corrosion. The drawback of this
configuration is the low flexibility of the cleaning tool to pipe
displacement. In other words, the cleaning mechanism will
damage the pipe if the pipes are not perfectly aligned.

C. D. Jung [16] proposes an in-pipe cleaning robot with
the 6-link sliding mechanism which can be adjusted to fit
into the inner face of the pipe using pneumatic pressure. The
proposed in-pipe cleaning robot have self forward/backward
movement as well as rotation movement of brush. However,
the disk cleans all over the in-pipe wall without being able
to focus on a specific area.

In contrast to the state-of-the-art cleaning mechanisms,
DeWaLoP in-pipe robot is able to fix itself stably in a specific
location using self suspension system. Independently from
the main body of the robot, the cleaning tool is flexibly
configured which can be adjusted in a cylindrical 3D space,
able to move up to 100mm in the pipe’s horizontal axis, and

reach to the surface of the pipe with diameter in the range
of 800mm to 1000mm.

Besides its high positioning capability and flexibility, the
cleaning mechanism is able to overcome vibrations and jump
back forces from the cleaning tool with its integrated sus-
pension system, mimicking the reaction of a human operator
when such events happens.

III. DEWALOP IN-PIPE ROBOT SYSTEM

The DeWaLoP robot is intended to be a low cost robot
with high reliability and easiness in use. The robot system
includes a conventional in-pipe inspection system, which is
carried out by using a cable-tethered robot with an onboard
video system. An operator remotely controls the movement
of the robot.

The robot consists of three main subsystems: control
station, mobile robot, maintenance system, as shown in figure
2:

Fig. 2. DeWaLoP in-pipe robot perspective view.

A. Control station.
The control station monitors and controls all the compo-

nents of the in-pipe robot. The controller includes a slate

38

computer for monitoring and displaying the video images
from the robot’s Ethernet cameras. Additionally, several 8
bits micro-controllers with Ethernet capabilities are included,
sending and receiving commands to the in-pipe robot from
the remote’s joysticks and buttons [17].

B. Mobile robot.

The mobile platform is able to move along the pipe,
carrying on board the electronic and mechanical components
of the robot, such as motor drivers, power supplies, and etc.
It uses a differential wheel drive which enable the robot to
promptly adjust its position to remain in the middle of the
pipe while moving.

C. Maintenance unit.

The maintenance unit consists of a wheeled-leg structure
able to extend or compress with a Dynamical Indepen-
dent Suspension System (DISS) [18]. When extending its
wheeled-legs, it creates a rigid structure inside the pipe, so
the robot tools work without any vibration or involuntary
movement from its inertia. When compressing its wheeled-
legs, the wheels become active and the maintenance unit is
able to move along the pipe by the mobile robot.

The maintenance unit structure consists of six wheeled-
legs, distributed in pairs of three, on each side, separated by
an angle of 120◦, supporting the structure along the centre
of the pipe, as shown in figure 2. The maintenance unit
combines a wheel-drive-system with a wall-press-system,
enabling the robot to operate in pipe diameters varying from
800mm to 1000mm. Moreover, the maintenance unit together
with the mobile robot form a monolithic multi-module robot,
which can be easily mounted/dismounted without the need
of screws [19].

The maintenance unit, includes two subsystems: Vision
system and cleaning tool system.

Maintenance unit - Vision system. The in-pipe robot
includes four cameras, in order to navigate in the pipe,
detect defects and redevelop specific areas. For the navigation
stage, two cameras are required, one located at the front, to
inspect the way in the pipe, whereas the second located at
the back, to inspect the way out. For the detection stage,
an omni-directional camera is located at the front-end of
the robot enabling the pipe-joint detection [20]. Finally,
for the redevelopment stage, another camera is mounted on
the cleaning mechanism. This camera acts as the human
operator eyes, enabling the operator to follow the details of
the redevelopment process.

IV. DEWALOP CLEANING MECHANISM

The concept of the DeWaLoP cleaning mechanism is
based on the cylindrical robot principle, able to rotate along
its main axes forming a cylindrical shape. The robot arm is
attached to the slide so that it can be moved radially with
respect to the column.

However, the DeWaLoP mechanism modifies the standard
cylindrical robot into a double cylindrical robot, where both
arms are connected to the central axis and opposite each

other. In this configuration, an extra actuator is added to the
standard model to extend/compress this second arm. Contrary
to the standard cylindrical robot, the location of the rotating
actuator is not in the central axis of the robot, it is located
on the arm which is opposite to the arm with the tool,
as shown in figure 3a. Hence, this rotating actuator (drive
wheel) rotates and with it the entire cleaning mechanism.

If relating the forward transformation of the cylindrical
robot to the DeWaLoP mechanism, the angular motion is
modified. The forward transformation for a cylindrical robot
is quiet simple, because it is equivalent to the transformation
from a cylindrical to a Cartesian frame [21]. This frame
moves in 3D space with the following dependencies on joint
motions ϕ(t), r(t) and z(t). Where ϕ(t) is the joint revolute,
r(t) is the length of the arm, z(t) is the axial distance in the
z-axis (pipe’s horizontal) and A represents the width of the
linear and circular bearings of the mechanism on the central
axis of the robot.

x0(t) = [A+ r(t)]cos(ϕ(t)) (1)

y0(t) = [A+ r(t)]sin(ϕ(t)) (2)

z0(t) = z(t) (3)

Likewise, the rotation ratio of the DeWaLoP mechanism
is given by the pipe radius rpipe divided to the radius of
the drive wheel rwheel , similar to a planetary gear, where the
outer gear (the drive wheel) revolve from the central (the
pipe). Thus, the revolutions needed from the drive wheel
(dwr) to complete a full rotation is dwr360◦ = rpipe/rwheel .

In this way, we can use dwr (drive wheel revolutions) to
represent the cylindrical robot angular value.

ϕ(t) = (dwr/(rpipe/rwheel))×360◦ (4)

And the forward transformation for the model is:

x′0(t) = x0(t) = x(t) (5)

y0(t) = [(A/2)+ r(t)]cos(ϕ(t)) (6)

y′0(t) = [(A/2)+ r′(t)]cos(ϕ(t)+180◦) (7)

z0(t) = [(A/2)+ r(t)]sin(ϕ(t)) (8)

z′0(t) = [(A/2)+ r′(t)]sin(ϕ(t)+180◦) (9)

where (x0, y0, z0) are the coordinates for the cleaning
tool arm and (x′0, y′0, z′0) are the coordinates for the drive
wheel arm, ϕ(t) is the joint revolute, r(t) is the length of
the arm with the cleaning tool, r′(t) is the length of the
arm with the drive wheel, x(t) is the axial distance in the
x-axis (pipe’s horizontal) and A represents the width of the
linear and circular bearings of the mechanism installed on
the central axis of the robot.

In this simplified robot configuration, the cleaning tool
is located opposite to the drive wheel and perpendicular to
the robots central axis, as shown in figure 3a. Therefore,
the spacing to attach power tools is considerable small. The
maximum cleaning tool height is given by:

39

Fig. 3. a) DeWaLoP simplified model (double cylindrical robot). The segments r and r′ can be compress or extend by a linear actuator, the segment A
is fixed, as it integrates a combination of linear and circular bearings enabling the mechanism to cover 3D space. b) Simplified H -configuration model.
Similar to the double cylindrical robot model, with the difference that the robot arms are translated to a distance l from the robot’s central axis. c) Linear
actuators working axis in H -configuration. d) Maximum extension of the arms reaching 1000mm diameter pipe (top); maximum compression of the arms
with length of 500mm (bottom).

CT hmax = Pr− A
2
−Dt pr (10)

where Pr is the pipe radius and Dt pr is the clearance
distance of the mechanism to the pipe wall. In other words,
the mechanism in this configuration restricts the height size
of the attached cleaning tool to CT hmax ≤ 300mm. That
means, only angle grinders with disks ≤ 115mm may be
attached [22].

H- Configuration
In order to attach bigger power tools to the cleaning

mechanism, with heights in the range up to 500mm, a new
configuration is presented.

In this configuration the arms are not mounted directly
over the bearing arrangement in the main axis. Instead, they
are translated to its sides, around it and parallel to each other,
as shown in figure 3b. In this way, the maximum height
of the cleaning tool is determined by the ”H” geometric
configuration, as shown in figure 3c.

CT hmaxH = sin(α)D−Dt pr (11)

where α = tan−1(H/W) is the angle between the direction
vector f 1 which is from the pipe center to the cleaning tool
mounted at the end of the arm, to the direction f 2 which is
perpendicular to the arm, H is the height of the tool system
in compress mode (H = 500mm), W is the width of the tool
system (W = 300mm) and D is the diameter of the pipe (D =
800mm).

Consequently, it is possible to attach cleaning power tools
with height up to CT hmaxH ≤ 685.99mm−Dt pr, such as
straight grinders and angle grinders with 125mm disks or
bigger.

From the simplified H -configuration model, where l is the
shifted distance of the arms from the central axis of the robot,
as shown in figure 3b. The position of the end effector from

the robot cleaning tool is p = (px py pz)
T and the position of

the drive wheel is p′ = (p′x p′y p′z)
T , where px = p′x represents

the translation in the pipe’s horizontal axis.
The robot’s cleaning tool direct kinematics is

p =

px
py
pz

=

1
l/2sinϕ + r cosϕ
l/2cosϕ− r sinϕ

 (12)

and the robot’s drive wheel direct kinematics is

p′ =

p′x
p′y
p′z

=

1
l/2sin(ϕ +180◦)+ r′ cos(ϕ +180◦)
l/2cos(ϕ +180◦)− r′ sin(ϕ +180◦)

(13)
Stability analysis of the H -configuration mechanism

The vibrations and jump back forces from the cleaning tool
while removing corrosion may appear in various directions.
The forces in the pipe’s horizontal (x - axis) are damped
by the cleaning tool structure. These are the most noxious
forces affecting the robot, because no suspension system are
damping it. However, these forces are unlikely to occur when
using angle grinders, as shown in figure 1. Due to the rotation
of the cleaning tool, which is similar to the mechanism of
the drive wheel, affecting only the y and z axis, reducing
x - axis forces. Nevertheless, these types of noxious forces
appear when using straight grinders, in this case, the cleaning
head is rotating over the pipe’s surface resulting in vibration
forces over all direction.

The vibrations and forces perpendicular to the cleaning
tool, in the y - axis, are damped by the drive wheel located on
the opposite end of the mechanism. In this case, the damping
degree is given by the friction coefficient µ of the drive
wheel to the pipe’s surface and the force applied by the wheel
to the surface. This may vary if the surface is wet or dry,
with friction coefficient in the ranges from µ = 0.35 to µ =
0.5. And the damping forces are in the range of 140N to

40

Fig. 4. a) Human operator partial cleaning. b) Cleaning result from human operator c) DeWaLoP robot with milling head. d) Drive wheel with suspension
system. e) DeWaLoP robot with straight grinder - grinding head installed. f) DeWaLoP robot with angle grinder - brushes disk installed.

200N respectively, with a 400N spring on the drive wheel.
In other words, if vibrations or jump back forces in the y
- axis stronger than 200N are affecting the cleaning tool,
then the drive wheel may slip a bit, mimicking the arms of
a human operator damping these forces.

The vibrations and jump back forces opposite to the clean-
ing tool, in the z - axis, are damped by its 400N suspension
system. Mimicking again, a human operator retracting the
arms when opposite forces from the application axis appear.

V. EXPERIMENT ANALYSIS

We use a cast-iron pipe segment provided by Vienna
Waterworks Company to perform the experiment. The pipe
segment has length of 6000mm and diameter of 900mm.

A. Procedure of the experiment

The process of conducting the experiment is described as
following (some photos taken from this process are shown
in Fig 4):

Step 1: The mobile robot and the maintenance unit were
arranged as a monolithic robot. The selected cleaning tool
was mounted on the cleaning mechanism.

Step 2: The robot was moved inside the pipe and stopped
over a determined point. The robot adapted its maintenance
unit configuration, from compressed to extended mode, so

that the wheeled-legs formed the robot to be a centered and
rigid structure inside the pipe.

Step 3: Once the extending is finished, the cleaning
mechanism is enabled and selected. The arm with the drive
wheel is extended first until it makes proper contact to the
pipe surface, by compressing its spring (400N). Then the
arm with the cleaning tool is moved to the desired position
in cylindrical 3D space.

Detailed information of the DeWaLoP cleaning mecha-
nism and cleaning process, such as simulation and videos,
can be found in [23].

B. Experimental results and evaluation

The job of cleaning the inner surface of a pipe with
diameter of 1000mm and length of 30mm, which is an area of
size a = π ×D×w = 0.094m2, will cost a human operator
between 30 to 60 minutes, according to the estimation of
Vienna waterworks. In our experiment, the DeWaLop robot
completed the job within 5 to 15 minutes, and the corrosion
is fully removed. The actually speed highly depends on the
displacement of the pipe. For a pipe without displacement,
the cleaning tool revolves without adjusting its position
according to the pipe horizontal direction, so that it is able
to achieve the fastest cleaning speed of 5-7 minutes. While
for pipes with displacements, the cleaning mechanism is

41

required to adjust its position and the cleaning process takes
up to 15mins.

Hence, the cleaning speed of DeWaLop robot is 6 to 10
times faster than human operators. Besides, the cleaning
pattern of DeWaLoP is mostly a straight line, in contrast
to the zig-zag pattern left by human operators.

VI. CONCLUSION

A new in-pipe cleaning mechanism was presented and
compared to the state-of-the-art cleaning systems. The pre-
sented mechanism improves the state-of-the-art in multiple
aspects, such as enabling the cleaning tool to precisely step
on the pipe surface by using the double cylindrical H -
configuration mechanism in the robot arm, and protecting the
pipe from noxious forces caused by the cleaning tool from
its integrated suspension and drive wheel configuration.

The presented mechanism, modifies the cylindrical robot
configuration in to a double cylindrical robot. In which the
angular actuator is located on one of the arms and not in the
central axis as the classical model. Enabling the mechanism
to rotate with high precision similar to a planetary gear.
While rotating the system removes the corrosion of the pipe
with a cleaning tool mounted on the opposite arm to the
drive wheel.

Cleaning results from the DeWaLoP mechanism are pre-
sented and compared to human performances, revealing a
faster and accurate trajectory of the cleaning path.

ACKNOWLEDGMENT

This work is part-financed by Project DeWaLoP from
the European Regional Development Fund, Cross- Border
Cooperation Programme Slovakia- Austria 2007-2013.

REFERENCES

[1] e. a. S. Burn, “Pipe leakage future challenges and solutions,” in Pipes
Wagga Wagga Conference, 1999.

[2] e. a. O. Hunaidi, “Detecting leaks in plastic pipes,” Journal of the
American Water Works Association 21st Century Treatment and
Distribution, vol. 92, no. 2, pp. 82–94, 2000.

[3] S. L. V. Archodoulaki, G. Kuschnig and M. Werderitsch, “Silane
modified polyether sealant failure in drinking water pipes,” in MoDeSt,
2010.

[4] S. J. S. Yang and S. Kwon, “Remote control system of industrial field
robot,” in IEEE International Conference on Industrial Informatics,
2008.

[5] A. Amir and Y. Kawamura, “Concept and design of a fully autonomous
sewer pipe inspection mobile robot kantaro,” in IEEE International
Conference on Robotics and Automation, 2007.

[6] S. Roh and H. Ryeol, “Differential-drive in-pipe robot for moving
inside urban gas pipelines,” in IEEE transactions on robotics, 2005.

[7] C. Z. B. Rajani and S. Kuraoka, “Pipe-soil interaction analysis of
jointed water mains,” Canadian Geotechnical Journal, vol. 33, no. 3,
pp. 393–404, 1996.

[8] J. Saenz, N. Elkmann, T. Stuerze, S. Kutzner, and H. Althoff, “Robotic
systems for cleaning and inspection of large concrete pipes,” in Applied
Robotics for the Power Industry (CARPI), 2010 1st International
Conference on, oct. 2010, pp. 1 –7.

[9] V. G. H. Schempf, E. Mutschler and W. Crowley, “Grislee: Gasmain
repair and inspection system for live entry environments,” The Inter-
national Journal of Robotics Research, vol. 22, no. 7-8, pp. 603–616,
2003.

[10] J. Z. Z. X. Li, “Development of the self-adaptive pipeline cleaning
robot,” in Advanced Materials Research, 2010, pp. 97–101.

[11] KATEPMO, http://www.kate-pmo.ch/index.php. KATEPMO, 2012.
[Online]. Available: http://www.kate-pmo.ch/index.php

[12] Prokasro, http://prokasro.de/. Prokasro, 2012. [Online]. Available:
http://prokasro.de/

[13] Optimess, http://www.optimess.com/. Optimess, 2012. [Online].
Available: http://www.optimess.com/

[14] IMSRobotics, http://www.ims-robotics.de/en/produkte.html. IM-
SRobotics, 2012. [Online]. Available: http://www.ims-
robotics.de/en/produkte.html

[15] N. T. Thinh, N. Ngoc-Phuong, and T. Phuoc-Tho, “A study of pipe-
cleaning and inspection robot,” in Robotics and Biomimetics (ROBIO),
2011 IEEE International Conference on, dec. 2011, pp. 2593 –2598.

[16] C. D. Jung, W. J. Chung, J. S. Ahn, M. S. Kim, G. S. Shin, and
S. J. Kwon, “Optimal mechanism design of in-pipe cleaning robot,” in
Mechatronics and Automation (ICMA), 2011 International Conference
on, aug. 2011, pp. 1327 –1332.

[17] L. Mateos, M. Sousa, and M. Vincze, “Dewalop remote control for
in-pipe robot,” in , 2011 15th International Conference on Advanced
Robotics (ICAR), june 2011, pp. 518 –523.

[18] L. A. Mateos and M. Vincze, “Dewalop robot dynamical independent
suspension system,” in ICMET, 2011, pp. 287–292.

[19] ——, “Dewalop-monolithic multi-module in-pipe robot system,” in
ICIRA, 2011, pp. 406–415.

[20] ——, “Dewalop - robust pipe joint detection,” in IPCV, 2011, pp.
727–732.

[21] S. Kucuk and Z. Bingul, “The inverse kinematics solutions of industrial
robot manipulators,” in Mechatronics, 2004. ICM ’04. Proceedings of
the IEEE International Conference on, june 2004, pp. 274 – 279.

[22] L. A. Mateos, A. Rakos, and M. Vincze, “Dewalop in-pipe redevel-
opment system design,” in ARW, 2012, pp. 101–106.

[23] D. C. M. Animations and Videos, De-
WaLoP Cleaning Mechanism Animations and Videos.
AM Computer Systems, 2013. [Online]. Available:
http://www.amcomputersystems.com/AM/research/robotics/d.html

42

Improving the ROS Arm Navigation Stack by Using Stochastic Inverse
Kinematics

Clemens Mühlbacher, Gerald Steinbauer, Michael Reip and Stephan Gspandl

Abstract— Mobile manipulation becomes more and more of a
must to cope with industry’s need for more flexible and adaptive
solutions in manufacturing and production. This paper deals
with an important subtask of mobile manipulation. It presents
a novel approach to solve the inverse kinematic problem. This
approach contributes to more universal applicability of mobile
manipulation algorithms. In further consequence, it thus helps
to promote the application of mobile manipulation in industrial
settings.
In this paper, we treat the inverse kinematic problem as an
optimization problem and solve it with the help of a global
optimization algorithm. The performance of the algorithm
concerning success as well as accuracy is evaluated in several
experiments. It is shown that in contrast to other algorithms
our approach is always able to retrieve a solution if existing.
This comes, though, with higher costs concerning performance.

I. INTRODUCTION

Mobile manipulation is a hot topic in the industry as well
as robotic research community. Robot arms executing paths
statically to solve identical problems in a repetitive way are
widely known. One can find many examples, especially in
the automobile industry. There, manipulators have been used
to move, assemble, weld or coat cars or car parts. In the last
few years, though, one could notice the beginning of a shift.
Robot arms were not exclusively deployed for simple tasks
in a static manner, but instead are employed in mobile robots
to enhance their field of operation. Such robot systems are
far more flexible than their static friends. As [1] puts it, the
market demands for new agility and flexibility (mainly due
to globalization, explosion of variety, a shift to customized
production and the necessity to change the types of products
fast and scale production), but fixed robots are unable to live
up to these expectations. The authors argue that industrial
mobile manipulation is the technology which meets the need
of transformable production systems.
In this area of robotics the Robot Operating System (ROS)[2]
is a widely used framework to perform such complex tasks.
Examples for mobile manipulation tasks can be found in
[3] (see also Figures 1). To perform simple as well as
complex manipulation tasks under different robot settings,
ROS provides a wizard to configure the necessary object
manipulation tools [4]. These tools form a chain of solvers
for the various problems, which occur during a manipulation
task. The first step within the chain is the inverse kinematic
(IK), which is a mapping from the Cartesian space to the

C. Mühlbacher and G. Steinbauer are with the Institute for
Software Technology, Graz University of Technology, Graz, Aus-
tria. M. Reip and S. Gspandl are with incubedIT, Graz, Austria.
{cmuehlb,steinbauer}@ist.tugraz.at, {s.gspandl, m.reip}@incubedit.com

control parameters of the robot arm. To solve the IK a general
method is used to cope with the different robot arms. This
is a major difference to industrial robots, where a general
way to solve the inverse kinematic is not used. Instead,
inverse kinematic solvers are employed that are specialized
to work with one particular manipulator. Such an approach is
infeasible in research, because one had to be able to deal with
a variety of new hardware in science. One major drawback of
the general solving method, which is used per default within
ROS for the IK, is that it might not be able to find a solution
even if it exists. This can cause the complete manipulation
task to fail. Thus, general algorithms are preferred which will
find a solution if existing. Such algorithms allow for a much
more reliable and robust execution of manipulation tasks.
In this paper, we present a novel general inverse kinematic
solver which is able to find a solution for a much larger set
of problems compared to other techniques.
In the following, we will discuss related work which deals
with general inverse kinematic solving methods. In the
second chapter, we will define the inverse kinematic problem
formally. After this chapter we explain our algorithm to
solve the inverse kinematic problem. In Chapter V we will
present the results of a series of experiments which were
performed to demonstrate the general applicability as well
as the performance of the algorithm. In the last chapter, we
draw some conclusions about the presented approach.

Fig. 1. Manipulation task. Image is taken from [3]

II. RELATED WORK

There are different methods to solve the inverse kinematic
problem in a general way. Before we present our novel ap-
proach to solve the inverse kinematic problem we will briefly

43

discuss some approaches and point out their weaknesses.
The first method we will discuss is an analytic solver. This
solver is generated with the help of the Ikfast [5] algorithm,
which is a part of the openRave system [5]. The approach
creates a system of equations from the forward kinematic
equations of the robot arm. In order to solve the system
variables are ranked and chosen according to their rank. The
fewer solutions a variable allows, the higher it is ranked. If
there are multiple possible choices to solve the system with
any of the chosen variables, ikFast chooses the one with the
fastest numerical operations. This results in a fast analytic
solver, which prefers simple solutions with fast numerical
operations. A major drawback of this approach is that the
generation of the solver can take a long time or, in some
cases, a solver cannot be generated at all. Also if a solver is
generated the solver does not always find a solution, which is
a result of the implementation of this approach and not of its
theoretical background. In order to use this generated solver
in ROS a simple wrapper is used. The wrapper changes
the request in such a way that a bridge between ROS and
openRave can be used. If the algorithm cannot find a solution
the wrapper slightly changes the position and orientation, to
find a solution near the desired one.
Another method to find a solution for the inverse kine-
matic problem is a Newton-Raphson inverse kinematic solver
(some examples can be found in [6], [7]). This kind of
solver uses Jacobian matrices. Jacobian matrices describe
the relation between joint and link velocities, which have
to be positioned within Cartesian space. The first step of the
approach calculates of the velocity within the Cartesian space
of the link, which has to be positioned. The calculation is
based on the difference between current and desired link’s
pose. Using the inverse of the Jacobian matrix the velocity
within the Cartesian space is mapped onto a joint velocity
for each joint of the robot arm. These joint velocities are
used to update the current joint values. If the current joint
values move the link near to the desired pose, the procedure
returns with the current joint values as a result, otherwise
the procedure starts again calculating the Cartesian velocity.
This method suffers from two drawbacks, which can prevent
the algorithm from finding a solution even if one exists. The
first drawback is that the inverse of the Jacobian matrix is ill
conditioned near a singularity. The second drawback are the
initial joint values. The joint values can be chosen in such
a way that the algorithm does not converge to a solution.
To overcome this problem the algorithm is called multiple
times with different initial joint values to find a solution. The
implementation we use is KDL 1, which offers the possibility
to interact with ROS and is the standard inverse kinematic
solver [4].

III. PROBLEM FORMULATION

Before we describe our approach for solving the
inverse kinematic problem we will define the inverse
kinematic problem formal. We assume a robot arm (RA)

1http://www.orocos.org/kdl

as a set of links L = {l1, . . . , lm} which are connected
through a set of joints J = {j1, . . . jm−1}. The robot
arm moves in the Euclidean space. The motion space
consists of a translation R3 and a rotation SO(3) part.
The motion in space is the combination of this two parts
SE (3) = R3 × SO(3). Each link li ∈ L has its own
coordinate frame. The pose Pi of this coordinate frame
can be calculated with the forward kinematic function
Pi = FK i(vj1 , . . . , vji−1

), where i = 1 . . .m and vji is
the joint value of ji. The inverse kinematic problem form a
mapping SE (3) → Rm−1 and is defined as follows: given
a robot arm (RA), a desired position (P) and orientation
(O) of a link li ∈ L, find for each joint ji ∈ J a value
such that that position(Pi) = P and orientation(Pi) = O .
Within a robotic system additional constraints have to
be considered. The first constraints are the joint limits
∀ji∈J : jmin

i < ji < jmax
i . Additionally, no link of the

robot arm should collide with any other link of the robot arm
or any object o of the known environment KE . To check
this constraint we need the volume of a link. The volume
of the link Li in R3 is given through Li(vj1 , . . . , vji−1

).
With this definition the collision avoidance can specified
as ∀i=1...m :

(
∀o∈KE : Li(vj1 , . . . , vji−1) ∩ o = ∅

)
∧(

∀k:1...m : k 6= i ∧ Li(vj1 , . . . , vji−1
) ∩ Lk(vj1 , . . . , vjk−1

) = ∅
)
.

IV. STOCHASTIC INVERSE KINEMATICS

In order to solve the inverse kinematic problem with all
the additional constraints we propose an inverse kinematic
solver, which uses a global optimization algorithm. This is a
very general idea and a wide variety of different optimization
algorithms can be applied. To define the optimization prob-
lem we will introduce some functions that are used later.
To calculate a distance we use two different functions. To
calculate the position difference posDiff we use the squared
Euclidean distance in R3 shown in Equation 1 .

posDiff (p1, p2) = ‖p1 − p2‖2 (1)

The second function orDiff calculates the orientation error
of two orientations, which are specified via quaternion’s.

orDiff (q1, q2) = |1− (q1 · q2)2| (2)

The objective function of the optimization problem for a link
i is defined as:

F i(vj1 , . . . , vji−1) =α ∗ posDiff (FK i(vj1 , . . . , vji−1), P)

+ β ∗ orDiff (FK i(vj1 , . . . , vji−1), O)]
(3)

α and β are weights which are used to scale the different
parts according to the used measurements. For example the
result of the orDiff function is between [0,1], whereas
posDiff use meters. Thus the orientation difference is scaled,
which is necessary to force the algorithm to get a correct
position and not only a correct orientation. The optimization
problem, to position link li, is stated as follows:

min
vj1 ,...,vji−1

F i(vj1 , . . . , vji−1
) (4)

44

With this optimization problem the inverse kinematic can
be solved with any optimization algorithm. For example a
similar approach was also used in [8]. We use a global
optimization algorithm to avoid problems that can occur
with local minima. A further extension to [8] are continuous
values. It is possible to use different global optimization
algorithms, which fulfill the requirements to solve this prob-
lem. We will use the Differential Evolution Algorithm [9].
To understand how the algorithm works we will define two
terms and their representation within the algorithm. The first
term is the individual representing a possible solution of
the problem. To represent such an individual within the
algorithm it consists of two parts, the joint values of the
robot arm and the value of the objective function. The
second term is the population. It represents a list of possible
solutions and is, within the algorithm, a list of individuals.
Algorithm 1, uses different populations to find the minimum
of the function. In order to find the minimum, the algorithm

Algorithm 1: findMinimum

input : F . . . Objective function,
C . . . set of constraint,
maxIt . . . maximum iterations of the algorithm,
CR . . . cross over ration,
N . . . size of the population

output: a set of possible solutions CP

1 CP = generateValidPositions(N ,C)
2 evaluate(CP ,F)
3 i = 0
4 while (i < maxIt) ∧ ¬convergenceCriterialsMet(CP)

do
5 donors = mutate(CP)
6 trials = recombine(CP , donors,CR)
7 trials = clamp(trials,C)
8 evaluate(trials,OF)
9 CP = select(CP , trials)

10 i = i+ 1
11 end
12 return CP

first generates an initial population. These initial population
represents random samples within the joint space. These
samples are chosen in such a way that they fulfill the
constraints. Afterwards for each individual the objective
function is calculated and stored in the individual. Within the
loop the first step is to mutate the current population (CP) to
generate a new population, called donors . This mutation is
produced through the combination of three individuals within
the population. The mutation algorithm 2 uses the best and
two random individuals with specified weights f1 and f2
to combine them into a new individual. After the donors
are created they are combined with the current population
CP to generate the trials . The algorithm to combine the
populations can be seen in Algorithm 3. The algorithm
chooses randomly a joint value which is taken from the donor
individual. Thus at least one joint value is taken from the

Algorithm 2: mutate

input : P . . . Current population,
N . . . size of the population,
f1 . . . first combinatoric weight,
f2 . . . second combinatoric weight

output: a new population donors

1 for i = 1 : N do
2 r1 = drawRandomIndividual(CP)
3 r2 = drawRandomIndividual(CP)
4 best = getBestIndividual(CP)
5 for j = 1 : k do
6 newIndividual [j] = f1 ∗(r1−r2)+f2 ∗(best−r1)
7 end
8 donors = donors ∪ newIndividual
9 end

10 return donors

donor individual. The other joint values are chosen randomly
from the donor individual or the current individual, according
to the CR constant. After the trials are calculated each

Algorithm 3: recombine

input : P . . . Current population,
donors . . . donor population,
CR . . . Cross over ration defining how

individuals are combined,
N . . . size of the population

output: a new population trials

1 for i = 1 : N do
2 index = drawUniformFrom([1 . . . k])
3 for j = 1 : k do
4 if (j =

index) ∨ (drawUniformFrom([0 . . . 1]) ≤ CR)
then

5 individualToCombine = donors[i]
6 else
7 individualToCombine = P [i]
8 end
9 newIndividual [j] = individualToCombine[j]

10 end
11 trials = trials ∪ newIndividual
12 end
13 return trials

individual of the trials is checked if the individual fulfills
the constraints. If a constraint is violated the joint values
are clamped in such a way that the constraints are satisfied.
The resulting trials are valid possible solutions and each
individual out of the trials is evaluated. After the evaluation
step the next step is to select the best individuals from P
and the trials . This is achieved through Algorithm 4. To
generate P ′, the algorithm checks an individual from P
and the trails , which are at the same position within their

45

Algorithm 4: select

input : P . . . Current population,
trials . . . trial population,
N . . . size of the population

output: a new population P ′

1 for i = 1 : N do
2 if (objective(P [i]) < objective(trials[i]) then
3 newIndividual = P [i]
4 else
5 newIndividual = trials[i]
6 end
7 P ′ = P ′ ∪ newIndividual
8 end
9 return P ′

population. The individual with a smaller objective is part
of the new population. After P ′ is generated it is saved
as the current population and the algorithm checks if the
population converges. The convergence check is simple a test
if a specified amount of individuals is close enough to the
desired pose. In the current implementation the population
converges if 10 % of the population is close enough to the
desired pose.
In order to find a solution for an inverse kinematic problem
the Algorithm 1 is called and a solution is chosen in such
a way that no collision occurs. If none of these solutions is
possible, the algorithm is called again. A timeout is used to
bound the number of possible recalls. After some recalls the
number of individuals or the number of function calls per
individual are increased. Recalling this procedure is used
to force the algorithm to find a solution even if there are
many solutions that would result in a collision, e.g. within a
cluttered environment.

V. EXPERIMENTAL RESULTS

In order to demonstrate the capabilities of the algorithm
we perform two sets of evaluations.
The first evaluation 2 is used to test the inverse kinematic in a
general way with many different target poses. To perform this
evaluation first a random joint configuration is sampled. The
configuration is checked if it does not result in a self-collision
of the robot arm. If this check is passed the resulting pose of
the last link of the robot arm is calculated with the help of a
forward kinematic algorithm. After calculating the resulting
pose the inverse kinematic is called to find a solution. To
measure the performance the time, position and orientation
error as well as the success to find a solution are recorded.
The tests are performed with two different popular research
robot arms, namely the Katana 400 6m180 (see Figure 4)
and the KUKA youBot (see Figure 6). In the test we use
three different inverse kinematic solvers: KDL, openRave
and the newly presented solver (which is called stochastic

2The evaluation was performed on a Intel Core i7 Q 820, 1.73 GHZ with
8 GB of RAM. The operating system was a Ubuntu 12.04 32-bit. ROS
Fuerte was used to perform the evaluation.

solver). The parameter of the stochastic solver was set as
follows: Initial N was set to 100 maxIt was set to 200.
After findMinimum was recalled 5 the N was increased
by a factor of 1.2 and maxIt was increased by a factor of
1.5. The CR is set to 0.8. This parameters were empirically
evaluated. In order to minimize the initialization’s influence
on the performance each pose is tested 10 times. A pose
is counted as a success, if the position difference is lower
than 0.01 and the orientation difference is smaller than 0.1.
Equation 5 is used to calculate the success rates.

success rate =
#Found solutions

#test
(5)

To calculate the block success rate a block is counted as
successful if there is at least one solution found within this
block. The bock success rate itself is calculated through
Equation 6. The success rate as well as the block success
rate can be seen in table I.

block success rate =
#Successful blocks

#blocks
(6)

To calculate the position error Equation 1 is used. The
resulting position errors, which can be seen in Table II,
are given in square meters. The recorded orientation error
is calculated through Equation 2 and can be seen in Table
III. The run time is recorded in seconds and can be seen in
table IV and Figure 3.

Robot arm IK solver Success rate Blocks success rate

Katana 400 6m180 KDL 0.8722 0.9844
Katana 400 6m180 OpenRave 0.9378 0.9376
Katana 400 6m180 Stochastic 1 1

Youbot KDL 0.7911 0.9933
Youbot OpenRave - (*) - (*)
Youbot Stochastic 1 1

TABLE I
SUCCESS RATE OF THE DIFFERENT INVERSE KINEMATIC ALGORITHMS.

(*) IKFAST IS NOT ABLE TO GENERATE A SOLVER.

Fig. 2. Success rate of the different inverse kinematic algorithms

46

Robot arm IK solver Mean Median stdv

Katana 400 6m180 KDL 1.12e-11 2.40e-013 2.71e-11
Katana 400 6m180 OpenRave 5.63e-21 1.66e-24 1.15e-19
Katana 400 6m180 Stochastic 4.45e-5 1.30e-15 4.81e-4

Youbot KDL 1.09e-11 9.77e-14 2.77e-11
Youbot OpenRave - (*) - (*) - (*)
Youbot Stochastic 2.25e-4 5.89e-16 9.75e-4

TABLE II
POSITION ERROR OF THE DIFFERENT INVERSE KINEMATIC

ALGORITHMS. (*) IKFAST IS NOT ABLE TO GENERATE A SOLVER.

Robot arm IK solver Mean Median stdv

Katana 400 6m180 KDL 2.39e-13 2.17e-19 2.11e-12
Katana 400 6m180 OpenRave 0.0203 2.17e-19 0.1185
Katana 400 6m180 Stochastic 9.12e-4 8.03e-14 0.0069

Youbot KDL 3.09e-013 2.17e-19 2.20e-12
Youbot OpenRave - (*) - (*) - (*)
Youbot Stochastic 0.0041 3.90e-14 0.0123

TABLE III
ORIENTATION ERROR OF THE DIFFERENT INVERSE KINEMATIC

ALGORITHMS. (*) IKFAST IS NOT ABLE TO GENERATE A SOLVER.

Robot arm IK solver Mean Median stdv

Katana 400 6m180 KDL 0.0016 2.24e-4 0.0037
Katana 400 6m180 OpenRave 0.0344 0.0030 0.2167
Katana 400 6m180 Stochastic 0.1656 0.1580 0.0864

Youbot KDL 0.0082 1.00e-003 0.0092
Youbot OpenRave - (*) - (*) - (*)
Youbot Stochastic 0.3092 0.2930 0.0945

TABLE IV
RUNTIME OF THE DIFFERENT INVERSE KINEMATIC ALGORITHM. (*)

IKFAST IS NOT ABLE TO GENERATE A SOLVER.

For the evaluation the input is a random pose and the
expected output is the corresponding inverse kinematic. This
is done 450 times for every algorithm. Notably, the stochastic
solver always finds a valid solution if there is any (see
Table I). In Figure 2 it can be seen that the stochastic solver
achieves a higher success rate than any other solver. It is
important to notice that openRave is not able to produce a
solver for the KUKA youBot. The resulting position error
(see Table II) and the orientation error (see Table III) is a
bit higher. Though, the runtime of the very fast KDL cannot
be achieved (see Table IV), the proposed algorithm is still
preferable, due to its excellent success rate. This drawback
can also be seen within the Figure 3, which demonstrate the
run time of the different solvers. Another observation of the
run time is that each solver finds faster a solution for the
Katana 400 6m180 compared to the KUKA youBot.
The second evaluation was performed on real hardware. In
order to test the accuracy as well as the success of the
algorithm, we created a pick and place test environment
(see Figure 5). The task was to pick up small balls, with a

Fig. 4. The Katana 400 6m180

diameter of 1.5 cm, and place them in holes with a diameter
of 1 cm. Each pick and place task was performed up to 4

Fig. 5. Evaluation setup to perform pick and place tasks with the Katana
400 6m180

times. A task was only counted as success if the ball could
be picked up or placed correctly within the hole. In order to
have as many places as picks, the robot was given the ball
in case of an unsuccessful pick. The test was executed with
a Katana 400 6m180 robot arm. The algorithms in use are
KDL and the stochastic solver. The results of this evaluation
show the total success rate of pick and place tasks and can
be seen in Table V. The evaluation shows the high success

Robot arm IK solver Pick ball Place ball

Katana 400 6m180 KDL 0.30 0.50
Katana 400 6m180 Stochastic 0.92 0.83

TABLE V
SUCCESS RATES OF THE PICK AND PLACE TASK

of the stochastic inverse kinematic within a real environment
and the impact of the inverse kinematic solver to perform a
object manipulation task.

VI. CONCLUSION

In this paper we presented a novel approach to solve the
inverse kinematic problem. The approach treats the inverse

47

Fig. 3. Runtimes of the different inverse kinematic algorithms and their corresponding standard deviations in seconds.

Fig. 6. The KUKA youBot

kinematic problem as optimization problem, which is solved
with a global optimization algorithm. Experimental results
show that the proposed inverse kinematic provides excellent
success rates regarding founding a solution. In this context
this novel inverse kinematic solver rules out other common
inverse kinematic solvers, which are often used within the
field of mobile manipulation. This advantage comes at the
cost of a higher run time of the algorithm. But this drawback
is acceptable in the face of a much more stable manipulation.
We will address this drawback in future work by creating
a fast inverse kinematic solver with a high success to find
a solution by restricting the space with heuristics. Another
topic of interest for future work is a evaluate how the
parameters should be tuned for the algorithm.

ACKNOWLEDGMENTS

This work was supported by the Austrian Research Promo-
tion Agency (FFG) with the ”Innovationsscheck” program.

REFERENCES

[1] M. K. Simon Bogh, Mads Hvilshoj and O. Madsen, “Autonomous
industrial mobile manipulation (aimm): From research to industry,” in
Automate 2011, 2011.

[2] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in Proceedings of IEEE Aerospace Conference, 1999.

[3] M. C. Sachin Chitta, E. Gill Jones and K. Hsiao, “Mobille manipu-
lation in unstructured environments,” IEEE Robotics and automation
magazine, pp. 58–71, Jun. 2012.

[4] S. Chitta, I. Sucan, and S. Cousins, “Moveit! [ros topics],” Robotics
Automation Magazine, IEEE, vol. 19, no. 1, pp. 18–19, March.

[5] R. Diankov, “Automated construction of robotic manipulation pro-
grams,” Ph.D. dissertation, Carnegie Mellon University, Robotics In-
stitute, 2010.

[6] B. B. Andrew A. Goldenberg and R. G. Fenton, “A complete general-
ized solution to the inverse kinematics of robots,” IEEE Transactions
on robotics and automation, vol. RA-1, pp. 14–20, Mar. 1985.

[7] L. Kelmar and P. K. Khosla, “Automatic generation of kinematics for
a reconfigurable modular manipulator system,” in IEEE International
Conference on Robotics and Automation, Philadelphia, PA, Apr. 1988,
pp. 663–668.

[8] J. K. Parker, A. R. Khoogar, and D. E. Goldberg, “Inverse kinematics
of redundant robots using genetic algorithms,” in Robotics and Au-
tomation, 1989. Proceedings., 1989 IEEE International Conference on.
IEEE, 1989, pp. 271–276.

[9] R. Storn and K. Price, “Differential evolution - a simple and efficient
adaptive scheme for global optimization over continuous spaces,” 1995.

48

Generalizing the Control Number for 6-dof UCU Hexapods
with classic or eccentric U-joints

Georg Nawratil*

Abstract— In this paper, we present a novel index, called the
Generalized Control Number (GCTN), which evaluates the
closeness of a given non-singular configuration of a hexapod
with UCU-legs to the next singularity. TheGCTN is invariant
with respect to similarity transformations (choice of units) and
under Euclidean motions of the reference frame (choice of
fixed frame). Moreover, this index indicates the closeness to
all types of singularities (end-effector and leg singularities)
simultaneously and it has a clear geometric/kinematic meaning.

I. INTRODUCTION

Given is a parallel manipulator with six degrees of freedom
(dofs), where the fixed base is denoted byΣ0 and the moving
platform by Σ, on which the end-effector EE is installed.
Moreover,Σ0 is connected withΣ by six UCU-legs, where
U denotes an universal joint and C a cylindrical one.

It is well known, that a C-joint has two dofs, where one is a
translation along the cylinder axisc and the other a rotation
aroundc. For the hexapods under consideration, only the
translation alongc can be controlled actively; the rotational
component is passive. Therefore, the C-joint can be replaced
by a composition of an active prismatic joint (P-joint) along
c and a passive rotational joint (R-joint) with rotary axisc.

A U-joint also has two dofs, as it can also be seen as a
serial 2R-chain, with orthogonal axesu1 and u2. If these
axes intersect each other, we have the classic U-joint and if
this is not the case, we get a so-calledeccentricone (cf. [3],
[4]). For the UCU-legs, both types of U-joints are allowed,
which are in all cases passive joints of the manipulator.

Remark 1. According to [3], [4] the advantages of eccentric
U-joints are, that they have a significantly larger pivoting
range, which results in an extension of the manipulators
workspace. At the same time, the joints can be produced
cheaper and they can be designed more compact and stiffer,
which additionally improves the accuracy. ⋄

Moreover, we assume that the connection of each U-joint
with a C-joint fulfills the following two design constraints:
• the linesu2, c andn are copunctal,
• andc intersectsu2 orthogonally,

where n denotes the common normal ofu1 and u2 and
whereu2 denotes the axis of the U-joint, which is linked

*G. Nawratil is member of the Institute of Discrete Mathematics and
Geometry at the Vienna University of Technology, Austria. The research was
done during the author’s time as interim professor at the Institute of Geom-
etry, Technical University Dresden, Germany. Currently, the author is sup-
ported by Grant No. I 408-N13 of the Austrian Science Fund FWFwithin the
project “Flexible polyhedra and frameworks in different spaces”, an inter-
national cooperation between FWF and RFBR, the Russian Foundation for
Basic Research. Email:nawratil@geometrie.tuwien.ac.at

u1

ec
ce

n
tr

ic
ity

n

u2

c

ai1∈ Σ0

ai2

ai3

ai4

ai5∈ Σ

Fig. 1. Left: Connection of an eccentric U-joint and a C-joint. We get a
classic U-joint, if the eccentricity equals zero. Right: Schematic sketch of
the serial RRPRRR-chain, which corresponds with theith UCU-leg.

with the C-joint (cf. Fig. 1, left). This assumptions keep
the kinematic structure of the UCU-legs simple enough for
practical application (cf. [4]).

Summed up, each leg connectingΣ0 with Σ can also be
seen as a serial RRPRRR-chain, where the P-joint is active
and the five R-joints are passive. We denote thejth rotation
axis of theith leg by aij for i = 1, . . . , 6 and j = 1, . . . , 5
(cf. Fig. 1, right).

Based on this notation, we first study the instantaneous
kinematic of the hexapod with UCU-legs in Section II,
where the different types of singularities of this manipulator
are listed as well. In Section III, we make preliminary
considerations on an index, which evaluates the closeness
of a given non-singular configuration to the next singularity.
Moreover, we discuss already existing performance indices
from this point of view and repeat the so-called Control
Number for Stewart Gough manipulators in more detail.
Based on this, we generalize the Control Number for the
hexapods under consideration in Section IV. We close the
paper by demonstrating the validity of this index on the basis
of a concrete example, which is given in Section V.

II. INSTANTANEOUS KINEMATICS

We use the dual vector calculus for the representation
of screws and lines (cf. page 154 of [17]). Therefore, the
rotation axisaij is given by

aij = aij + εâij , (1)

where aij is the unit vector (column vector) along the
rotation axis with respect to the fixed frame.âij is the so-

49

called moment vector, which is given byxij×aij , wherexij

is the coordinate vector (column vector) of an arbitrary point
Xij ∈ aij with respect to the fixed frame. Further it should be
noted, thatε is the dual unit, which has the propertyε2 = 0.

The screw for the prismatic joint of theith leg is given
by

ti = o+ εt̂i, (2)

whereo denotes the zero vector and̂ti the unit vector in
direction of the translation with respect to the fixed frame.
Therefore, in our casêti equalsai3.

A. Jacobian matrixJi of the ith leg

As every leg can be seen as a serial RRPRRR-robot, the
6×6 Jacobian matrixJi of the ith leg can be written as (cf.
[7]):

Ji =

(
ai1 ai2 ai3 ai4 ai5 o

âi1 âi2 âi3 âi4 âi5 t̂i

)
. (3)

Therefore, the instantaneous screwq = q + εq̂ of Σ with
respect toΣ0 can be computed as

(
q
q̂

)
= Ji

ωi1

...
ωi5

τi

 , (4)

whereωij denotes the angular velocity of thejth R-joint and
τi the translatory velocity of the P-joint of theith leg.

The spear coordinates(pT , p̂T) of the axisp (= normal-
ized Plücker coordinates ofp, cf. page 155 of [17]) of the
screwq can be computed according to

p =
1

ω
q, p̂ =

1

ω

(
q̂− ωω̂

ω2
q

)
, (5)

for ω = ‖q‖ 6= 0 andωω̂ = qq̂. The screw parameterh is
given byh := ω̂/ω, whereω̂ is the translatory velocity and
ω the angular velocity of the screwq.

If ω = ‖q‖ = 0 holds, thenq is an instantaneous
translation along the direction̂q. In this case, the axis is
the ideal line of any plane orthogonal tôq.

B. Jacobian matrixJ of the EE

If we assume thatrk(Ji) = 6 for i = 1, . . . , 6, then Eq.
(4) can be rewritten as

J−1
i

(
q
q̂

)
=

ωi1

...
ωi5

τi

 . (6)

By denoting the sixth row ofJ−1
i by (̂ji, ji), the 6 × 6

Jacobian matrixJ of the platform can be written as

J =

ĵ1 j1
...

...
ĵ6 j6

 . (7)

Moreover, it should be noted that the instantaneous screw
j
i
:= jTi + ε̂jTi equals an instantaneous rotation around the

carrier line of theith P-joint. Therefore,(ji, ĵi) are the spear
coordinates(aTi3, â

T
i3) of the axisai3 (cf. proof of the later

given Theorem 1).
Note, thatJ transforms the instantaneous screw of the

platform into the translatory velocity of the active joints, i.e.

J

(
q
q̂

)
=

τ1
...
τ6

 . (8)

C. Types of singularities

In the following, we distinguish different types of singu-
larities:
1) rk(Ji) < 6: This is a so-called leg singularity. Geomet-

rically, this means that the five rotary axes and the axis
of the translation (ideal line) belong to a so-calledlinear
line complex(cf. Section 3 of [17]). In this case, there
exist angular velocitiesωij and a translatory velocityτi
that

τiti +
5∑

j=1

ωijaij = o (9)

holds, whereo = o + εo denotes the zero screw. We
distinguish two cases:

a) τi 6= 0: In this case, the translatory velocity of theith

active joint cannot be transmitted onto the EE, as the
velocity ratio

(τ1 : . . . : τi : . . . : τ6) = (0 : . . . : 1 : . . . : 0) (10)

causes an instantaneous standstill ofΣ; i.e. q = o.
b) τi = 0: Now, there is an infinitesimal redundant

mobility of the leg itself (but not ofΣ). In the worst
case, this can result in a self-motion of the leg.

Finally, it should be mentioned, that in a leg singularity
the leg loses6− rk(Ji) dofs. If an infinitesimal screw is
applied to the platform, which belongs to the set of lost
dofs, then this can yield a breaking of the leg.

2) rk(J) < 6: This is a so-called EE singularity. Due to the
observation of Subsection II-B, this singularity can also
be interpreted by means of line geometry as follows: The
hexapod is in an EE singularity, if and only if, the carrier
lines of the prismatic legs belong to a linear line complex.
In this case, there exists at least a screwq 6= o that

J

(
q
q̂

)
=

(
o
o

)
(11)

holds. Therefore, in an EE singularity, the platform is
infinitesimal movable while all active joints are locked.
Finally it should be noted, that in the worst case, this
singularity can result in a self-motion ofΣ.

Remark 2. This singularity study also shows, that the
hexapods under consideration only have line-based sin-
gularities, even though the last three joints of each leg
are not equivalent with a spherical joint (S-joint), if an
eccentric U-joint is used atΣ. Therefore, these are more
general parallel manipulators with line-based singularities,
than those characterized in Section 4 of [2]. ⋄

50

III. PERFORMANCE INDEX

In future applications, it is planned that the hexapod’s
motion is controlled directly by ordinary skilled workers
and not by highly-qualified academics, e.g. wheel loaders
will be coupled by hexapods with different EEs (dredger
bucket, stacker forks, snowplough, gripper, ...).1 Therefore,
there is an interest in an index, which gives the operator
a feedback about the closeness of a given non-singular
hexapod-configuration to the next singular one.

As it is well known, that there does not exist a distance
metric in the pure mathematical sense, if rotational and
translatory dofs are involved (which is the case for a 6-dof
hexapod), we are looking for a performance indexPI, which
assigns to each configurationC a scalarPI(C) ∈ R obeying
the following six properties:

1) PI(C) ≥ 0 for all C of the configuration space,
2) PI(C) = 0 if and only if C is singular,
3) PI(C) is invariant under Euclidean motions of the

reference frame,
4) PI(C) is invariant under similarities,
5) PI(C) has a geometric/kinematic meaning,
6) PI(C) is computable in real-time.

A further challenge for the definition of the requested index
is, that it has to evaluate the closeness to different types of
singularities simultaneously, as separated computationsof the
closeness to EE singularities and leg singularities (for each
leg) go at the expense of the computation time (cf. demand
6), and one is confronted with the problem of combining
the obtained values to a single meaningful closeness index
(cf. demand 5). But exactly this clear geometric/kinematic
meaning is of importance for identifying a critical value,
which indicates that a given configuration is too close to
a singularity for guaranteeing a save performance of the
hexapod.

As the set of singular poses of a manipulator is solely de-
termined by its geometry, a performance index, which makes
demands to evaluate the closeness to the next singularity,
should only depend on geometric/kinematic properties of the
inspected non-singular pose. Therefore, such a performance
index must not depend on the EE. As a consequence,
all known condition number indices (either based on the
characteristic point [21], operation ellipsoid [14], [15]or
velocity of three EE points [8]) as well as the local singularity
transmission index [11], which depends on the choice of the
application point, are out of question.

Moreover, the requested index must not depend on non-
kinematic parameters as mass or stiffness, which exclude also
the indices presented in [1], [6], [18]. In the following we
discuss the remaining EE independent performance indices,
which are known to the author, in more detail:

1Cf. research project”MOBIMA – Arbeitsausrüstungen mit parallelkine-
matischen Strukturen für mobile Arbeitsmaschinen”funded by the German
Ministry of Education and Research. For more details pleasesee:
http://tu-dresden.de/die tu dresden/fakultaeten/
fakultaet maschinenwesen/iwm/forschung/2012 mobima

A. Manipulability [20]

A drawback of the manipulabilityM(C) is, that it is not
invariant under similarity transformations and thereforeit
depends on the choice of units (cf. [12]). To overcome this
problem, some authors use the following relation as index:

M⋆ :=
M(C)

M(Cmax)
, (12)

with Cmax denoting the configuration of the hexapod, where
the manipulability is maximal (⇒ M⋆ ∈ [0, 1]). But the
computation ofCmax is a highly non-linear task and was only
done for some special manipulators of Stewart Gough (SG)
type2 (cf. [9], [10]). Moreover, only in some special cases
M(Cmax) can be interpreted geometrically as the volume,
spanned by the framework (cf. [9]).

B. Best fitting linear line complex [16], [19]

As our studied manipulator only has line-based singular-
ities (cf. Remark 2), also this index has to be taken into
consideration, which is again not invariant under similarities.
But one can solve this problem as for the case of the
manipulability.

The much bigger problem is, that this index does not
consider singular linear line complexes, where the axis is an
ideal line (cf. page 166 of [17]). In order to close this gap,
the authors of [16] proposed the computation of a second
index. But it is not clear how these two indices should be
combined to a single geometric/kinematic meaningful value,
evaluating the closeness to the next linear line complex.

Beside the already mentioned drawbacks of the manipula-
bility and the method of the best fitting linear line complex,
these two indices cannot master the challenge formulated in
the paragraph below the six demands.

C. Control Number [13], [14], [15]

As pointed out by the author in [13], [14], [15], the
Control NumberCTN fulfills all six demands. Therefore,
this index is best suited for measuring the closeness to the
next singularity in the author’s mind, but until now the
CTN is only defined for SG manipulators. As we want to
generalize theCTN for the hexapods under consideration
within the next section, we repeat its basic idea and definition
in the following two paragraphs:

As in each pose, the SPS-leg allows a rotational self-
motion around the line spanned by the centers of the S-
joints, we are only interested in an index, which evaluates
the closeness to EE singularities. Note that EE singularities
of SG manipulators have the same geometric interpretation
as the one given in item 2 of Subsection II-C. Therefore,
SG manipulators are also infinitesimal movable in EE sin-
gularities, which means that there exists an infinitesimal
motion ofΣ while all actuators are locked. As a consequence,
the velocity of Σ can be arbitrarily large (even infinity),
and therefore the posture is uncontrollable. In practice,

2These are hexapods with six SPS-legs, where both S-joints are passive
and the P-joint is active.

51

v
l(
P
)

v(
P)

v⊥ (P)

q

ωB

B

P

Fig. 2. Definition of the angular velocityωB of the spherical base joint
(with centerB): v(P) denotes the velocity of the platform pointP (= center
of S-joint) with respect to the instantaneous screwq. Moreover,vl (P) (resp.
v⊥(P)) is the component ofv(P) along (resp. orthogonal to) the carrier line
of the P-joint. Then,ωB is defined as the length ofv⊥(P) divided through
the leg length. Note, that the definition ofωP can be done analogously with
respect to the inverse motion−q.

configurations must be avoided, where minor (or even zero)
variations of the leg lengths have uncontrollable large effects
on the instantaneous displacement ofΣ. The question is,
which measurable parameter of the SG manipulator indicates
the circumstance of uncontrollability in a natural way and has
a geometric/kinematic meaning for the manipulator.

The answer to this question are the angular velocities
of the S-joints (cf. Fig. 2). We computed the maximum
λmax and the minimumλmin of the sum of the squared
angular velocities of the passive joints under the normalizing
condition that the sum of the squared translatory velocities
of the active joints equals1. Then, theCTN is defined as:

CTN :=

√
λmin

λmax
∈ [0, 1]. (13)

Remark 3. For a more detailed review of the indices
discussed in Subsection III-A, III-B and III-C for parallel
manipulators of SG type, please see [15]. Moreover, these
indices are also compared within Subsection 6.4 of [15].⋄

IV. GENERALIZED CONTROL NUMBER

The base for the definition of a generalized version of the
CTN is the following theorem:

Theorem 1. A leg singularity of type (a) withrk(Ji) = 5
cannot exist.

Proof: As all rotary axesai1, . . . , ai5 intersect (or are even
identical with) the carrier line of theith P-joint (= line
ai3), the linear line complex spanned by the axesai1, . . . , ai5
equals the path normal complex of the instantaneous screwj

i
(cf. page 164 of [17]). This linear line complex is a singular
one and uniquely determined, ifai1, . . . ,ai5 are linearly
independent (⇒ rk(Ji) = 5).

Therefore, a leg singularity of type (a) withrk(Ji) = 5
exists, if and only if, the axist of ti intersects the carrier
line of the P-joint. But this can never happen, ast is the
ideal line of the plane orthogonal toai3. �

A consequence of this theorem is, that a leg singularity
of type (a) can only occur ifrk(Ji) < 5 holds, but
this implies the existence of a leg singularity of type (b).
Therefore, our performance index only has to indicate EE
singularities and leg singularities of type (b). The common
characteristic property of these two singularities is, that there
exists an infinitesimal mobility while all active joints are
fixed. Therefore, the so-called Generalized Control Number
GCTN can be used as index. The definition and computation
of theGCTN is given as follows:

We calculate the extreme values of the objective function
(sum of the squared angular velocities of the passive joints)

ζ :

6∑

i=1

5∑

j=1

ω2
ij (14)

under the normalizing condition (sum of the squared trans-
latory velocities of the active joints)

ν :

6∑

i=1

τ2i − 1 = 0. (15)

Under consideration of Eq. (6), these two equations can be
expressed in dependency ofq. As the resulting equations are
quadratic functions inq, they can be written as:

ζ(q) : (qT , q̂T)Z

(
q
q̂

)
, (16)

and

ν(q) : (qT , q̂T)N

(
q
q̂

)
− 1 = 0, (17)

whereZ andN are6× 6 matrices, withN = JTJ.
We solve the optimization problem by introducing a La-

grange multiplierλ (cf. [5]). Then, the approach simplifies
under consideration of

∇ζ(q) = 2Z

(
q
q̂

)
, ∇ν(q) = 2N

(
q
q̂

)
, (18)

to the general eigenvalue problem

(Z− λN)

(
q
q̂

)
=

(
o
o

)
. (19)

This system of linear equations only has a non-trivial so-
lution, if the determinant of the matrixZ − λN vanishes.
Each solutionλi (general eigenvalue ofZ with respect toN)
of the resulting characteristic polynomial of degree 6 inλ
corresponds with a general eigenvectorei. Due to Eqs. (17)
and (19) we get

ζ(ei) = λi, (20)

which implies that the greatestλ+ and smallestλ− general
eigenvalue equal the requested extrema.

Theorem 2. TheGCTN , which is given by

GCTN :=

√
λ−
λ+

∈ [0, 1], (21)

fulfills all six stated requirements.

52

Proof: Due to the definition of the index, all demands, with
exception of the second one, are trivially fulfilled. Therefore,
we only comment on demand 2: The value ofλ+ equals∞,
if and only if, the manipulator is in an EE singularity or
leg singularity of type (b), as only in these configurations an
instantaneous self-mobility of the manipulator exists, while
all active actuators are locked (cf. Section II-C).

Hence, it remains to check the caseλ− = 0: In this
case, all passive joints have an instantaneous standstill.As a
consequence, an instantaneous change of the EE’s orientation
is not possible and therefore only a pure translation can be
performed at this moment. A pure translation can only be
done if all six legs are parallel to each other, but this already
implies rk(J) ≤ 3, as the six carrier lines of the P-joints
belong to a bundle of lines (cf. page 142 of [17]). �
Remark 4. Note, that theGCTN also masters the challenge
formulated in the paragraph below the six demands. It should
be mentioned that, similar to theCTN (cf. [14]), theGCTN
can also be used for parallel manipulators with more than
six legs, i.e. redundant hexapods with UCU-legs. ⋄

If a given configuration of the hexapod is indicated by
a smallGCTN -value to be close to a singularity, then the
corresponding eigenvectore+ of λ+ contains the following
extra information:

The joint ratio r+ := (τ+1 : . . . : τ+6), computed
from q

+
:= q+ + εq̂+ with (qT

+, q̂
T
+) := eT+ by Eq.

(8), corresponds with the most uncontrollable motion of
the hexapod, as small variations of the prismatic joints
have large effects on the instantaneous transformation of the
whole manipulator (EE singularity) or of a substructure (leg
singularity). Therefore, the joint ratior+ should be avoided.

This joint ratio r+ can also be used for evaluating the
quality of an arbitrary instantaneous joint ratior := (τ1 :
. . . : τ6) by computing the angleρ enclosed by the one-
dimensional subspacesr andr+:

ρ := arccos
±r·r+
‖r‖‖r+‖ , (22)

where the sign± has to be chosen thatρ ∈ [0, π/2] holds.
Moreover, we can even detect whether the given configu-

ration is close to either an EE singularity or a leg singularity
by computing

µi(q+
) :=

5∑

j=1

ω2
ij (23)

for i = 1, . . . , 6. If µi(q+
) is not far away fromλ+, then the

manipulator is in the neighborhood of a leg singularity of the
ith leg, asµ1(q+

) + . . . + µ6(q+
) = λ+ holds. Otherwise,

we are close to an EE singularity.

Remark 5. Note, that theGCTN can also be used to
optimize the kinematic design of the hexapods under consid-
eration, as this was done for SG manipulators with respect to
theCTN in [14], [15]. From this perspective, the hexapod
should be isotropic in the central configurationC⊙ of the
workspace, i.e.GCTN(C⊙) = 1. The topic of isotropy is
dedicated to future research. ⋄

V. EXAMPLE

Due to the simplicity of the inverse kinematics, we study
a hexapod, where both U-joints of all UCU-legs are classic
ones. Moreover, we assume that the centersBi andPi of the
base U-joint and platform U-joint, respectively, of theith leg
are located on semi-regular hexagons with a circumcircle
of radius 1. Without loss of generality, we can choose a
Cartesian coordinate system inΣ0, thatBi andPi have the
following coordinate vectorsbi andpi, respectively:

bi = (cosαi, sinαi, 0)
T
, pi = (cosβi, sinβi, d)

T
,

with

α1 = β2 −
π

3
= −α, α2 = β1 +

π

3
= α,

α3 = β4 −
π

3
=

2π

3
− α, α4 = β3 +

π

3
=

2π

3
+ α,

α5 = β6 −
π

3
=

4π

3
− α, α6 = β5 +

π

3
=

4π

3
+ α.

Moreover, we set the design parameterα equal toπ/12 and
the configuration parameterd equal to 1 in order to get a
presentable graphical illustration of the hexapod’s central
configurationC⊙. In addition, we can still select the direction
of the first rotational axisai1 through Bi as well as the
direction of the last rotational axisai5 through Pi. They
are chosen in a way, that they contain the center of the
corresponding circumcircle (cf. Fig. 3).

By rotating the platform ofC⊙ around the lineg spanned
by the centers of the two circumcircles about the angleπ/2,
we get into the EE singularity illustrated in Fig. 4. The value
of the GCTN , in dependency of the rotation angleδ ∈
[0, π/2], is displayed in Fig. 6.

By rotating the platform ofC⊙ aroundg about the angle
π/6, we get into the intermediate poseC⊘, where the axis
a13 is parallel tog. If we move the hexapod out ofC⊘, by
rotating the platform about the angleπ/4 around the line
h, which passes through the center of the platform and is
orthogonal to the plane spanned bya13 andg, then we get
into the leg singularity illustrated in Fig. 5. The value of the
GCTN , in dependency of the rotation angleθ ∈ [0, π/4] of
the rotation aroundh, is displayed in Fig. 6.

In the following we study a configuration close to the
leg singularity and EE singularity, respectively, from the
perspective of the last paragraph before Remark 5. For e.g.
θ = 40◦, we getGCTN ≈ 0.052, λ+ ≈ 630.867 and

µ1 ≈ 600.997, µ2 ≈ 7.271, µ3 ≈ 4.472,

µ4 ≈ 3.370, µ5 ≈ 3.806, µ6 ≈ 10.951,

which shows that we are close to a leg singularity of the first
leg. In contrast, for the configuration given byδ = 85◦, we
getGCTN ≈ 0.034, λ+ ≈ 2267.560 and

µ1 = µ3 = µ5 ≈ 508.978, µ2 = µ4 = µ6 ≈ 246.875.

According to the prognosticate behaviour, we are close to an
EE singularity.

53

a13a13a13a13a13a13a13a13a13a13a13a13a13a13a13a13a13

a12a12a12a12a12a12a12a12a12a12a12a12a12a12a12a12a12 a11a11a11a11a11a11a11a11a11a11a11a11a11a11a11a11a11

a15a15a15a15a15a15a15a15a15a15a15a15a15a15a15a15a15 a14a14a14a14a14a14a14a14a14a14a14a14a14a14a14a14a14

ΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣ

Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0

Fig. 3. The hexapod in its central configurationC⊙. The manipulator is far
from being isotropic asGCTN(C⊙) ≈ 0.314 holds. E.g. the corresponding
octahedral manipulator (α = 0) in this pose has aGCTN of about0.715.

Fig. 4. A well-known EE singularity of the hexapod. Note, that the camera
position for the Figs. 3, 4 and 5 is always the same with respect to Σ0.

a13a13a13a13a13a13a13a13a13a13a13a13a13a13a13a13a13

a15a15a15a15a15a15a15a15a15a15a15a15a15a15a15a15a15

Fig. 5. Leg singularity of the hexapod: The axesa13 (green) anda15 (red)
coincide. The axisa14 is not displayed, as it is not uniquely determined
due to a rotational self-mobility of the leg around the axisa13 = a15.

ACKNOWLEDGMENT

The author wants to thank Bernd Kauschinger and his
student Felix Bender from the Institute of Machine Tools
and Control Technology at the Technical University Dresden,
Germany, for bringing the author’s attention to the topic
dealt within this paper, and for the fruitful discussions inthis
context during the author’s stay in Dresden (cf. Footnote *).

0

0.1

0.2

0.3

0 0.2 0.4 0.6 0.8 1 1.2 1.4

GCTN(δ)GCTN(θ)

Fig. 6. TheGCTN -graphs in dependency of the rotation anglesδ andθ.

REFERENCES

[1] B IER, C.C.: Geometrische und physikalische Analyse von Singu-
laritäten bei Parallelstrukturen.Doctoral thesis. Institute of Technol-
ogy, University of Braunschweig (2006)

[2] FANGLI , H., MCCARTHY, J.M.:Conditions for Line-Based Singular-
ities in Spatial Platform Manipulators.Journal of Robotic Systems
15(1) 43–55 (1998)

[3] GROSSMANN, K., KAUSCHINGER, B., RIEDEL, M.: Exzentrische
Gelenke für parallelkinematische Werkzeugmaschinen.Zeitschrift für
wirtschaftlichen Fabrikbetrieb 107(1–2) 25–32 (2012)

[4] GROSSMANN, K., KAUSCHINGER, B.: Eccentric universal joints for
parallel kinematic machine tools: variants and kinematic transforma-
tions. Production Engineering - Research and Development 6(4–5)
521–529 (2012)

[5] HESTENES, M.R.: Optimization theory.Wiley publication (1975)
[6] HUBERT, J., MERLET, J.-P.: Static of Parallel Manipulators and

Closeness to Singularity.ASME Journal of Mechanisms and Robotics
1(1) 011011 (2009)

[7] HUSTY, M., KARGER, A., SACHS, H., STEINHILPER, W.: Kinematik
und Robotik.Springer (1997)

[8] K IM , S.-G., RYU , J.: New Dimensionally Homogeneous Jacobian
Matrix Formulation by Three End-Effector Points for Optimal De-
sign of Parallel Manipulators.IEEE Transactions on Robotics and
Automation 19(4) 731–737 (2003)

[9] L EE, J., DUFFY, J., HUNT, H.: A Practiacl Quality Index Based on the
Octahedral Manipulator.International Journal of Robotics Research
17(10) 1081–1090 (1998)

[10] LEE, J., DUFFY, J.: The optimum quality index for some spatial in-
parallel devices.Florida conference on Recent Advances in Robotics,
Gainesville, USA (1999)

[11] L IU , X.-J., WU, C., WANG J.: A new approach for singularity
analysis and closeness measurement to singularities of parallel ma-
nipulators.ASME Journal of Mechanisms and Robotics 4(4) 041001
(2012)

[12] MERLET, J.-P.: Jacobian, Manipulability, Condition Number, and
Accuracy of Parallel Robots.ASME Journal of Mechanical Design
128 199–206 (2006)

[13] NAWRATIL , G.: The Control Number as Index for Stewart Gough
Platforms.Advances in Robot Kinematics: Mechanisms and Motion
(J. Lenarcic, B. Roth eds.), 15–22, Springer (2006)

[14] NAWRATIL , G.: New Performance Indices for 6-dof UPS and 3-dof
RPR Parallel Manipulators.Mechanism and Machine Theory 44(1)
208–221 (2009)

[15] NAWRATIL , G.: Neue kinematische Performance Indizes für 6R
Roboter und Stewart Gough Plattformen.Doctoral thesis. Institute of
Discrete Mathematics and Geometry, Vienna University of Technology
(2007)

[16] POTTMANN , H., PETERNELL, M., RAVANI , B.: Approximation in line
space - applications in robot kinematics and surface reconstruction.
Advances in Robot Kinematics: Analysis and Control (J. Lenarcic, M.
Husty eds.), 403–412, Kluwer (1998)

[17] POTTMANN , H., WALLNER , J.: Computational Line Geometry.
Springer (2001)

[18] VOGLEWEDE, P.A., EBERT-UPHOFF, I.: Overarching Framework for
Measuring Closeness to Singularities of Parallel Manipulators. IEEE
Transactions on Robotics 21(6) 1037–1045 (2005)

[19] WOLF, A., SHOHAM , M.: Investigations of Parallel Manipulators
Using Linear Complex Approximation.Journal of Mechanical Design
125 564–572 (2003)

[20] YOSHIKAWA , T.: Manipulability of Robotic Mechanisms.Int. Journal
of Robotics Research 4(2) 3–9 (1985)

[21] ZANGANEH, K.E., ANGELES, J.: Kinematic Isotropy and the Op-
timum Design of Parallel Manipulators.Int. Journal of Robotics
Research 16(2) 185–197 (1997)

54

A Time Optimal Solution for the Waiter Motion Problem with an
Industrial Robot

Matthias Oberherber, Hubert Gattringer, and Klemens Springer

Abstract— This paper presents a time optimal solution for the
”Waiter-Motion-Problem”. The goal is to move a cup, that is
loosely placed at the end-effector of an industrial robot, as fast
as possible on a specified path. The path is defined with splines
represented by Bernstein polynomials. By introducing a path
parameter, the optimization problem is transformed into the
phase plane and solved with a Bellman optimization strategy.
Physical limitations like motor velocities, motor torques and
friction forces are considered. The cycle time is reduced even
more by adapting the orientation of the tray. Simulation as well
as experimental results are presented.

I. INTRODUCTION

Time optimal path planning is an interesting topic for
industrial use. The advantage is to save cycle time by
exploiting the robots mechanical and electrical limits. There
exist a lot of papers concerning this subject. Especially the
works of Pfeiffer et al. [5], Shin et al. [6] and Bobrow et
al. [8] provide the basis for effective algorithms. A special
challenge represents the so called ”Waiter-Motion-Problem”
- a robot with a tray mounted on the end-effector should
follow a given spatial path in shortest possible time without
bringing an object placed on the plate to slip. Geu Flores
et al. discussed this problem in [1]. They use quintic B-
splines to define the spatial path whereby the time optimal
solution is obtained with an special algorithm that is based
on forward and backward integration of the equations of
motion to find optimal switching points. In contrast to that,
in our paper the interpolation between predefined points
is done with Bernstein polynomials. Additionally, the time
optimal solution is calculated with the help of the Bellman
strategy, simply because of greater flexibility in relationto
path definitions and fast solution times for the optimization
algorithm.

The paper is organized as follows: In section II general
definitions for the description of the spatial path are given,
while the equations of motions for the robot are calculated
in section III. The general time optimization of this problem
under specific physical limitations is shown in IV. Addi-
tional constraints for the ”Waiter-Motion-Problem”, namely
acceleration constraints of the end-effector, are included in
section V. The overall cycle time is reduced even more by
optimizing the end-effector orientation (section VI). Finally
in section (VII) a comparison between the optimization with
constant and optimized orientation of the tray can be found.

Johannes Kepler University Linz
Altenbergerstr. 69, 4040 Linz, Austria
m.oberherber@gmx.at, hubert.gattringer@jku.at,
klemens.springer@jku.at
http://www.robotik.jku.at

Ex

Ex

Ey

Ey

Ez

Ez

Ix

Iy

Iz
zE(σ0) = p0

zE(σ) zE(σE) = p4

σ

p1

p2

p3

Fig. 1. Path planning by interpolation of points

The experimental verification is done with a Stäubli Rx130
industrial robot.

II. SPATIAL PATH PLANNING

A pathzE = [xE , yE , zE]
T for the end-effector in the inertial

coordinate system is calculated by interpolating pre-defined
points p j with splines within the robots working space, see
Fig. 1. This path can be parametrized with a (scalar) path
parameterσ

zE = zE(σ). (1)

The time behaviorσ(t) has to be optimized between the
range σ0 = 0 (start point) andσE = 1 (end point). This
parametrization is utilized with Bernstein polynomials, in the
following way

Rd
j (σ) = 0 for j = 0, . . . ,n−d −1

Rd
n−d+k(σ) =

(
d
k

)
(σ−σ0)

k(σE−σ)d−k

(σE−σ0)d for k = 0, . . . ,d

Rd
j (σ) = 0 for j = n+1, . . . ,2n−d ,

(2)
see Fig. 2 for a graphical representation with a polynomial
degree ofd = 4. Parametern is the maximum polynomial
degree depending on the number of interpolation points.
In contrast to the spatial positions of the nodesp j, the
discretization ofσ is not unique. Especially two methods
for the parametrization are available:

• Equidistant parametrization:
Them nodes are equidistantly distributed over the range
of the curve parameterσ0 . . .σE

σk = k∆σ , k = 1..m−1, with ∆σ = σE−σ0
m−1 .

55

R4
4

R4
3

R4
2

R4
1

R4
0

B
er

ns
te

in
po

ly
no

m
ia

lR

path parameterσ
0 0.5 1

0

0.5

1

Fig. 2. Bernstein polynomial of degreed = 4

• Chordal parametrization:
The nodes are distributed over the range of the path
parameterσ0 . . .σE under consideration of the distance
of the defined points in space. For that, the length of
the polygonial-line is calculated as

L =
m−n−3

∑
j=0

∥∥p j+1−p j
∥∥

and furthermore the discretization points are defined by

σk = σ0+
σE −σ0

L

k−1

∑
j=0

∥∥p j+1−p j
∥∥ .

With this chordal parametrization on hand, the end-effector
path can be written as

zE(σ) =
m−n−2

∑
j=0

d jR
d
j (σ), (3)

where the spline nodes

D = (d0,d1 . . .dm−n−2) (4)

are the result of the linear equation

RB D = P. (5)

Beside the Bernstein polynomials

RB =

Rd
0(σ0) . . . Rd

m−n−2(σ0)
Rd

0(σ1) . . . Rd
m−n−2(σ1)

...
. ..

...
Rd

0(σm−n−2) . . . Rd
m−n−2(σm−n−2)

 (6)

this equation also contains the pre-defined path points in
spaceP= (p0,p1 . . .pm−n−2). SinceRB has band structure,
the inversion can be easily performed. More details on
splines can be found in [2] and [3].

III. DYNAMIC MODELING

The equations of motion have to be calculated on the one
hand to be able to simulate the robotic system and on the
other hand to calculate a model-based feed-forward control
that has to be used for the control of the real robot and also
for the time optimization. We use the Projection Equation
N

∑
i=1

((
∂Rvc
∂ q̇

)T (
∂Rωc

∂ q̇

)T)(
Rṗ+ Rω̃ IR Rp− Rfe

RL̇ + Rω̃ IR RL − RM e

)

i
= 0.

(7)

see [6] for details, since it is a powerful method for multi-
body systems to calculate the equations of motion. Linear
momentap = m vc and angular momentaL = J ωc are
projected into the minimal space (minimal velocitiesq̇) via
the appropriate Jacobian matrices. All the values like the
translational velocityvc or the rotational velocity of the
center of gravityωc can be inserted in arbitrary coordinate
systemsR. In contrast toωc, ω IR is the velocity of the
used reference system. The matrixJ is the inertial tensor,
while ω̃ p characterizes the vector productω × p. fe and
Me are imposed forces and moments acting on theith body.
Evaluating the Projection Equation forN = 12 bodies (the
industrial robots consists of six motors and six links) leads
to the equations of motion

M(q)q̈+g(q, q̇) = Q. (8)

whereM is the position dependent, positive definite, sym-
metric mass matrix,g contains all nonlinear terms like
gravitational-, Coriolis- , centrifugal and friction forces,
while Q are the motor torques. Since the robot is fully
actuated, the feed-forward torquesQd can directly be calcu-
lated via inverse dynamics of (8) by inserting desired values
(subscriptd) for the path

Qd = f(qd , q̇d , q̈d) = M(qd)q̈d +g(qd , q̇d). (9)

This feed-forward torques are used to include actuator torque
constraints in the next section.

IV. TIME OPTIMAL MOTION GENERATION

A. Parametrization of the equation of motion

The geometric pathzE (3) is defined in world coordinates
and parametrized by the path parameterσ . However, physical
constraints like joint velocities, accelerations and torques

q̇min ≤ q̇ ≤ q̇max

q̈min ≤ q̈ ≤ q̈max

Qmin ≤ Q ≤ Qmax (10)

are defined in joint coordinates. Therefore a transformation,
the inverse kinematics

q = f(zE(σ)) (11)

which can be solved analytically, has to be performed.
Additionally, the joint velocities

q̇ =
∂q
∂σ

σ̇ = q′σ̇ (12)

and the joint accelerations

q̈ =
∂

∂σ
(q′σ̇)σ̇ = q′′σ̇2+

1
2

q′(σ̇2)′ (13)

can directly be computed with respect to the path parameter
and its derivatives. Substituting (11,12,13) into (9) yields the
equations of motion with respect to the path parameter

Q = A(σ)(σ̇2)′+B(σ)(σ̇2)+C(σ)+D(σ)σ̇ (14)

56

(subscriptd omitted). The corresponding quantitiesA,B,C
can e.g. be determined by

A =
1
2

f (q̈ = q′, q̇ = 0,q,g= 0) (15)

B = f (q̈ = q′′, q̇ = q′,q,g= 0) (16)

C = f (q̈ = 0, q̇ = 0,q,g) . (17)

Coulomb friction M c = r c sign(q′(σ)), depending onσ ,
can be added to the termC, while viscous frictionM v =
r vq′(σ)σ̇ corresponds toD. With the abbreviationz = σ̇2

(14) leads to a set of(k = 1. . .6) conditions

akz′+bkz+ ck +dk
√

z = uk, (18)

which can be graphically evaluated in the[z′,z] plane and the
[z′,z,σ] space. Notice, when neglecting viscous friction, (18)
degenerates to straight lines in the phase plane. However, this
simplification can not be done for real systems, since viscous
friction is dominant.

B. Formulation of the optimization problem

The global goal of this particular optimization is to find a
minimum of the cost function

W =

tE∫

0

1dt, (19)

(time optimal solution). However, the unknown cycle timetE
is the sought solution of the optimization, so a transformation
of

σ̇ =
dσ
dt

(20)

and therefore
dt =

1
σ̇

dσ =
1√
z

dσ (21)

leads to a cost function depending onz of

W =

σE∫

0

1√
z

dσ , (22)

with well known σE . Auxiliary conditions, see (10), for the
optimizations can be transformed to

−uk,max ≤ uk ≤ uk,max (23)

−q̇k,max ≤ q′kσ̇ ≤ q̇k,max (24)

−q̈k,max ≤ q′′k z+
1
2

q′kz′ ≤ q̈k,max (25)

−vmax ≤ |z′E |σ̇ ≤ vmax (26)

where in (26), additional constraints for the maximum end-
effector velocity are included.

The inequalities (23) represent limiting curves in the[z′,z]
plane. For each discrete point on the pathσi there exists a
polygon limiting the allowed region, see Fig. 3. Restrictions
in the end-effector velocityvmax (26) and the joint velocities
q̇max (24) can be rewritten to

zGr = min

q̇2
k,max

q′k
2

v2
max

|z′E |2

 ,

u1,restr
u2,restr
u3,restr
u4,restr

z′Gr,max

z′Gr,min

zmax z

z′

zGr

0

Fig. 3. Restrictions and feasible region

z′

z′max(i, j)
z′max(i, j+1)

z′min(i, j)
z′min(i, j+1)

z(i, j) z(i, j+1)
z0

Fig. 4. Expansion of the feasible region

representing a vertical line in the[z′,z] - plane. Joint acceler-
ations ¨qmax can be taken into account by reformulating (25)
to

z′Gr,min =
2(−q̈k,max −q′′k z)

q′k
(27)

z′Gr,max =
2(q̈k,max −q′′k z)

q′k
, (28)

leading to additional restrictions in the phase plane.
The maximum value ofz in the allowed region, computed
at each discrete pointσi leads to the limiting curvezmax,
serving as basis for the optimization.

C. Bellman Optimization

The calculation of the optimal trend of the velocity profile
z is done with the help of the Bellman optimality principle
[4]

”An optimal policy has the property that whatever
the initial state and initial decision are, the remain-
ing decisions must constitute an optimal policy
with regard to the state resulting from the first
decision.”

Therefore the calculation of the optimal trendzopt starts at
the last pointσE by evaluating the maximum and minimum
allowed values ofz′ (z′max, z′min) with the help of the feasible
region in Fig. 4. At first we discretize the velocity at each
path pointσi into (m+1) valuesz j(σi) with j ∈ (0..m). The
discretized cost function from (22) equals as a consequence

57

z zi+1

σ0 σi σi+1 σn−1 σn = σE Wopt

zi, j
z ′min

z′ max

z′opt

zi,m−2

zi,1

zu

zo

zl

zend

∞ Wi+1

zmax

Fig. 5. Bellman optimization

z

σ0 σi σi+1 σn−1 σn = σE σ

zi, j

zi, j+1z′opt

zend
zstart

zmax

∆σ

Fig. 6. Computing the solution

of the Bellman optimality principle

Wi, j = ∆σ
1

√
zi, j

+Wi+1, j, (29)

where the discretization step size ofσ is ∆σ =σi+1−σi. The
optimal values ofz′ can now be evaluated by calculating the
highest reachable pointzu = zi, j +z′max∆σ and the lowest one
zl = zi, j +z′min∆σ , wherein the minimum of the cost function
has to be sought, as shown in Fig. 5. This minimum search
is done with the method of the golden ratio. With the found
location of the minimumzo, the optimal value ofz′ can be
calculated with

z′opt(i, j) =
zo − zi, j

∆σ
. (30)

As z′opt(i, j) is calculated for every discretization point(i, j)
i = 0. . .n , j = 0. . .m, zopt can be evaluated by solving

zi,opt = zi−1,opt + z′i−1,opt∆σ i = 1..n (31)

with a forward iteration, starting atz0 = zstart , see Fig. 6 for
a graphical interpretation.

As soon as the optimal trenḋσ2
opt is evaluated, the time

behavior ofσ can be calculated by integrating (21)

t(σ) =

σ∫

0

1√
z

dσ (32)

and calculating the inverse function. Therefore the overall
trajectory as well as the feed-forward torques (14) are
defined.

zmax

zopt

ve
lo

ci
ty

pr
ofi

le
z

(s
−

2
)

path parameterσ
0 0.5 1

0

5

10

15

20

Fig. 7. Limiting curvezmax and optimal trend ofzopt

M6

M5

M4

M3

M2

M1

no
rm

al
iz

ed
to

rq
ue

sM
k,

n

time t (s)

0 0.5 1

−1

−0.5

0

0.5

1

Fig. 8. Normalized torques without acceleration constraints

D. Results

The verification of the proposed optimization strategy is
done for a spatial path that interpolates the points

P=

0.6
0.8
0.8

︸ ︷︷ ︸
p0

0.62
0.75
0.8

︸ ︷︷ ︸
p1

0.7
0

0.8
︸ ︷︷ ︸

p2

0.62
−0.75

0.8
︸ ︷︷ ︸

p3

0.6
−0.8

0.8

︸ ︷︷ ︸
p4

. (33)

Fig. (7) presents the limiting curvezmax and the optimal trend
zopt . The corresponding torques, normalized with respect to
the maximum valuesMk,n =

Mk
Mk,max

, are shown in Fig. 8, while
the normalized joint angular velocities can be seen in Fig. 9.

q̇6

q̇5

q̇4

q̇3

q̇2

q̇1

no
rm

al
iz

ed
jo

in
t

ve
lo

ci
tie

s
˙

q k
,n

time t (s)

0 0.5 1

−1

−0.5

0

0.5

1

Fig. 9. Normalized joint velocities without acceleration constraints

58

Comparing Fig. 8 and Fig. 9 one can see, that always one
quantity is in the boundary. In the middle of the trajectory
the joint angular velocity boundary ˙q4,min is active, while in
the rest of the time the torque constraints are satisfied. For
the given path the robot needstE = 1.13s.

V. WAITER-MOTION-PROBLEM

The challenge of the ”Waiter-Motion-Problem” is to addi-
tionally limit the acceleration of an object at the end-effector,
that the stiction holds the object on its position. This sticking
condition can be written as√

Ea2
x + Ea2

y ≤ Eazµ0 (34)

with the accelerations of the object

Ea=
1
2 EJσ z′+ EJ′σ z−AEIg, (35)

whereEJσ is the Jacobian mapping the velocitiesσ̇ to the
velocities of the object.AEI is the rotation matrix from the
inertial system to the local coordinate system of the object
transforming the gravitational accelerationg into this coor-
dinate system. The highly nonlinear sticking condition (34)
can be treated in the optimization procedure by discretizing
the friction cone withϕi =

iπ
2p−1 with i = 1. . .2p−1−1. This

leads to a set of inequalities

|Eax| ≤ Eazµ0 (36)

and ∣∣∣∣−
Eax

tan(ϕi)
+ Eay

∣∣∣∣≤
Eazµ0

sinϕi
(37)

where p denotes the discretization variable. With a higher
value of p the exactness of the discretization raises, but also
the computation time. Proven values arep = 5. . .7. The
discretization leads to 2p−1 linear upper (subscriptu) and
exactly as many lower (subscriptl) boundary conditions

klz+dl ≤ z′ ≤ kuz+du, (38)

where the parameterskl ,dl ,ku,du can be calculated by refor-
mulating (36) and (37) in combination with (35). This set
of constraints, combined with the physical constraints from
(18), yields to a new feasible region in the[z,z′] plane and
the optimization can be performed to get the time optimal
movement for the ”Waiter-Motion-Problem”.

VI. OPTIMIZATION OF THE ORIENTATION

Obviously, a solution for the ”Waiter-Motion-Problem”
with constant end-effector orientation is not time optimal
for the movement of an object. It can be improved by ad-
ditionally optimizing the orientation. For this case, rotations
about the localEx axis by an angleα and rotations about
the local Ey axis by an angleβ are incorporated into the
optimization procedure, see Fig.10 for the definition of the
rotations. The anglesα and β are again parametrized by
splines and discretized withσ . Starting with a constant value
of zero, the optimizer varies the spline interpolation points.
Since the rotations have to be limited, a nonlinear solver that
is able to deal with constraints is necessary. For the solution,
the fmincon function from the Optimization Toolbox within
Matlab is utilized.

Kz

KxKy α

β

Fig. 10. Definition of the anglesα andβ

an
gl

e
α

(r
ad

)

time t (s)

0 0.5 1 1.5 2

−0.2

0

0.2

Fig. 11. Variation ofα over the path parameterσ

VII. RESULTS

The optimization is evaluated again for the path defined in
(33) extended by the orientation variation. Fig. 11 exemplary
shows the time behavior of the angleα. Since a path is
chosen, that passes near the wrist singularity (q5 = 0) of
the robot at time 0.7s, the end-effector velocity decreases
drastically. This can be compensated withα. The following
acceleration and deceleration phase of the end-effector lead
to a variation of the angleα. The corresponding joint
velocities can be seen in Fig. 12 and Fig. 13. The wrist
singularity is indicated by the bounded velocity ˙q4.
From now on, the focus should be on a comparison between
the solutions using constant and optimized orientation. For
the trajectory with constant orientation 2.19s are needed,
while the trajectory with optimized orientation only requires
1.82s. The difference in time between the optimized and
constant orientation is 0.37s which is about 17%. The time
optimal solution of the robot without any object on the tray,
as described in section IV, lasts abouttE = 1.13s. So most of
the time the boundaries for the sticking condition are active,
see Fig. 14 and Fig. 15 for the normalized acceleration of
the object. Due to the multiple discretization of the friction

q̇6

q̇5

q̇4

q̇3

q̇2

q̇1

no
rm

.
jo

in
t

ve
lo

ci
tie

s
˙

q k
,n

time t (s)

0 1 2
−0.5

0

0.5

1

Fig. 12. Normalized joint velocities for constant orientation

59

q̇6

q̇5

q̇4

q̇3

q̇2

q̇1

no
rm

.
jo

in
t

ve
lo

ci
tie

s
˙

q k
,n

time t (s)

0 1 2
−0.5

0

0.5

1

Fig. 13. Normalized joint velocities for variable orientation

no
rm

.
ac

ce
l.a

n

time t (s)

0 0.5 1 1.5 2 2.5
0

0.5

1

Fig. 14. Normalized acceleration on the object for constant orientation

cone (38) the acceleration constraint is exceeded in some
phases, as shown in Fig 15. To counteract this discretization
influence, the value of the dry friction coefficient can be
adapted. A solution for this adaptation delivers Fig. 16, where
µ0 indicates the gradient of the straight line. Adapting the
dry friction coefficient with∆µ results in a change of the
gradient. To ensure that no slippage of the object occurs,µ0

is changed to a value so that the entire curve of the occurring
accelerations lies in the left upper plane. Accepting a higher
calculation time, the value of∆µ0 decreases with increasing
discretizationp.

For the practical implementation on the Stäubli Rx130, a
value of p = 6 yields acceptable results. For demonstration
purposes a comparison of the optimal trajectory with opti-
mized orientation, without optimized orientation but withthe
same cycle time and an optimal trajectory without optimized
orientation is done. As result one can see, the object starts

no
rm

.
ac

ce
l.a

n

time t (s)

0 0.5 1 1.5 2 2.5
0

0.5

1

Fig. 15. Normalized acceleration on the object for variable orientation

ac
ce

le
ra

tio
na

z
(m

s−
2
)

acceleration
√

a2
x +a2

y (m s−2)

0 0.5 1 1.5 2
0

5

10

1

µ0

≈ ∆µ

Fig. 16. Adaption of the dry friction coefficientµ0

sliding in the second case. In cases one and three the
object sticks on the tray, but needs noticeable more time
to overcome the path in case three.

VIII. CONCLUSION

This work is about time optimal path planning for in-
dustrial robots under consideration of various constraints.
As case example the ”Waiter-Motion-Problem” is treated.
To be able to handle this problem a spatial path has to
be defined. A spline parametrization for a set of points
in world coordinates is used. With a transformation of the
equations of motion of the robot into the phase plane, a
time optimal solution is evaluated using the Bellman optimal
principle. The advantage of this method is, that arbitrary cost
functionals can be optimized. So we are not restricted to the
time optimal case. Time/energy optimal solutions are also
of great interest. The method is enhanced by additionally
optimizing the orientation of the end-effector. This leadsto
a significant reduction of the overall motion time.

ACKNOWLEDGMENT

Support of the present work in the framework of the peer-
reviewed Austrian Center of Competence in Mechatronics
(ACCM) is gratefully acknowledged.

REFERENCES

[1] F. Geu Flores, A. Kecskeḿethy, Time-optimal path planning along
specified trajectories. In: H. Gattringer, J. Gerstmayr (eds.): Multibody
System Dynamics, Robotics and Control, 2012, pp. 1-15.

[2] C. De Boor, A practical guide to splines, New York: Springer-Verlag
1978.

[3] L. A. Piegl, W. Tiller, The NURBS Book, 2nd ed. Springer-Verlag
1995.

[4] R. E. Bellman, S. E. Dreyfus, Applied Dynamic Programming, Princ-
ton Univ. Press, 1962.

[5] F. Pfeiffer, R. Johanni, A concept for manipulator trajectory planning,
in IEEE J. Rob. Aut 3 (1987), Nr. 2, pp. 115-123.

[6] H. Bremer, Elastic Multibody Dynamics: A Direct Ritz Approach.
Linz, Austria, Springer-Verlag GmbH, 2008, pp 445.

[7] K. Shin, N. McKay, Minimum-time control of robotic manipulators
with geometric path constraints, in IEEE Trans. Autom. Control 30
(1985), Nr.6, pp. 531-541.

[8] J. E. Bobrow, S. Dubowsky, J. S. Gibson, Time-optimal control of
robotic manipulators along specified paths, in Int J. Rob. Res. 4(1985),
pp. 3-17.

60

Optimal Path-Planning in the Special Case of Ball Throwing Using an
Industrial Robot

Thomas Raukamp, Klemens Springer and Hubert Gattringer

Abstract— This paper presents optimal path planning in the
special case of ball throwing. The task has to be fullfilled by a
standard industrial robot with six degrees of freedom, where-
fore a parameter identification is conducted. For the purpose
of obtaining optimal trajectories fulfilling this exercise, cubic
basis splines are used. A nonlinear optimization considering
physical constraints as well as the launch angle generates the
optimal motion. For the calculation of the balls flight path drag
force is included. Results in simulation and at the real robot
are shown.

I. INTRODUCTION

Nowadays robots are used in industry in almost all fields
of work such as packaging, assembly, welding, measuring,
cutting, etc. An exact path planning is essential in order to
perform a certain task perfectly. In this work, the robot is
used for an unusual task which it has to fulfill. A ball which
is located in the gripper of the robot has to be thrown to
a certain destination, which is outside the robots working
range.
There are already several studies that have dealt with this
topic. Some of these use robots with few degrees of freedom
only, see [1] for example. An extended motion generation
for throwing a ball with a robot with six degrees of freedom
is shown in [2]. In [3] the given task is considered from
a completely different perspective. Two variable impedance
actuators are used in order to drastically extend the throwing
range of the robot approaching human efficiency. Usually
the studies are conducted using self-built robots and cubic
splines for path planning. In [4] an industrial robot is used.
There the flight path is approximated with a parabola. A
trapezoid acceleration profile is used for planning a trajectory
for the robot to a certain release point of the flight path.
In comparison, here a standard industrial robot is used in
combination with cubic basis splines for path planning.
To reach a desired position with the selected object, it is
necessary that it possesses a certain speed and direction
when the gripper opens. In order to minimize the error
between the desired and the reached position an optimization
is performed. Therefore physical constraints as well as the
possible restriction of the launch angle are considered. For
improving the hit rate, the robots unknown parameters are
identified and air resistance is included in the computation

Johannes Kepler University Linz
Altenbergerstr. 69, 4040 Linz, Austria
thomas@raukamp.at, klemens.springer@jku.at,
hubert.gattringer@jku.at
http://www.robotik.jku.at

q1

q2

q3

q4

q5

q6

Fig. 1. TX90L - Sẗaubli

of the flight path.
In Section II the used industrial robot, the modeling process
and parameter identification are presented. The path planning
for the robot trajectory is described in III. Section IV
contains the balls flight trajectory calculation. The nonlinear
optimization is discussed in V. It addresses the cost function,
the constraints and the optimization variables. Section VI
shows results of simulation and evaluation on the real robot.

II. M ANIPULATOR

In the present work, an industrial robot (TX90L) of the
company Sẗaubli is used (see Fig. 1). This robot con-
sists of six axes described by the coordinatesq =
[q1, q2, q3, q4, q5, q6]

T . An overview of the physical limits
of the TX90L can be seen in Table I. At the sixth axis, a
pneumatically actuated gripper is mounted. It is responsible
to transport the ball to the throwing position. To determine
the positionrE(q) and velocity ṙE(q) of the end-effector
a kinematic model is necessary. Additionally a dynamical

61

TABLE I

TX90L - PHYSICAL LIMITS

Axis qmin(◦) qmax(◦) q̇max (◦/s) Mmax (Nm)

1 -180 180 400 42
2 -130 147.5 390 42
3 -145 145 400 17.5
4 -270 270 540 4.5
5 -115 140 475 3.4
6 -270 270 760 2.2

model of the robot is calculated to be able to compute
the drive torques in dependence of the joint angles and its
derivatives, see Subsection II-A. Thus the maximum torques
can be taken into account in optimization.
In the dynamical model a few unknown parameters such
as the mass of the arms and inertia of the motors strongly
influence the resulting accuracy. Therefore the identification
of these parameters is discussed in Subsection II-B.

A. Modeling

The robot is considered as a rigid system withN = 12
bodies, as each of the six axes consists of one arm and one
drive. The equations of motion are calculated according to
[5] with the Projection Equation

N∑

i=1

FT
i

{
M

(
v̇c

ω̇c

)
+G

(
vc

ωc

)
−

(
fes

Mes

)}

i

= 0.

(1)
The variables occurring here are given for each bodyi with
the functional matrix

FT
i =

[(
∂vc

∂q̇

)T (
∂ωc

∂q̇

)T
]T

i

,

the mass matrix

Mi =

[
mE 0
0 Jc

]

i

,

and the gyroscopic matrix

Gi =

[
ω̃cm 0
0 ω̃cJ

c

]

i

,

when using body-fixed coordinate systems. The variablesvci

and ωci in (1) describe the speed and angular velocity of
each body. Furthermore the impressed forcesfesi and torques
Mes

i are introduced. Finally the equations of motion can be
written in minimal description

M(q)q̈+ g(q, q̇) = Q

with Q as vector of generalized forces, the mass matrixM
and the nonlinear termsg.

B. Parameter identification

As mentioned before, an exact model is of great importance
for this task. For parameter identification, see e.g. [6], the

rrd

rE(q)

rrel

r0

Fig. 2. Overall view

equations of motion are now expressed in terms of its
unknown base parameterspB :

ΘpB = Q. (2)

This results in the matrix of informationΘ, the vector of
unknown base parameterspB and the generalized forces
Q. The method of least squares is used to determine the
unknown parameters

pB =
[
ΘTΘ

]−1

ΘTQ. (3)

III. PATH PLANNING

The task of the robot is to move from a given starting point
r0 to the pointrrel where it releases the ball, see Fig. 2.
To plan this path basis splines according to [7] are used.
These have the advantage that the modification of a control
point, the so-called de Boor point, only results in a local
change. With these splines paths are planned for all degrees
of freedomq = [q1, q2, q3, q4, q5, q6]

T of the robot.

A. Cubic B-spline curve

Before a path can be planned with basis splines, it is
necessary to determine the so-called basis functions. These
are calculated using the recursion formula

Nd
j (t) =

t− tj
tj+d − tj

Nd−1
j (t) +

tj+d+1 − t

tj+d+1 − tj+1
Nd−1

j+1 (t) (4)

and

N0
j (t) =

{
1

0

t ∈ [tj , tj+1[

otherwise
.

As cubic basis splines are used with the degreen = 3, the
expressionN3

j (t) is necessary. There arem real valued knots
called ti, with

t0 ≤ t1 ≤ ... ≤ tm−1.

The basis functions span a range[tj , tj+4] of n + 2 knots.
With the specification of control points, the path can be

62

curve 2

curve 1

va
lu

e

time (s)

Cubic basis spline functions

va
lu

e

time (s)

Cubic basis spline curves

4 6 8 10

4 6 8 10

0

0.5

1

1.5

−5

0

5

Fig. 3. Cubic basis spline

calculated. Each control point is assigned to a basis function,
thus the path can be determined by the formula

s(t) =

m−n−2∑

j=0

djN
3
j (t). (5)

In the upper section of Fig. 3 two cubic curves which differ
only at one control point are shown. Obviously, a local
change appears only in this area. The rest of the curve
remains unchanged. In the lower part of Fig. 3 the cubic
basis function and the sum of these are shown. It can be
seen that the sum of the basis functions has to be one what
is described as a local decomposition of one.

B. Orientation

At the release pointrrel the ball should move unaffected by
the gripper with its impressed speed to its desired position
rd. In order to reach this goal the final orientation of the
end-effector has to be adjusted. Thus the angles[q4, q5, q6]
are calculated in dependence ofq1, q2 andq3. The resulting
orientation matrix of this angles is generally

AIE =

a11 a12 a13
a21 a22 a23
a31 a32 a33

and held constant during the whole trajectory at this desired
release orientation. The required angles are obtained with

q6 = atan2

(
a11
a21

)

q5 = atan2

(
sin(q6)a11 + cos(q6)a21

a31

)

q4 = atan2

(−cos(q6)a12 + sin(q6)a22
cos(q6)a13 − sin(q6)a23

)
(6)

ṙ

m

Fd Fg

Fig. 4. Model of the ball

and are hence not optimized so far. The lost optimization
benefit is estimated as significantly small but results in a
faster calculation.

IV. BALL FLIGHT PATH

In order to calculate the flight path of the ball from the re-
lease pointrrel to r, it is necessary to specify an appropriate
model for the ball. This is based on illustration in Fig. 4. In
that case the weight force

Fg = m

0
0
−g

T

,

the drag forceFd and the momentum of the ball are
considered. The principle of linear momentum leads to the
expression

mr̈ = Fd + Fg. (7)

The drag force

Fd = −1

2
cwρAṙ ‖ṙ‖

contains the flow resistance coefficientcw, the density of air
ρ, the velocityṙ of the ball and the surfaceA. This formula
is converted toFd = −mαṙ ‖ṙ‖ with the massm of the
body.α is describing the effect of air resistance. The result
is a mathematical model in state space

ẋ =

ṙx
ṙy
ṙz

−α ‖ṙ‖ ṙx
−α ‖ṙ‖ ṙy

−α ‖ṙ‖ ṙz − g

(8)

with the state vectorx = [rx ry rz ṙx ṙy ṙz]
T , the coordinates

(rx ry rz) and the velocities(ṙx ṙy ṙz) of the ball. Utilizing
(8) and a Runge-Kutta time integrator, the balls flight path
is calculated.

V. OPTIMIZATION

This section discusses the optimization that computes the
path for the robot. Initially, a desired target pointrd is
selected. This is achieved by entering the world coordinates

63

(x, y, z), whereby the robot is in the center of the coordinate
system. The robots working range is divided into four qua-
drants. Using this a suboptimal starting pointr0 is selected in
the opposite quadrant ofrd. An initial trajectory completely
defind by de Boor points is given for the optimization. Except
for the starting point of the optimization these de Boor points
are varied. The optimization affects the flight phase with the
position of the ballr that may approximate the desired target
rd. The distance between the positionsr and rd should be
minimized. Simultaneously certain physical limitations and
other restrictions are considered.

A. Optimization variables

The optimization of the robot trajectory is done in configu-
ration space and now described in more detail. There will
be one path planned for each of the six joint angles. Each
path consists of a starting point andN additional control
points. These are optimized for the axesq1, q2 andq3. The
trajectories for the other axesq4, q5 andq6 are resulting from
the calculated orientation, see Subsection III-B. In this case,
there arem = 3N optimization variables combined in the
vectorc = [d1...d3N]. The starting pointr0 and the control
points inc describe the paths for the jointsq1, q2 andq3.

B. Cost function

In order that an optimization can fulfill this task, a objective
function is set up. The following objective function

min
c∈Rm

1

2
c1 (rd − r(c)) 2 +

1

2
c2

∫ (
QT (t, c)Q(t, c)

)2
dt (9)

is used. The distance between the desired targetrd and the
nearest throwing positionr(c) shall be minimal and require
as little energy as possible. The positionr(c) is obtained
from the flight path of the ball, whereby the shortest distance
to the target

|rd − r(c)| = min
i=1...n

|rd − ri(c)|

is used for the cost function in (9). Therefore the trajectory of
the ball is discretized inn points. Because the criteria may be
weighted differently, the variablesc1 andc2 are demanded.

C. Constraints

It is important to note that different physical limitationsmust
be considered:

qi(t, c) ≤ qmax, i i = 1..6
qi(t, c) ≥ qmin, i i = 1..6
|q̇i(t, c)| ≤ q̇max, i i = 1..6
|Qi(t, c)| ≤ Qmax, i i = 1..6

(10)

These are the limited rotations of the axes, the maximum
joint speeds and the maximum drive torques. As the ball
may be catched at the desired position, a flat and therefore

rrel

ṙz
ṙ

φ

ṙxy

Fig. 5. Launch angle

fast trajectory should be avoided. An additional conditionfor
the launch angle

φ = atan

(
ṙz
ṙxy

)
(11)

(see Fig. 5) is introduced. This launch angle is limited to

25◦ ≤ φ ≤ 65◦.

D. Deceleration path

After the robot reaches the release positionrrel the flight
path of the ball begins. The decelerating trajectory is also
calculated with an optimization. The angle, the angular
velocity and the angular acceleration have to be continuous.
By specifying three control points[d0, d1, d2] this can be
achieved. These points are determined by

d0 = q(tend)

d1 =
∆t1
3

(
q̇(tend) +

3

∆t1
d0

)

d2 =
(∆t2 +∆t1)(∆t1)

6

(
q̈(tend)−

6d0
(∆t1)2

+
(

6

(∆t1)2
+

6

(∆t2 +∆t1)(∆t1)

)
d1

)
(12)

with the difference of the knots∆t1 = t1 − t0 and∆t2 =
t2−t1. The path consists of these three points, andN further
points. Now, a path is planned for all six axes in joint space.
Thus there arem = 6N optimization variables. The used
cost function and the restrictions are

min
c∈Rm

1

2
c3

∫ (
q̇(t, c)T q̇(t, c)

)
dt

s.t. qi(t, c) ≤ qmax, i i = 1..6
qi(t, c) ≥ qmin, i i = 1..6
|q̇i(t, c)| ≤ q̇max, i i = 1..6
|Qi(t, c)| ≤ Qmax, i i = 1..6.

(13)

VI. RESULTS

The optimization was performed for several targets, achie-
ving the same accuracy for each case. Exemplarily the results

64

z
ax

is
(m

)

y axis (m)
x axis (m)

−3
−2
−1

0
1

−3−2−101

0

1

2

3

Fig. 6. Optimization result

of the optimization and performance for one target are shown
in this Section.

A. Simulation

The desired target positionrd is given in meters with the
coordinates (-2.5, -3, 0). Four control points have been
specified for the acceleration as well as for the deceleration
path, thus there are 24 optimization variables. The result of
the optimization is shown in Fig. 6. The red bar shows the
robot in a stretched position. The blue curve denotes the
calculated robot path. The green curve shows the trajectory
of the ball. A black cross marks the desired positionrd. The
initial trajectory results in a shortest distance to the target of
3,023 m. With the optimization a distance of only 0.12 mm
is obtained after 30 iterations, at a launch angleφ of 26.6◦.
The required angle curves and angular velocities are shown
in Fig. 7 and 8.

q6

q5

q4

q3

q2

q1

jo
in

t
an

gl
e
q

(r
ad

)

time (s)

0 0.5 1 1.5
−3

−2

−1

0

1

Fig. 7. Joint angle

q̇6

q̇5

q̇4

q̇3

q̇2

q̇1

no
rm

al
iz

ed
jo

in
t

ve
lo

ci
ty
q̇

time (s)

0 0.5 1 1.5
−0.2

0

0.2

0.4

0.6

Fig. 8. Normalized joint velocity

The necessary drive torques can be seen in Fig. 9. Both
the angular velocities as well as the torques are presented
normalized with respect to the maximum values which can
be seen in Table I.

B. Performance

The optimization is done in MatLab using a SQP optimiza-
tion routine. The resulting trajectory is implemented using
Lookup-Tables. The robot is controlled by a B&R industrial
PC running with a cycle time of 400µs. In Fig. 10 the
throwing sequence is shown. Picture 1 shows the robot in its
starting position with the gripped ball.

In 2 and 3, the robot moves to the release position where
the gripper opens and the ball is thrown. In 4, the robot
has arrived at its final position. In 5-8 the ball moves to the
desired target. The error between the desired and the reached
position is 6 cm in x-direction and 7 cm in y-direction. This
results in a deviation of approximately 2.4 % and 2.3 %.

M6

M5

M4

M3

M2

M1

no
rm

al
iz

ed
to

rq
ue

sM

time (s)

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1

Fig. 9. Normalized torques

65

1 2

3 4

5 6

7 8

Fig. 10. Throw sequence

VII. CONCLUSIONSAND FUTURE WORK

In this contribution path planning for a standard six-axes
industrial robot has been developed using the method of
cubic basis splines. These paths are optimized to throw a ball
to a certain position best possible. Additionally a parameter
identification was done to take the robots physical constraints
into account.
In future work an existing camera system can be used to

determine the desired target position. With two cameras
already mounted on the ceiling, a position can be determined
and passed to the optimization. Furthermore the trajectoryof
the ball can be tracked. This should lead to improvements in
the ball model. Additionally a combination of ball throwing
and ball catching, implemented in [8], is imaginable.

ACKNOWLEDGMENT

Support of the current work within the framework of the
Austrian Center of Competence in Mechatronics (ACCM) is
gratefully acknowledged.

REFERENCES

[1] N. Kato, K. Matsuda, and T. Nakamura. Adaptive control fora
throwing motion of a 2 DOF robot. In Proc. of the 4th International
Workshop on Advanced Motion Control, AMC 96-MIE, volume 1,
1996

[2] F. Lombai: Throwing motion generation using nonlinear optimization
on a 6-degree-of-freedom robot manipulator. In: ProceedingIEEE
International Conference on Mechatronics, 2009

[3] D. J. Braun et al.: Optimal Torque and Stiffness Control inCompliantly
Actuated Robots. In: Proceeding IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2012

[4] W. August, S. Waeldele, B. Hein and H. Woern: Accurate object thro-
wing by an industrial robot manipulator. In: Proceeding Australasian
Conference on Robotics & Automation, 2010

[5] H. Bremer: Elastic Multibody Dynamics: A Direct Ritz Approach.
Linz, Austria: Springer-Verlag GmbH, 2008

[6] W. Khalil and E. Dombre: Modeling, Identification and Control of
Robots. London: Kogan Page Science, 2004

[7] C. de Boor: A practical guide to splines. New York: Springer, 1978
[8] M. Neubauer: A Ball-Catching Redundant Industrial Robot. The 13th

Mechatronics Forum International Conference, Vol. 2, Trauner Verlag,
Linz, pp. 462-468, 2012

66

Abstract— The aim of our project is the development of a new

soccer league for RoboCup Junior. The RoboCup Junior soccer

arena is equipped with two cameras, which are connected to a

computer beside the arena. For processing the data of the

cameras, we use the Vision system of the Small Size League. The

teams are able to send control commands to the robots by using

a Bluetooth connection.

I. INTRODUCTION

 We are second year computer science students at UAS

Technikum Wien. In this paper we highlight the current state

of an on-going project of designing a new soccer league for

RoboCup Junior which aims to solve some of the problems

encountered in the existing leagues.

II. ON ROBOCUP JUNIOR

The RoboCup Organization aims to promote robotics and

AI programming. The ultimate goal of the RoboCup is to

create a human-like soccer team that can beat the human

world champions. In order to reach that goal regional and

international competitions are held to get people invested in

robotics and programming. [7]

The RoboCup Junior as a part of the RoboCup

Organisation is created for young students up to the age of

19. The aim of the RoboCup Junior is to provide children an

opportunity to getting to know the field of robotics. There are

currently three RoboCup Junior leagues: Dance, Rescue and

Soccer [1].

III. MOTIVATION

 In Austria most junior teams mostly use the Lego

Mindstorms platform because it is relatively cheap and easy to

program. However one of the major flaws of this platform is

insufficient sensory input and processing. Most advanced

sensors have to be bought extra and advanced features such

as image processing are simply not available. And while it is

one of the goals of the RoboCup to create new sensors as

well, most teams in RoboCup Junior will not have the

opportunity or ability to do so.

 To counter this we have decided to adapt one of the

existing RoboCup Soccer leagues – the Small Size League –

for use in the RoboCup Junior. While robots in the junior

league have to rely solely on their own sensors and

processors, in Small Size League there are cameras above the

field which track the position of the Robots as well as the ball

and sends it to the team’s computer, where a program

coordinates the robots accordingly. This allows the teams to

focus much more on effective tactics rather than sensor

processing while keeping a low price point and easy setup.

IV. SETTINGS

A. Teams

A team consists of two robots. The team color will be
assigned before the game starts. It can be either blue or
yellow. The team color is equal to the center marker color of
the team pattern.

B. Arena

The playing field has the same dimensions as the field for
the existing junior soccer league which is 183 by 122cm with
an outer area of 30 cm width [3]. Two cameras are mounted
1.6 meters above the field. One camera captures the image of
one field half. The images are then sent to a Computer which
runs the Vision Software for Small Size League [4].

C. Patterns

In order to detect and identify the robots in the arena,
each robot must have a unique pattern. To keep the designing
of the patterns simple, the teams will use the Small Size
League Vision standard pattern. Moreover, there will be also
a given set of possible patterns.

D. Connection

Just like the Small Size League the new league is going to
use the referee box [5] for keeping records of the timeouts,
time remaining, score and penalties. For this reason we will
offer the teams a Java library to receive the commands. For
the connection to the robots, the teams will have to use
Bluetooth. Since we want the teams to concentrate on
programming the AI, we will provide a class to send
commands to the robots and another one to receive those
commands.

V. THE COURSE OF A GAME

Before a game can start each team will be assigned a team
color, which is either blue or yellow. In order to distinguish
the teams, the blue team has to use a pattern with a blue
center marker and the yellow team must have a pattern with a
yellow center marker. Like in the SSL the robots must fit
within a 180mm diameter circle and are not allowed to be
higher than 150mm.

The game will start when the robots are placed within the
soccer arena and the team members are ready to control their
robots with an off-field computer.

A. Robots and ball detection

All objects within the arena are tracked by two cameras,
which are installed in a height of 1.6 meters above the field.

RoboCup Junior Soccer Demo League

Georg Richter, Madeleine Redl, Dawn Alolino, Sandra Dertnig, Alexander Hofmann,

University of Applied Science Technikum Wien

67

Each camera tracks the objects of one field half and is
connected to a computer. The Small Size League Vision
software on the computer processes the camera information
and detects and identifies the objects on the field. The
program sends the detection results via UDP multicast. The
computer and the configured Small Size League Vision
software will be provided for the teams.

B. Receiving detection results

In order to receive the detection information from the
Vision system, it is the task of the teams to create a client
application, which is capable for receiving the UDP packets
from the Vision. Since the packets are encoded using Google
Protocol Buffers [6], the packets have to be parsed before the
information can be read. We will provide the classes for
parsing the packets.

After parsing the received packets, the teams can read the
detection data. The data includes among others the positions
and the directions of the robots and position of the ball.

C. Referee Box

…is a PC program designed to provide a GUI to the
assistant referee, which sends commands to the competing
teams. The referee box will keep a record of the timeouts,
time remaining, score and penalties. [4]

The teams receive the commands of the referee box
continuously via UDP multicast datagrams.

D. Sending commands to robots

We have created a simple Java class to send commands
from the PC to the robots as well as a class for the robots to
receive and process the data coming from the PC. They will
be available for download. However, we do not want to force
the teams to use them because using our Java classes requires
leJOS NXJ.

VI. FUTURE WORK

Our immediate goal for the next few months is to create
two exemplary programs to demonstrate the viability as
RoboCup Junior League. Furthermore we are currently
developing several simple and easy to use interfaces between
the Vision software, the Robots and controlling computer
which would be publicly available. These interfaces will be
based on C++, because it is much more commonly known by
potential RoboCup Junior candidates. This will make it easier
for younger students with little knowledge of Bluetooth or
the underlying Java software to compete in our new league.

REFERENCES

[1] RoboCup Junior Official Web Site.

http://rcj.robocup.org/

[2] RoboCup Small Size League Official Web Site

http://robocupssl.cpe.ku.ac.th

[3] RoboCup Junior Soccer Rules as of 2013

http://rcj.robocup.org/rcj2013/soccer_2013.pdf

For field size see ‘3.2 Dimensions of the field’ and ‘Field diagram’

[4] RoboCup Small Size League Shared Vision System.

http://robocupssl.cpe.ku.ac.th/sslvision,

https://code.google.com/p/ssl-vision/

[5] RoboCup Small Size League Referee Box.

http://robocupssl.cpe.ku.ac.th/referee:start

[6] Google Protocol Buffers

https://developers.google.com/protocol-buffers/?hl=de-DE

[7] Official RoboCup Web Site

http://www.robocup.org/

68

Abstract— Automated packaging is becoming more and more

interesting for production sites. Unfortunately, in many

industrial companies, the packaging process is still performed

by a human workforce, resulting in workplaces that are

dangerous, tedious or non-ergonomic. Many solutions have

been introduced to improve the packaging process, but most of

them most of these processes only include small and light goods.

In this paper, solutions from a research project are presented

that support the human worker while packaging mid- to

uppersized electronic consumer goods. These solutions include a

compliant robot that assist the human in lifting the heavy

object, a surveillance and worker assistant system that support

the worker during the packaging system and finally, a flexible

gripper that enables the grasping of objects of different shape

and size.

I. INTRODUCTION

The handling and manual packaging of heavy goods is an
exhausting task for human workers. Therefore, it is desirable
to develop solutions for supporting the manipulation of these
goods. This can be done with gravity compensating handling
aids or even by an automatic manipulation system. Such a
system should not only be capable to manipulate heavy goods
safely also in the presence of human workers, but also be
flexible in a way to be easily adaptable to handle new or
similar goods. Furthermore, the system should support the
worker as good as possible, which includes also assistance for
inexperienced users.

The close linkage of human and machine in cooperative
production tasks should make use of the strengths of both
sides. Typically, an automated assembly system provides a
couple of advantages such as operation without breaks and
fatigue and high productivity for simple assembly tasks.
Today, especially for the assembly or packaging of heavy or
bulky parts, weight compensators/balancers are used. Since
these systems do not compensate for inertial forces, even
small mistakes lead to work-related injuries (lower back pain,
spine injuries). According to the statistics of the Occupational

*Research supported by European Union.

Martijn Rooker, Alfred Angerer and Andreas Pichler are with

PROFACTOR GmbH, Im Stadtgut A2, 4407 Steyr-Gleink, Austria (+43

(0)7252 885-313; fax: +43 (0)7252 885-101; email: {martijn.rooker,

alfred.angerer, andreas.pichler}@profactor.at).

Frank Wallhoff is with Jade Hochschule, Germany (e-mail:

frank.wallhoff@jade-hs.de).

Jürgen Blume and Alexander Bannat are with Technische Universität

München, Germany (e-mail: {blume, bannat}@tum.de)

Paolo Ferrara is with Ferrobotics Compliant Robot Technology GmbH,

Austria (paolo.ferrara@ferrobotics.at).

Aitor Olara is with Tekniker, Spain (e-mail: aitor.olara@tekniker.es).

Janne Kiirikki is with VTT Technical Research Centre of Finland (e-

mail: janne.kiirikki@vtt.fi).

Safety & Health Department (OSHA) of the US Department
of Labor [1], more than 30% of the European manufacturing
workers are affected by lower back pain which brings in
enormous social and economic costs.

The paper is organized as follows: Section II gives an
overview of different human-robot assistance systems and
packaging systems that are available in research and industry.
In section III, different technologies that are developed for a
flexible packaging cell are introduced and described how they
can support the human worker during the packaging process.
Section IV provides information about process improvements
that the developed components can provide to the human
worker and finally section V summarizes and concludes the
paper.

II. STATE-OF-THE-ART

A. Assistance Systems

Today’s human-robot collaboration is affected by a
separation of the human worker and the robot. The worker
programs the robot or controls it from a distance using a
teach-in panel. This allows for offline and static tasks to be
executed. To ensure safety, the workspaces of humans and
robots are strictly separated either in time or space [2]. In the
automotive industry for instance, human workers are
completely excluded from the production lines where robots
execute assembly steps. Industrial robots are not yet
integrated along human workers in assembly line
manufacturing.

In general, co-operation between humans and industrial
robots is emerging more and more in many research areas.
Main topics in these research areas are human-machine
interaction as well as safety requirements, issues and union
decrees [3]. In some industrial applications, mobile platforms
with a mounted industrial arm are used for robot co-operation
(e.g. welding processes) [4]. For the handling of heavy work
pieces in an automated production environment, concepts of
human-robot co-operation are developed, in which an
industrial robot hands over heavy loads (e.g. rear axle gear
unit) to the worker [5]. The robot Baxter [6] is also designed
to help in manipulation tasks and it can safely interact with
humans and can perform repetitive production tasks very
easily, but it is not capable of lifting very heavy goods. In the
following a short overview about related assistance systems
and packaging approaches is presented. Krüger et al. [7]
provide a very exact overview of the state of the art in human-
robot collaboration.

Industrial applications of human-machine co-operation are
mainly to be found in automotive industry. Intelligent
automation devices (IAD) which supports the worker in

Flexible Assistance System for Packaging Electronic Consumer

Goods using Industrial Robots*

Martijn Rooker, Alfred Angerer, Frank Wallhoff, Jürgen Blume, Alexander Bannatt, Paolo Ferrara,

Aitor Olarra, Janne Kiirikki, Andreas Pichler

69

assembly tasks such as axle sequencing, cardboard blank
handling, engine block handling, and transmission sequencing
have been introduced in the industry. This IAD technology
was originally developed by the US Company Cobotics in
2003 and is based on fundamental research done by Colgate
and Peshkin [8]. Further research for so-called amplifying
assist devices (IPAD) was done by Fraunhofer IPK [9].

Finally, augmented reality (AR) technology is studied in
many research projects for usage in industrial applications as
an assistance system. In [10], the AugAsse system is
developed through which a worker can see additional
graphical information superimposed on his/her view of the
real world. Graphical instructions, text/symbols and virtual
objects are used for advising the worker with the assembly
tasks. In [11] gestural interaction functionalities were
implemented to support hands-free walk-through in assembly
instructions. In [12] a multi-modal virtual and augmented
reality assistance system is created for improving training
skills of workers in maintenance and assembly tasks.
Similarly, in [13] a user is provided with augmented reality
instructions for maintenance of a printer. Further work
conducted in [14] is applying augmented reality for user
training, programming and operation, and service and
maintenance of an industrial robot.

B. Packaging

Packaging has been a huge part of the production industry.
Many products are delivered to the customer in a packaged
form. Various packaging approaches are applied in the
industry nowadays. In many companies the human workforce
is still very large, especially in low wage countries. People are
standing along conveyor belts and placing the objects inside
their package. As this work is very tedious and in many
situations also not very ergonomic, more and more companies
are moving towards automated packaging. In 2010, the
number of robots sold worldwide for packaging increased
considerably from 232 units to 653 units, accounting for a
share of 4% of the total supply of robotics units sold [15].
Nowadays, almost all robotic suppliers are providing their
own solutions for robotized packaging. One of the most well-
known packaging systems is the FlexPicker

TM
 developed by

ABB [16].

The CustomPacker project [17] develops a customizable
and flexible packaging cell for mid- to uppersized electronic
consumer goods using industrial robots. The goal is to team
humans and industrial robots, combining both the skills of the
robot and the human worker in order to box large and heavy
consumer goods. Furthermore, introducing a universal robot
assisted packaging cell, the number of packaging cells can be
reduced, while simultaneously allowing for boxing of
different product variants without huge reconfiguration costs.

III. ASSISTIVE TECHNOLOGIES

Within the CustomPacker project many different
technologies are developed that assist the human worker
during the packaging process. The goal is to improve the
packaging process on the levels of throughput, but especially
on creating green work places, alleviating the human worker
from stressful, repetitive and dangerous situations. In the
following sections some of the assistant technologies will be

introduced. Furthermore it will be clarified how the
technologies can be of advantage to the human worker.

A. Robot Assistant System

Within the concept of the CustomPacker packaging cell,
an industrial robot needs to work together with a human
worker in the same work place safely, efficiently and
interactively. Various compliant robots are already available
on the market like the UR10 [18] from Universal Robots A/S,
which is capable of handling up to 10 kg, or the KR 5 SI [19]
from MRK Systeme GmbH, which is DIN EN ISO 13849
certified and can handle up to 5 kg. Unfortunately, electronic
consumer goods can reach weights of up to 30kg or more,
therefore a new compliant robot and control has been
developed within the project.

1) Compliant Robot

The compliant robot comprises of a vertical elevation
axis, a compliant modular arm operating horizontally (like a
“scara” arm) and a “soft” actor/sensor element called active
contact flange. Figure 1 depicts the modular compliant arms
with the contact flange. All components are built together in a
modular way, and designed in different sizes, to cope with
different customer needs.

Figure 1: Modular compliant arm (without vertical axis)

Special focus was given to safety needs due to the planned
human robot collaboration. The goal to raise rather heavy
loads still being safe, led to the compromise of dividing
movements into vertical (dangerous) and horizontal (safe)
ones. Vertical forces are high; therefore this movement has to
be done, where the human is not present (almost in automatic
mode). Horizontal forces were held low, to guarantee an
intrinsic safety. It was also decided to make the robot
“switchable” to a passive mode, where the human can use it
like a manipulator or as a force feedback element. Here safety
is also intrinsic.

The horizontal movement is driven by very low-power
motors. Due to the scara kinematic, it is only needed to
overcome inertia, friction in bearing and gears, but not the
weight, which is held by the vertical structure. This provides
already a basic safety. The joints are also provided with a
viscoelastic coupling. This allows moving the arm slightly,
even if the breaks are activated, by pushing it with an external
force.

Starting from such physical measurements, different risk-
minimizing measures can be induced. In case of a collision an
overload can be detected comparing the displacement of the
coupling with the motor moments arising from mechanic and
dynamic calculations to follow the predefined collision free
path. In case of a detected collision, drives can be switched
off or braked.

70

Thus if a person should be clamped by the machine, the
elasticity in the joints allows a self-liberation adding further
safety.

To further mechanically reinforce the flange and reduce
risks, an external parallel mechanism was applied (see Figure
2). The mechanical springs compensate the gripper weight.
Therefore not the whole payload of the gripper will act on the
workers hands, but only the weight of the object that is being
handled (even in case of software failure of the flange).

Figure 2: Mechanical flange reinforcement

2) Path Planning

The manipulation planner creates the collision-free path
needed for the robot to move its arm to the object that needs
to be grasped. The detection of the object to be grasped is
described in a later section. The planner is further responsible
for creating the path needed for simulating the robot
movements. The calculated path is also translated into a
robot-specific programming language.

Before a detected object can be grasped it needs to be
prepared, which happens offline. In this preparation phase,
grasping points are positioned on the CAD model of the
object. Based on the identified grasping points, the planner
collects all possible grip poses of the recognized object. Using
an Inverse Kinematics (IK) solver all the grasping points are
considered for a collision free path. This is done by checking
the geometry of the robot with the attached gripper to all
static geometries of the robot work cell by using simplified
CAD models. The following checks are performed for
collision-free paths:

• Verification if the IK solution of the grip pose is
collision-free;

• Determining if the direct path from the home
position to a fixed distance above a grip pose, the so-
called pre-grip point (PGP), is collision-free;

• Determining if the direct path from the PGP to the
grasp point is collision-free;

• In the last step, the planner also checks if the reverse
path (same as the grasping point, only vice versa) is
collision-free. Here the difference is that the grasped
object is now dynamically attached to the gripper.

When a collision-free path is found, the path planning
algorithm writes a robot-specific movement file, which is then

executed by the robot. In the CustomPacker project the robot
is a compliant SCARA robot. The reachability is very
constrained, because the gripper cannot have a transformation
with an x- or y-rotation (with respect to the robot base). The
planner aligns a tilted xy plane to the xy play of the robot (if
this plane is not extremely tilted) before doing an inverse
kinematic on the transformation of the grip or pregrip point.

B. Worker’s Surveillance and Assistant System

The assistance system is designed to help the human
worker fulfill his dedicated task for new product variants to
be manipulated.

Figure 3: Worker’s Assistant consists of two main modules

1) Worker’s Surveillance
Although the robot system is intrinsically safe, it should

still avoid collisions that may occur between the system and
the human worker. A surveillance system is integrated within
the workcell, which consists of a camera system (Microsoft
Kinect) and a capacitive sensor mat, which is installed on the
floor of the cell. These devices enable the workcell to identify
the position of the human worker.

The Kinect sensor produces a wireframe model of the
human body. It directly calculates the position of the tracked
body in world coordinates. By calibrating the cell coordinate
system with the Kinect coordinate system, the position of the
worker becomes available from the Kinect data.

The capacitive sensor mat gives sensor data when objects
are moving or standing on the shop floor. Since the sensors on
the mat have a specific pattern, the position of the data
producing objects can be directly calculated. Together with
the Kinect data, the surveillance system is capable of
delivering estimates about the workers position within the
cell.

Based on the worker position data, the activity of the
human worker can be estimated by using the available
workflow information about the packaging process. With a
rule-based approach, relevant positions are combined with the
workflow information. These rules are used as event-triggers
for estimating the current worker action. For example, if
required packaging material is stored at a specific location,
the worker has to fetch this material. By entering and
afterwards leaving this area, the surveillance logic produces
the event fetch item from this observation. The workflow
execution control can react on this event and trigger the next
step.

Workflow Execution Control

Worker’s Interaction

Human Surveillance Assistance System

71

2) Worker Assistance System

The assistance system is designed to help the worker
fulfill his dedicated tasks for new product variants to be
manipulated. The system is equipped with two modalities for
supporting the worker. It features a visual and an acoustic
information channel. A projection unit mounted above the
worker’s cell uses projected light patterns to guide the worker
to important areas in the cell or highlight regions relevant to
perform the next step.

The assistance system breaks the packaging process down
into elementary steps that the worker has to perform, using
different auxiliary devices. Packaging processes will be
represented in a form of symbolic actions sequences. The
product that needs to be packed is recognized by the system in
the production line. The packaging instructions are then
retrieved from a database using the product ID. The product
needs to be identified in advance so that the human worker
has sufficient time to prepare the correct packaging box and
material for the product before the product arrives at the
packaging station. The detailed instructions consist of
sequential elementary phases the human worker has to follow.
The human worker packs the product correctly and in the
planned time using the instructions given by the assistance
system.

The worker is monitored through the Kinect sensor and in
addition to the worker location, his hand locations are also
used to deduce whether he has completed some tasks or not.
To assist the worker, the system spotlights the location of the
next pick and place operation. Additionally acoustic
instructions are given. In Figure 4, the projection of this unit
is highlighting the region marked in green light. In this
example, the worker has to place the cardboard box on the
conveyor belt at the marked spot. Once the worker reaches the
region, he also receives further instructions via speech,
generated by the assistance system. Trained workers, who are
already used to the required process can reduce the level of
information presented by the system, or choose to even turn if
off completely.

Figure 4: The assistance system is providing instructions and light patterns

(green light on the shop floor) to guide the worker.

C. Flexible Gripping Assistance System

All components defined so far support the human worker
during the packaging process and increase the ergonomics.
The flexible gripping concepts not only support the human

worker, but also increase the flexibility of the system and
enable the packaging of various electronic consumer goods.

1) Object Pose Recognition

The object pose recognition concept relies on a 3D surface
scan of the object to be grasped. Therefore, the software
ReconstructMe [20] is used to generate an accurate 3D
surface model of the object to be grasped. The ReconstructMe
system consists of a depth image input device (e.g. the
Microsoft Kinect or Asus Xtion), a computer for the
calculation of the 3D surface and visual feedback to the user.
For 3D surface reconstruction, the user takes the depth image
input device in his hand and films the object from different
viewpoints. The 3D surface model is captured in real-time, at
approximately 30 fps. The real-time capability is achieved
through calculation with the GPU, which provides data
parallel execution.

ReconstructMe reconstructs a copy of the surface via a
truncated signed distance function (TSDF). TDSF represented
by a union of volume grids with a configurable size in both
dimension extensions (x, y, z) and grid size. Thus, the 3D
reconstruction is limited to the size of the volume, and the
accuracy can depend on the grid size. Each depth image frame
of the input device is integrated via the TSDF into the
volume. Since the camera can move around freely, the
position of the camera has to be tracked relative to the
volume. Therefore, the previous depth images and the current
one are transformed to point clouds in the camera coordinate
system and aligned by a high speed version of the Iterative
Closest Point (ICP) Algorithm. Once the reconstruction is
finished, a triangulated model can be exported using the
marching cubes algorithm [21].

Figure 5: Setup for constructing CAD models of unknown objects with

ReconstructMe

Figure 6: Reference scan of the TV-set with ReconstructMe

72

2) Flexible Gripper

The flexible gripper is developed based on the concept of
a hybrid solution between deformable end-effectors and
grippers with a high number of DOFs.

On the one hand, three independent linear stages provide
adaptability to very different size parts, from under 100 mm
to up to 1000 mm. Moreover, these stages enable the gripping
in four different directions, so that gripping can be performed
from both the outer and the inner side of the parts, as depicted
in Figure 8.

Figure 7: Mechanical arrangement of the flexible gripper

Figure 8: Gripping from outside and from inside

On the other hand, a very compliant contact area

implemented passively with an elastomeric pad assures good

adaptation to small features of the part.

IV. PERFORMANCE EVALUATION

During the setup of the demonstrator, a particular
packaging cell setup was constructed in the lab at the
Technical University Munich, to have a first reference value.
This is because the final cell layout may be very variable,
depending on precise customer requirements. Relevant
elements and tasks to be tested and evaluated at subsystem
level are:

• The worker recognition (detection, localization,
activity recognition, …)

• The worker assistance system

• The 3D vision and path-planning system

• The robot (moving and grasping)

Components were first evaluated separately at subsystem
level and then combined to the overall demonstrator, to
measure the system performance.

A. Worker recognition

For the evaluation at the component level, the different
partner performed first evaluation tests at their own sites to
gain insights in the technologies.

Detection of the position (center of gravity) of one worker
(general measurement, not in relation to a specific task), with
the assistive capacity mat has an accuracy of 250mm and the
Kinect Sensor provides a depth image of 10-40mm, which

results in a pose estimation accuracy of up to 100mm. Here
the following potential error sources have to be taken into
account that the position on the capacity mat is highly
dependable from the sensor based measurements and that the
Kinect is influenced by reflections, infrared light sources and
occlusions. The number of recognized events (worker
changes from one activity position to the next one) in respect
to the total expected events has been evaluated. During the
observed packaging cycle, 11 different events (packaging of
object, placing of boxes, etc.) have to be recognized. For this
evaluation 165 events were generated by one expert user and
two novice users:

• Using the capacitive sensing mat > 95% of all events
were recognized correctly

• Using Kinect, no restriction in clothing occurred.
Direct sunlight might disturb the depth tracking.
However, in the presented setup, this was not
observed. The Kinect was tested, but finally not
chosen for further measurements, due to occlusion in
front of the conveyor.

B. Worker Assistance

The worker assistance system has been evaluated so far

only by having students learns and complete the work cycle

either with giving them paper instructions, or by being

guided with the worker assistance system. As the test sample

was small (<10), the results are mostly qualitative from

notions taken from observing and comments from the would-

be-workers. The cycle time with the worker assistance

system was significantly slower (around +40% to cycle

time), but this can mostly be explained by the fact that the

assistance system gave all instructions by vocalizing them,

and this took a couple of seconds for each work phase.

In comparison, the written instructions were very short

and did not consume much time. This could be different

having a greater set of different and more complex activities.

The test workers that completed the work cycle with the

assistance system seemed to like the system for helping them

learn the work cycle, but a general comment was that it is too

repetitive to have the system constantly helping them.

Further comments were also that the assistance system would

be good for packing various products and for processes with

variances in the workflow. The next step is to test with real

employees from end-users, which will require further

integration and teaching material.

C. 3D Object Recognition and Path-Planning

For the standalone object recognition of the part to be

grasped, the accuracy has been calculated (without a

reference to the robot system). Within the different

measurements, a maximum error of 4mm has been measured

with respect to the borders of the object to be grasped. Using

these results in the path planning measurements, no errors

have been detected in the collision-free planning during the

test cycles if the position and orientation of the object is

relative similar to the reference model. The ranges are about

+/- 150 mm translation in all directions and +/- 20°

orientation.

73

D. Gripper and Robot Performance

Several tests have been carried out to check the gripper

performance. On the one hand, the available strokes and

distances between the fingers have been checked, resulting in

140mm and 820mm strokes for short and long stroke stages

respectively. Gripping force measurements have been carried

out locking force transducers between the fingers. The

obtained results for maximum forces are in the range of 540

+/- 20N range. On the other hand, force control within 3% of

the maximum forces has been achieved, which enables fine

force control for gripping applications. The reliability of the

gripper has been checked by means of long time gripping.

Trials of around 5 hours part holding have been successful.

Finally, the gripper has performed successfully gripping

lightweight parts like a 40x300x200 mm cardboard box, as

well as 30kg and 46” TV sets.

Finally, the robot functional parameters are evaluated and

provide a gripping precision of 2mm (with a +/- 1mm repeat

accuracy). A switch between automatic mode and gravity

compensation mode is integrated enabling different

interaction modes. Measurements of max speed resulted into

velocities of 100mm/sec in the vertical direction and

300mm/sec in a horizontal direction.

V. CONCLUSIONS

The packaging industry is looking more and more at

approaches for optimizing the packaging process and

providing humans with ergonomics enhancements. This paper

introduced different assistant technologies that have been

developed within the CustomPacker project to assist the

human worker and improve the ergonomics in the workcell. A

compliant robot has been developed that supports the human

worker during the packing process, where the robot takes care

of the lifting of the heavy part. Furthermore, a surveillance

and assistant system has been developed that tracks the

human and with augmented reality teaches new workers the

packaging process. Finally, a flexible gripper with object

detection technology is developed that enables the grasping of

objects of various weight and shapes.

Concluding it can be mentioned that the functionality of

the single modules fulfills the requirements (at demonstration

level), although first test regarding the performance of the full

demonstration was over the goal (107 instead of re quested 90

sec per cycle). But due to the high remaining time buffer for

the human as well as for the robot (human is paused for 37

sec per cycle, robot for 42 sec), the expected results in the

industrial setup are very promising.

ACKNOWLEDGMENT

The authors would like to thank all partners of the project

for their support. This research project is supported by the

European Commission under the 7th Framework Programme

through the ’Factories of the Future’ action under contract

No: PPP-FoF-260065.

REFERENCES

[1] Occupational Safety and Health Administration, [Online]. Available:

http://www.osha.eu.int. Last accessed: March 2013

[2] DIN EN 775 (1993): Manipulating industrial robots – Safety. Beuth

Verlag GmbH, Berlin, Germany. 1993

[3] Bischoff, R., Schmirgel, V., Suppa, M., „The SME Worker’s Third

Hand“, SME Project. [Online]. Available:

http://www.smerobot.org/index.php. Last accessed: March 2013

[4] Hägele, M., Helms, E., “rob@work: der Assistenz der Zukunft -

Mobile Assistenzroboter in der industriellen Fertigung”, Fraunhofer

IPA, [Online]. Available: http://www.care-o-

bot.de/english/RobAtWork.php. Last accessed: March 2013

[5] Schraft, R.D., Meyer, C., Parlitz, C., Helms, E., „PowerMate – a safe

and intuitive robot assistant for handling and assembly tasks“, IEEE

International Conference on Robotics and Automation 2005 (ICRA

2005), pp. 4085-4090, April 18-22, 2005

[6] Robot Baxter: A unique robot with unique features [Online].

Available: http://www.rethinkrobotics.com/index.php/products/baxter.

Last accessed: March 2013

[7] Krüger, J., Lien, T.K., Verl, A., „Cooperation of Human and Machine

in Assembly Lines“, CIRP – Annals, Vol. 58, No. 2, 2009

[8] Colgate, J.E., Wannasuphoprasit, W., Peshkin, M., “Cobots Robots for

Collaboration with Human Operator”, Proceedings of the ASME

Dynamic Systems and Control Division, DSC, Vol. 58, 58, pp. 443-

440, 1996

[9] Thiemermann, S., Schraft, R.D., „team@work - Mensch-Roboter-

Kooperation in der Montage“, In: Automatisierungstechnische Praxis

atp: Praxis der Mess-, Steuerungs-, Regelungs- und

Informationstechnik 45, Nr. 11, pp. 31-35, 2003

[10] Salonen, T., Sääski, J., Hakkarainen, M., Kannetis, T., Perakis, M.,

Siltanen, S., Potamianos, A., Korkalo, O. and Woodward, C.,

“Demonstration of assembly work using augmented reality”, ACM

International Conference on Image and Video Retrieval (CIVR2007),

Amsterdam, The Netherlands, July 9-11, 2007

[11] Siltanen, S., Woodward, C., Valli, S., Honkamaa, P. and Rauber, A.,

“User Interaction for Mobile Devices”, In: P. Maragos et al. (Eds.).

Multimodal Processing and Interaction. Springer, 2008, pp. 314-318

[12] Gutiérrez, Teresa; Gavish, Nirit; Webel, Sabine; Rodríguez, Jorge;

Tecchia, Franco in Bergamasco, Massimo (Ed.): Skill training in

multimodal virtual environments, Boca Raton/Fla.: Taylor & Francis,

2013 (Human Factors and Ergonomics), ISBN: 978-1-4398-7895-8,

p.227-239

[13] Steven Feiner, Blair Macintyre, and Dorée Seligmann. 1993.

Knowledge-based augmented reality. Commun. ACM 36, 7 (July

1993), 53-62. DOI=10.1145/159544.159587

http://doi.acm.org/10.1145/159544.159587

[14] Bischoff, R.; Kazi, A., "Perspectives on augmented reality based

human-robot interaction with industrial robots," Intelligent Robots and

Systems, 2004. (IROS 2004). Proceedings. 2004 IEEE/RSJ

International Conference on , vol.4, no., pp.3226,3231 vol.4, 28 Sept.-

2 Oct. 2004 doi: 10.1109/IROS.2004.1389914 URL:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1389914&i

snumber=30278

[15] World Robotics 2011 Industrial Robots, ISBN 978-3-8163-0635-1,

published by the IFR Statistical Department, hosted by VDMA

Robotics + Automation, Germany

[16] ABB FlexPickerTM, Access Date September 2012. [Online].

Available:

http://www.abb.com/product/seitp327/cf1b0a0847a71711c12573f4003

7d5cf.aspx. Last accessed: March 2013

[17] CustomPacker – Highly Customizable and Flexible Packaging Station

for mid- to upper sized Electronic Consumer Goods using Industrial

Robots. [Online]. Available: http://www.custompacker.eu. Last

accessed: March 2013

[18] Universal Robots, “Collaborative Robot Solutions”. [Online].

Available: http://www.universal-robots.com/GB/Products.aspx. Last

accessed: March 2013

[19] MRK-Systeme GmbH, “KR 5 SI (SafeInteraktion)”. [Online].

Available: http://www.mrk-systeme.de/e_produkte_interaction.html.

Last accessed: March 2013

[20] ReconstructMe, “Digitalize your world”. [Online]. Available:

http://www.reconstructme.net. Last accessed: March 2013

[21] Lorensen, W.E., and Cline, H.E., “Marching Cubes: A high resolution

3D surface construction algorithm”, In: Computer Graphics, Vol. 21,

Nr. 4, July 1987

74

HOTINT - a Free Flexible Multibody System Simulator for Robotics
Applications

Martin Saxinger1, Peter G. Gruber1 and Johannes Gerstmayr1

Abstract— In this article the multibody dynamics simulator
HOTINT is presented, with particular emphasis on its features
for dynamics simulation of robots. Many freely available tools
for robotics simulations are based on the idealized kinematics
of the robot and a minimal set of coordinates is utilized for
the description of the motion. Thus, joints as well as links
are usually modeled as rigid bodies. HOTINT is based on a
redundant coordinate multibody system dynamics formulation,
which allows to model each link as rigid or flexible body and
to interconnect the bodies with rigid or flexible links. The
underlying formulation is not based on minimal coordinates,
which could model the joint angles and translations directly.
Thus, powerful actuators and sensors are available in order
to make these coordinates accessible. Finally, the control and
power electronics part of the robot can be defined by means of
port-blocks, which connect sensors, actuators and loads. During
the solution process, the whole scenery is visualized in 3D
during simulation, which allows close-to-realtime applications.

I. INTRODUCTION

In order to study and optimize the performance of nowa-
days high-speed and low-weight robots, flexibility in joints
as well of the links needs to be included. A coupled analysis
of all parts, including the drive train, the power electronics
and the feed-forward and feed-back control algorithms.

Commercial multibody and multiphysics simulation en-
gines are extremely powerful and costly. Furthermore, the
complexity of simulation packages requires experts in order
to be able to model complex mechatronics systems. An
automated model generation and evaluation procedure (e.g.
driven by an external optimization program) is difficult to
be set up. A drawback of commercial software especially
designed for robotics simulation, is that most codes are
designed towards kinematic analysis, contact detection, en-
ergy consumption, path planning, etc., but not regarding
deformable links, flexible joints or more advanced mecha-
tronical components. the Virtual Robot Experimentation Plat-
form (V-REP) [1], which is free for academic purposes, the
Microsoft Robotics Developer Studio [2] and others.

In robotics simulation, there are many freely available
tools for specific tasks of the simulation. Many of these
codes are either an extension of physics engines for graphical
visualization or based on standard kinematics or minimal
coordinate dynamics formulations. The latter approaches
cannot be extended in a straightforward manner to model
more complex behavior, e.g. flexible joints or a sliding joint

1All authors are with Mechanics & Model Based Control,
Austrian Center of Competence in Mechatronics (ACCM), Linz,
4040, Austria, Email: martin.saxinger, peter.gruber,
johannes.gerstmayr at lcm.at

along a deformable body. Examples of free software tools
are e.g. dVC3d, ORCA-Sim, SimRobot, OpenHRP3.

In this paper, the simulation of the dynamic behavior
of robots shall be based on flexible multibody dynamics
simulation. The C++ multibody dynamics code HOTINT
has been designed for this purpose and various realistic
robots have been simulated [3], [4]. As a main feature -
in comparison to many other available freeware - a complete
reference manual of each object is provided for the user. The
purpose of this approach is

• understanding the influence of flexibilities of joints and
links [3]

• studying the influence of friction and clearance [5]
• automated identification of unknown parameters [4]
• reduction of vibrations due to appropriate path planning

and feedback control strategies
The current version V1.1 includes components such as
point mass, rigid bodies, flexible (large deformation) beam
elements, complex point-based joints, classical mechanical
joints, port-blocks for mechatronics applications and many
other features such as loads, sensors and graphical objects.
Furthermore, 3D (online) graphical visualization is integrated
and helps to reduce modeling errors.

The user can create and modify a model in the multibody
system code either by means of a text input script file or
directly in the graphical user interface. The script-language
of the text input file is designed for simple manual model
definition and is sketched within the present paper. A full
documentation is available, including a reference manual to
each object and the usage of the script language.

HOTINT is currently released under the permissive free
BSD 3-clause software license. It is planned to include
further important features in the near future.

A short overview on the structure of the code is given
in Sec. II. In Sec. III particular emphasis is given on how
to model robotics applications. A a short example model
(written in the script language) is outlined in Sec. IV.

II. STRUCTURE OF THE CODE
The core part of HOTINT is based on a High Order

Time INTegrator, which is a time integration library for
differential algebraic and discontinuous equations. Now, it
should serve as a versatile simulation tool for complex
mechanical and mechatronical applications throughout nu-
merous industrial and scientific projects [6]. Particularly
applications in robotics and control (see, e.g., [5], [3], [7],
[8]) have shaped the simulation library over the years. In
the following section, a short overview on the structure of

75

the freeware is presented. For more detailed information the
interested reader is referred to the complete reference manual
[9], which can be downloaded together with the software at:
www.hotint.org

The software consists of several independent core mod-
ules, each of which are implemented in separate C++ li-
braries. The most significant of those are summarized in the
following paragraphs:

a) Multibody system (MBS) kernel: links objects and
performs assembling of the global system; handles options
and solver settings; calls and interacts with the numerical
solvers (cf. Sec. II-B).

b) Object library: contains all available objects (cf.
Sec. II-C).

c) Numerical Solvers: are provided for six different
computation modes (cf. Sec. II-D).

d) Mathematical libraries: covers basic linear algebra
(dense and sparse) functionality and data structure.

e) Graphical user interface (GUI): manages all com-
munication with the user; provides a 3D-visualization via
an OpenGL front end; offers tools for model creation and
manipulation, and a plot tool for sensor values, see Fig. 2.

f) Script Language: enables enhanced model program-
ming, and provides a hierarchical data structure for parame-
ters and solver settings (see Sec. III-A).

A. Equation structure of HOTINT

The equations of motion for mixed 1st, 2nd order and
algebraic equations can be written in semi-implicit form as

M (u,v,x, z) ü = F2(u,v,x, z)
ẋ = F1(u,v,x, z)
0 = G(u,v,x, z)

(1)

with u as the vector of generalized coordinates for 2nd
order ODEs (e.g. mechanics). For more details see [10]. The
vector x represents the generalized coordinates for 1st order
ODEs (e.g. hydraulics, control,...) and z are the algebraic
variables of the system. The variable v is a acronym for u̇. M
denotes the mass matrix (possibly nonlinear) and the vector
F2 denotes the right-hand side of the 2nd order equations.
F2 includes elastic and external forces as well as damping,
gyroscopic terms and Lagrange multipliers. The right-hand
side of the first order equation is represented by F1 and
G denotes the vector of all kinds of algebraic (constraint)
equations.

B. Multibody system kernel

Every object of a multibody system, see Sec. II-C and
Fig. 1, adds a certain set of their own (local) equations
to the whole set of (global) equations. The crucial task of
the Multibody System kernel is to assemble these global
equations based on the connections of the multibody system,
and to provide the system equations to the solver. Apart
from that, the kernel is responsible for setting up the model,
steering the simulation, organizing in- and output of file data,
as well as accessing or modifying specific element data.

HOTINT object library

Bodies ConnectorsLoads

IO BlocksSensor

basic joints
spring-dampers
actuators

rigid body
finite element

control (open/closed loop)
gain, function generator,
s-transfer fcn

body load
force/moment

for multibody & mechatronics
system

displacement
stress, acceleration

signal
generator

+
-

sensor

gain

modifier

load

m
e
a
s
u
re

actuate modify modify

Fig. 1. Structure of the multibody system (MBS).

C. Object library

The object library provides a set of rigid bodies (links),
basic joints, loads and sensors, similar to any robotics
simulation code. As a main feature of HOTINT, there exists
a variety of flexible bodies (Finite Elements), connectors
(actuators, springs, and dampers), loads, sensors, and IO-
Blocks (controllers) – as outlined in Fig. 1.

Among flexible bodies are structural Finite Elements for
beams, available either in geometrically exact formulation
(for large deformation processes, ropes, cables, etc.), or
in linearized form (faster). Joints are designed such that
complex combinations of bodies and joints are possible,
e.g. a point of body may move along a deformable body’s
axis (sliding joint). Since also flexible bodies are available,
the object definition is based on generalized (redundant)
coordinates for the bodies. Joints reduce the number of
coordinates, which is different from many robotics simulators
which apply joint based formulations, due to the assumption
of purely rigid body dynamics.

In the core part of the code, objects are represented by
means of first order and second order differential equations,
algebraic equations and jump or switching conditions. Fur-
thermore, the objects include standardized coupling condi-
tions (for joints and loads), graphical representation and
measurable quantities (for sensors). These objects define
bodies (links) and joints and may be easily extended. The
precise underlying equations can be found in a couple of
papers [6], [10] and are not presented in this paper.

D. Numerical solver

The multibody system is directly coupled with the nonlin-
ear static and dynamics solvers, which are designed to solve
complex dynamical problems based on first/second order
ordinary differential equations (ODEs), differential algebraic
equations (DAEs) up to index 3, and jump conditions.

There are three basic computation modes:

76

• static computation (initial equilibrium),
• dynamic computation (forward simulation),
• eigenmode computation,

For each mode, it is possible to perform
• parameter variation,
• sensitivity analysis, or
• optimization / parameter identification.

D.1. Forward simulation

The 2nd order part of (1) is transformed into a first order
system

u̇ = v
v̇ = M−1F2(u,v,x, z)

(2)

with the inverse of the mass matrix M. Additional vari-
ables y are used e.g. for switching, history, time delays,
etc.. DAEs (1) and (2) are solved by means of generalized
Runge Kutta tableaus either directly with index 3 (RadauIIA
methods) or reduced to index 2 (solvable e.g. by trapezoidal
rule). The numerical drift off in index 2 formulation is
in many cases neglectable, or stabilized. The Runge-Kutta
methods written in ’K-form’ with the unknown vectors Kiv ,
Kix and zi leads to a nonlinear equation for every stage i.

MiKiv

Kix

0

 =

F2 (ui,vi,xi, zi)
F1 (ui,vi,xi, zi)
G (ui,vi,xi, zi)

 , (3)

The formulation in (3) is specially designed for flexible
MBS (or robots) with many DOF and can be solved effi-
ciently in contract to (2). Constitute of several stages:

vi = v0 + τ
∑

n
j=1AijKjv (4)

ui = u0 + τ
∑

n
j=1AijKju (5)

xi = x0 + τ
∑

n
j=1AijKjx (6)

Each step is solved with Newton’s method (modified
or full Newton). The evaluation step does not require the
factorization of the mass matrix, see [10]. Discontinuous
events (such as switching, contact, plasticity, etc.) are solved
by an additional iteration outside the Newton’s method. For
this purpose the additional history variables y are used.

A large number of implicit Runge Kutta tableaus are
available for the time integration. Fast standard methods like
implicit Euler, midpoint and trapezoidal rule are available
as well as high order Gauss, Radau or Lobatto schemes.
For details on each particular computation mode and solver
options, see the reference manual [9].

III. HOW TO MODEL A ROBOTICS SYSTEM

It is recommended to model the robotics system within
the intuitive script language. The script language can handle
variables and a detailed reference manual is provided. Simple
models can be set up directly in the HOTINT GUI (which
currently does not support all ways to setup models).

Fig. 2. Model loaded from a model file written in HOTINT script language.

A. Script language and model definition

The HOTINT script language supports a variety of com-
mands for setting up a multibody system, which allows
to combine objects like rigid and flexible solid bodies,
materials, nodes, constraints, loads, and sensors (see Fig. 1)
each of which comes with its specific set of options and
initialization parameters.

As compared to some alternative language definition
(XML), the script language offers programming facilities
(variables, mathematical operations, functions) such that
complex systems can be programmed in a user-friendly
manner. A sketch of using the script language for setting
up a model can be seen in Sec. IV, the full code as well as a
detailed reference manual on all commands and specification
of objects can be downloaded from [9].

The multibody system model can be defined in and loaded
from the HOTINT input data file (.hid). As soon as the
button Start in the tool bar is pressed, the numerical solver
is launched with the specific solver settings of the model.

B. Multibody system for robot description

In standard robotics codes, the robot is usually setup by
means of its kinematic chain. In this way, more complex
joints1 are difficult to be realized and usually, closed loop
chains can lead to problems in modeling and simulation.
As an advantage, the joint degrees of freedoms (e.g. relative
joint axis rotation) can be actuated and measured in a straight
forward manner.

In HOTINT, a robot is constructed by means of bodies,
which are defined in reference configuration. These bodies
are connected by means of joints (connectors). A challenging
task in such a formulation is the joint actuation (forces
and torques) as well as the joint angle measurement by
means of sensors, which has been included in the formalism
consequently. As an advantage, the connection of several
bodies can be realized almost without any restriction2. Fur-
thermore, an extension to flexible bodies (e.g. beams), which

1e.g. with flexibilities for all translations and rotations or joint clearance
2as a simple restriction, no redundant constraints may be used in the

current version of HOTINT.

77

increasingly play an important role in robotics simulations,
is straight forward.

Joint actuation is more complex as compared to kine-
matics simulation, because a constraint directly acting on
joint displacements or rotations is not recommendable in
dynamics simulations (leads to algebraic constraints of index
3). However, joint actuation can be done via an IOElement-
DataModifier (Fig. 3), see below. In order to model more
complex actuators, various parameters of joints and actuators
can be accessed with those element data modifiers - e.g.
for nonlinear behavior. In order to obtain a feedback control
loop, the position, velocity, rotation, etc. is measured with
sensors and IO blocks, see Fig. 1, are used to simulate
complex controllers for joint torques or forces.

IV. EXAMPLE: FLEXIBLE LINEAR ROBOT
In this section we present how to define the model

of a simple flexible linear robot via the script language.
Representative parts of the input file in script language are
provided in the following (the full model can be downloaded
within a set of other examples from www.hotint.org).
The graphic scenery is displayed in Fig. 4. The basic con-
struction consists of four flexible beams (LinearBeam3D).
Another beam (the vertical one, which is connected to the
picker) and all picker elements are realized as rigid bodies
(Rigid3D). The set up of a rigid body is very simple: position,
orientation, mass and moments of inertia completely define
this element. To set up a flexible beam element two special
nodes (Node3DRxyz) and a material (Beam3DProperties) are
necessary. A Rigid3D has seven DOF, three for translation
and four for rotation (although these four variables are not
totally independent), and they are stored in the element. A
difference of the LinearBeam3D compared to the Rigid3D
is, that the beam has no own DOF. This element is linked
with the DOF of the nodes (each node has six DOF)
which describe the node displacements and rotations w.r.t
the global coordinate system. A advantage of node DOF
is that neighboring LinearBeam3D elements which use the
same nodes are automatically constrained without the need
to define a additional constraints. Due to the nodes the beam
orientation and end points are defined. Other properties like
the cross section size, inertia and flexibility parameters are
set in the material. See the short excerpt below how to create
these elements in script language.
%==
%example code begin (excerpt elements):
%
%flexible linear robot
%download full example at: www.hotint.org
%==

%load ground and robot dimensions (all variables
%in this excerpt are loaded from parameter file)
Include("flexible_linear_robot_params.hid")

%==
%create left column beam: for this purpose the
%definition of 2 nodes and beam material is
%necessary

%beam material (dynamics, elasticity,...)

material_beam_1
{

material_type="Beam3DProperties"
name="material_beam_1"
cross_section_type=1 % rectangular cross section
cross_section_size=[th_beam_1,th_beam_1] %m
density=density %kg/mˆ3
EA=EA %N
EIy=EIy %Nmˆ2
EIz=EIz %Nmˆ2
GAky=GAky %N
GAkz=GAkz %N
GJkx=GJkx %Nmˆ2
RhoA=RhoA %kg/m
RhoIx=RhoIx %kg*m
RhoIy=RhoIy %kg*m
RhoIz=RhoIz %kg*m

}
nMaterialBeam1=AddBeamProperties(material_beam_1)

%two nodes at the beam ends (the following node type
%contains position, orientation and 6 DOFs, see docu.)
node_1
{

node_type="Node3DRxyz" %special node type with
%global DOFs

name="node_1" %name in HOTINT element list
Geometry
{

reference_position=[-l_beam_2/2,0,0]
%position of node w.r.t. global coordinate system
reference_rot_angles=[0,0,Pi/2]
%orientation of beam defined by bryant angles

}
}
n1=AddNode(node_1)

node_2
{

node_type="Node3DRxyz"
name="node_2"
Geometry
{

reference_position=[-l_beam_2/2,l_beam_1,0]
}

}
n2=AddNode(node_2)

%create left column beam (given material & nodes)
beam_1_left
{

element_type="LinearBeam3D"
name="beam_1_left"
Physics
{
material_number=nMaterialBeam1
}
Geometry.node_1=n1
Geometry.node_2=n2

}
nBeam1Left=AddElement(beam_1_left)

%==
%rigid body (vertical beam, not part of gripper)
rigid_body_1
{

element_type="Rigid3D"
name="rigid_body_1"
Physics
{
mass=m4 %kg
moment_of_inertia=[Ixx4,0.,0.;

0.,Iyy4,0.;
0.,0.,Izz4] %kg*mˆ2

}

78

Graphics
{

RGB_color=[0., 0., 1.] %[r,g,b], range=0..1
show_element=1 %1=visible element
body_dimensions=[l_rigid,th_rigid,th_rigid]

}
Initialization.initial_position=
[0,l_beam_1,init_pos_z] %m, local position
Initialization.initial_rotation=[Pi,Pi,Pi/2]

}
nRigid1=AddElement(rigid_body_1)

%example code end
%==

Bodies are connected by rigid joints (RigidJoint), sliding
joints (SlidingPrismaticJoint) and revolute joints (Revolute-
Joint). Rigid joints are used to produce a stiff connection
between two elements or one element and the ground. The
user can choose between a Lagrangian formulation and a
penalty formulation with stiffness and damping. A sliding
joint enables the sliding motion of one body along the local
x-axis of another (flexible) body. All other rotations and
translations of both bodies are constrained by penalty joint
stiffness (with damping). In this example, three sliding joints
are used to connect the actuated robot arms. See the script
language excerpt for the definition of a RigidJoint and a
SlidingPrismaticJoint below.
%==
%example code begin (excerpt joints):
%==

%ground joints - fix left beam to ground
joint_ground
{

element_type="RigidJoint"
name="ground_joint_left"

Graphics.cube_length=1.2*th_beam_1 %m, drawing

Position1.element_number=nBeam1Left %beam left
Position1.position=[-l_beam_1/2,0,0]
%m, local position
Position2.element_number=0 % 0 denotes ground
Position2.position=[-l_beam_2/2,0,0]
%global position

}
nRigidJointGroundLeft=AddConnector(joint_ground)

%==
%sliding joints
sliding_joint_1 % between beam 2 and 3
{

element_type="SlidingPrismaticJoint"
name="sliding_prismatic_joint_1"
Physics
{

use_penalty_formulation=1 %1=use k and d
Penalty
{

%rotational stiffness
k1=stiffness %Nm/rad, (global x-axis)
k2=stiffness %Nm/rad, (global y-axis)
k3=stiffness %Nm/rad, (global z-axis)
%rotational damping
d1=damping %Nm*s/rad, (global x-axis)
d2=damping %Nm*s/rad, (global y-axis)
d3=damping %Nm*s/rad, (global z-axis)

}
}
Geometry

{
position_1=[-l_beam_3/2,0,0] %m, loc. pos.
position_2=[0,0,0] %m, loc. pos.
element_numbers=[nBeam3,nBeam2]
%sequence of el. numbers: [n3,n2_1,n2_2,...]
%beam 3 is sliding on beam 2 (in this
%example only one element)
elemind=1
%start index: n2_1=1, n2_2=2, ...
%see documentation for more information

}
}
nSlidingJoint1=AddConnector(sliding_joint_1)

%example code end
%==

The path planning of the robot takes place via prescribed
joint actuator displacements. For a better understanding see
Fig. 3, which shows the procedure of actuation for the open
loop control. First of all the desired path is defined via
IOMathFunction. This element computes the spring length
for a certain point of time. A so called IOElementDataMod-
ifier changes this neutral spring length of the appropriate
spring damper actuator. This leads to an elastic drive train
coupled to the prescribed displacement of the robot arm.
The elasticity and damping of the drive train is tunable
by SpringDamperActuator stiffness and damping parameters.
The given trajectories of the beams, which are not jerk-free,
lead to considerable and coupled vibrations of the moving
arms. For the path planning part see the script language file.
%==
%example code begin (excerpt actuation):
%==

% spring damper act. - elastic gear / drivetrain
spring_damper_actuator_1
{

element_type="SpringDamperActuator"
name="actuator_1"
Physics
{
actor_force=0 %no const. actor force added
forcemode=0 %0=IOElementDataModifier,...
Linear.spring_stiffness=stiffness_SDA
Linear.damping=damping_SDA
}

Graphics.show_connector=0 %0=invisible

Position1.element_number=nBeam2 %element
Position1.position=[-l_beam_2/2,0,0]
%m, local position

Position2.element_number=nBeam3 %element
Position2.position=[-l_beam_3/2,0,0]
%m, local position

}
nSpringDamperActuator1=
AddConnector(spring_damper_actuator_1)

%example code end
%==

A field-variable element sensor (FVElementSensor) mea-
sures the y-displacement of the endpoint of beam 3, which
is plotted in Fig. 5. For the generation of the diagram, the
own plot tool of HOTINT was used. The following excerpt
shows the sensor definition.

79

length
l0

spring k

damper d

robot arm

t

path
0l

modifier
data

Fig. 3. Actuation of robot arm with open loop control.

Fig. 4. Example of a flexible linear robot with sliding joints and path
planning. Sensor S1 measures vertical vibrations, S2 horizontal vibrations.

%==
%example code begin (excerpt sensors):
%==

%force sensors - force of actuator is not
%position dependent
force_sensor_1
{

sensor_type="ElementSensor"
name="force_sensor_1"
element_number=nSpringDamperActuator1
value="Connector.constraint_acting_force"

}
nForceSens1=AddSensor(force_sensor_1)

%==
%displacement sensors - displacement is a
%field variable (depends on local el. position)
PosYSensor
{

sensor_type="FVElementSensor"
name="y-displacement_of_beam_3"
element_number=nBeam3
local_position=[l_beam_3/2,0,0] %m, loc. pos.
field_variable="displacement"
component="y" %global y-direction

}
AddSensor(PosYSensor)

%example code end
%==

V. CONCLUSION

In this work, the free flexible multibody system simulator
HOTINT is shortly presented, with particular emphasis on
robotics applications. A full HOTINT documentation consist-
ing of a user and a reference manual is available for down-
load via www.hotint.org [9]. It provides general information
on the underlying concepts, the multibody formulation, and

Fig. 5. Vibrations in y-direction, recorded by sensor S1 (see also Fig. 4).

the solver, furthermore includes a documentation of the
simulation software HOTINT itself, and contains detailed
information about a wide range of elements, constraints,
loads, sensors, commands, and options. Advanced com-
ponents such as 2D/3D contact models, model reduction
(component mode synthesis), fluid-structure interaction are
currently not available via the user interface but will be
available in future versions.

ACKNOWLEDGMENT

The authors gratefully acknowledge support by the the
Comet K2 Austrian Center of Competence in Mechatronics
(ACCM).

REFERENCES

[1] “v-rep - A virtual robot experimentation platform.” [Online].
Available: http://coppeliarobotics.com/

[2] “Microsoft robotics Developer Studio.” [Online]. Available: http:
//www.microsoft.com/robotics/

[3] R. Ludwig, J. Gerstmayr, C. Augdopler, and C. Mittermayer, “Realistic
robot simulation with flexible components,” in Proceedings of the
Ciras 2008, Fifth International Conference on Computational Intel-
ligence, Robotics and Autonomous Systems, Linz, Austria, 1921 June
2008, 2008, paper ID 41.

[4] R. Ludwig and J. Gerstmayr, “Automatic parameter identification for
mechatronic systems,” in Multibody System Dynamics, Robotics and
Control: Proceedings of a Workshop held in Linz 2011. Vienna:
Springer, 12 2012.

[5] R. Ludwig, J. Gerstmayr, C. Augdopler, and C. Mittermayer, “Flexible
robot with clearance,” in Proceedings of the 4th European Conference
on Structural Control (4ECSC), 8-12 September 2008, St. Petersburg,
2008, paper ID 221.

[6] J. Gerstmayr, “A C++ environment for the simulation of multibody
dynamics systems and finite elements,” in CD-Proceedings of ECCO-
MAS Thematic Conference: Multibody Dynamics, Warschau, Poland,
6 2009.

[7] R. Ludwig and J. Gerstmayr, “Automatic parameter identification for
generic robot models,” in Proceedings of the MULTIBODY DYNAM-
ICS 2011 ECCOMAS Thematic Conference, 7 2011.

[8] H. Gattringer and J. Gerstmayr, Eds., Multibody System Dynamics,
Robotics and Control. Springer, 2012.

[9] “HOTINT V1.1 - A flexible multibody system dynamics freeware
code in C++.” [Online]. Available: http://www.hotint.org/

[10] J. Gerstmayr and M. Stangl, “High-order implicit Runge-Kutta meth-
ods for discontinuous multibody systems.” in Proceedings of the XXXII
Summer School APM2004, June 24-July 1, St. Petersburg, Russia,
2004, pp. 162–169.

80

Levels of Integration between Low-Level Reasoning and Task Planning*

Peter Schüller, Volkan Patoglu, Esra Erdem
Faculty of Engineering and Natural Sciences, Sabancı University, İstanbul, Turkey

Abstract— We provide a systematic analysis of levels of
integration between discrete high-level reasoning and contin-
uous low-level reasoning to address hybrid planning problems
in robotics. We identify four distinct strategies for such an
integration: (i) low-level checks are done for all possible cases
in advance and then this information is used during plan
generation, (ii) low-level checks are done exactly when they
are needed during the search for a plan, (iii) first all plans
are computed and then infeasible ones are filtered, and (iv)
by means of replanning, after finding a plan, low-level checks
identify whether it is infeasible or not; if it is infeasible, a new
plan is computed considering the results of previous low-level
checks. We perform experiments on hybrid planning problems
in robotic manipulation and legged locomotion domains con-
sidering these four methods of integration, as well as some
of their combinations. We analyze the usefulness of levels of
integration in these domains, both from the point of view of
computational efficiency (in time and space) and from the point
of view of plan quality relative to its feasibility. We discuss
advantages and disadvantages of each strategy in the light of
experimental results and provide some guidelines on choosing
proper strategies for a given domain.

I. INTRODUCTION

Successful deployment of robotic assistants in our society
requires these systems to deal with high complexity and wide
variability of their surroundings to perform typical everyday
tasks robustly and without sacrificing safety. Consequently,
there exists a pressing need to furnish these robotic sys-
tems not only with discrete high-level reasoning (e.g., task
planning, diagnostic reasoning) and continuous low-level
reasoning (e.g., trajectory planning, deadline and stability
enforcement) capabilities, but also their tight integration
resulting in hybrid planning.

Motivated by the importance of hybrid planning, recently
there have been some studies on integrating discrete task
planning and continuous motion planning. These studies can
be grouped into two, where integration is done at the search
level or at the representation level. For instance, [1], [2],
[3], [4], [5], [6] take advantage of a forward-search task
planner to incrementally build a task plan, while checking
its kinematic/geometric feasibility at each step by a motion
planner; all these approaches use different methods to utilize
the information from the task-level to guide and narrow
the search in the configuration space. By this way, the task
planner helps focus the search process during motion plan-
ning. Each one of these approaches presents a specialized
combination of task and motion planning at the search level,
and does not consider a general interface between task and
motion planning.

*Peter Schüller is supported by TUBITAK 2216 Fellowship.

On the other hand, [7], [8], [9], [10] integrate task
and motion planning by considering a general interface
between them, using “external predicates/functions”, which
are predicates/functions that are computed by an external
mechanism, e.g., by a C++ program. The idea is to use
external predicates/functions in the representation of actions,
e.g., for checking the feasibility of a primitive action by a
motion planner. So, instead of guiding the task planner at the
search level by manipulating its search algorithm directly, the
motion planner guides the task planner at the representation
level by means of external predicates/functions. [7], [9]
apply this approach in the action description language C+
[11] using the causal reasoner CCALC [12]; [10] applies
it in Answer Set Programming (ASP) [13], [14] using the
ASP solver CLASP [15]; [8] extends the planning domain
description language PDDL [16] to support external pred-
icates/functions (called semantic attachments) and modifies
the planner FF [17] accordingly.

In these approaches, integration of task and motion plan-
ning is achieved at various levels. For instance, [9], [10]
do not delegate all sorts of feasibility checks to external
predicates as in [7], [8], but implements only some of
the feasibility checks (e.g., checking collisions of robots
with each other and with other objects, but not collisions
of objects with each other) as external predicates and use
these external predicates in action descriptions to guide task
planning. For a tighter integration, feasibility of task plans is
checked by a dynamic simulator; in case of infeasible plans,
the planning problem is modified with respect to the causes
of infeasibilities, and the task planner is asked to find another
plan.

In this paper, our goal is to better understand how much
of integration between high-level reasoning and continuous
low-level reasoning is useful, and for what sort of robotic
applications. For that, we consider integration at the repre-
sentation level, since this approach allows a modular inte-
gration via an interface, external predicates/functions, which
provides some flexibility of embedding continuous low-
level reasoning into high-level reasoning at various levels.
Such a flexible framework allowing a modular integration is
important for a systematic analysis of levels of integration.

We identify four distinct strategies to integrate a set
of continuous feasibility checks into high-level reasoning,
grouped into two: directly integrating low-level checks into
high-level reasoning while a feasible plan is being generated,
and generating candidate plans and then post-checking the
feasibility of these candidate solutions with respect to the
low-level checks. For direct integration we investigate two

81

methods of integration: (i) low-level checks are done for
all possible cases in advance and then this information is
used during plan generation, (ii) low-level checks are done
when they are needed during the search for a plan. For post-
checking we look at two methods of integration: (iii) all plans
are computed and then infeasible ones are filtered, (iv) by
means of replanning, after finding a plan, low-level checks
identify whether it is infeasible or not; if it is infeasible,
a new plan is computed considering the results of previous
low-level checks. We consider these four methods of inte-
gration, as well as some of their combinations; for instance,
some geometric reasoning can be integrated within search
as needed, whereas some temporal reasoning is utilized only
after a plan is computed in a replanning loop. Considering
each method and some of their combinations provide us
different levels of integration.

To investigate the usefulness of these levels of integra-
tion at representation level, we consider 1) the expressive
formalism of HEX programs for describing actions and the
efficient HEX solver dlvhex to compute plans, and 2) the
expressive formalism of ASP programs for describing actions
and the efficient ASP solver CLASP to compute plans. Unlike
the formalisms and solvers used in other approaches [7],
[8], [9], [10], that study integration at representation level,
HEX [18] and dlvhex [19] allow external predicates/functions
to take relations (e.g., a fluent describing locations of all
objects) as input without having to explicitly enumerate the
objects in the domain. Other formalisms and solvers allow
external predicates/functions to take a limited number of
objects and/or object variables as input only, and thus they
do not allow embedding all continuous feasibility checks
in the action descriptions. In that sense, the use of HEX
programs with dlvhex, along with the ASP programs with
CLASP enriches the extent of our experiments.

We perform experiments on planning problems in a robotic
manipulation domain (like in [9]) and in a legged locomotion
domain (like in [20], [21]). The robotic manipulation domain
involve 3D collision checks and inverse kinematics, whereas
legged locomotion examples involve stability checks and
reachability checks. We analyze the usefulness of levels of
integration in these domains, both from the point of view of
computational efficiency (in time and space) and from the
point of view of plan quality relative to its feasibility.

II. LEVELS OF INTEGRATION

Assume that we have a task planning problem instance H
(consisting of an initial state S0, goal conditions, and action
descriptions) in a robotics domain, represented in some logic-
based formalism. A history of a plan 〈A0, . . . , An−1〉 from
the given initial state S0 to a goal state Sn computed for
H consists of a sequence of transitions between states:
〈S0, A0, S1, A1, . . . , Sn−1, An−1, Sn〉. A low-level continu-
ous reasoning module gets as input, a part of a plan history
computed for H and returns whether this part of the plan
history is feasible or not with respect to some geometric,
dynamic or temporal reasoning.

For example, if the position of a robot at step t
is represented as robot at(x, y, t) and the robot’s ac-
tion of moving to another location (x′, y′) at step t
is represented as move to(x′, y′, t), then a motion plan-
ner could be used to verify feasibility of the movement
〈robot at(x, y, t),move to(x′, y′, t), robot at(x′, y′, t+1)〉.
If duration of this action is represented as well, e.g.,
as move to(x, y, duration, t), then the low-level module
can find an estimate of the duration of this movement
relative to the trajectory computed by a motion plan-
ner, and it can determine the feasibility of the movement
〈robot at(x, y, t),move to(x′, y′, t), robot at(x′, y′, t + 1)〉
by comparing this estimate with duration .

Let L denote a low-level reasoning module that can be
used for the feasibility checks of plans for a planning
problem instance H . We consider four different methods
of utilizing L for computing feasible plans for H , grouped
into two: directly integrating reasoning L into H , and post-
checking candidate solutions of H using L.

For directly integrating low-level reasoning into plan gen-
eration, we propose the following two levels of integration:

• PRE – Precomputation We perform all possible fea-
sibility checks of L that can be required by H , in
advance. For each failed check, we identify the actions
that cause the failure, and then add a constraint to the
action descriptions in H ensuring that these actions do
not occur in a plan computed for H . We then try to find
a plan for the augmented planning problem instance
Hpre . Clearly, every plan obtained with this method
satisfies all low-level checks.

• INT – Interleaved Computation We do not precompute
anything, but we interleave low-level checks with high-
level reasoning in the search of a plan: for each action
considered during the search, the necessary low-level
checks are immediately performed to find out whether
including this action will lead to an infeasible plan. An
action is included in the plan only if it is feasible. The
results of feasibility checks of actions can be stored not
to consider infeasible actions repeatedly in the search
of a plan. Plans generated by interleaved computation
satisfy all low-level checks.

Let us denote by LPRE and LINT the low-level checks directly
integrated into plan generation, with respect to PRE and INT,
respectively.

Alternatively, we can integrate low-level checks L with H ,
by means of post-checking candidate solutions of H relative
to L. We propose the following two methods to perform
post-checks on solution candidates:

• FILT – Filtering: We generate all plan candidates for
H . For each low-level check in L, we check feasibility
of each plan candidate and discard all infeasible candi-
dates.

• REPL – Replanning: We generate a plan candidate for
H . For each low-level check in L, we check feasibility
of the plan candidate. Whenever a low-level check fails,
we identify the actions that cause the failure, and then

82

Precomputation

Planning
(ASP Solver)

Postcheck

LPRE

LINT

LPOST

Hpre

candidate solution

feasible solution

H

H+ constraints

Fig. 1. Components and data flow.

add a constraint to H ensuring that these actions do not
occur in a plan computed for H . We generate a plan
candidate for the updated planning problem instance
H+ and do the feasibility checks. We continue with
generation of plan candidates and low-level checks until
we find a feasible plan, or find out that such a feasible
plan does not exist.

Let us denote by LPOST the low-level checks done after plan
generation, with respect to FILT or REPL.

Figure 1 shows the hybrid planning framework we use
in this paper to compare different levels of integration,
and combinations thereof, on robotics planning scenarios.
In particular, Fig. 1 depicts computational components: Pre-
computation extends the problem instance H using a low-
level reasoning module LPRE, Planning integrates a low-level
reasoning module LINT into its search for a plan candidate
for the problem instance Hpre generated by Precomputation.
Postcheck uses a low-level module LPOST to verify solution
candidates (using FILT or REPL) and to potentially add
constraints H+ to the input of Planning.

In our systematic analysis of levels of integration, we do
consider this hybrid framework by disabling some of its
components. For instance, to analyze the usefulness of PRE,
we disable the other integrations (i.e., LINT = LPOST = ∅); to
analyze the usefulness of a combination of PRE and FILT,
we disable other integrations (i.e., LINT = ∅).

III. METHODOLOGY

We investigate the usefulness of levels of integration
as described above, considering two orthogonal properties:
solution quality and planning efficiency. We quantify these
properties as follows.

A. Solution Quality

If some low-level module L is not integrated into the
planning process, some plan candidates will be infeasible
due to failed low-level checks of L. We quantify solution
quality by measuring the number of feasible and infeasible
plan candidates generated by the search for a plan. This way
we obtain a measure that shows how relevant a given low-
level check is for plan feasibility. Note that with the FILT
approach an infeasible plan candidate simply causes a new
plan to be generated, while with REPL an infeasible plan

candidate causes computation of additional constraints, and
a restart of the plan search.

Tightly connected to the number of feasible and infeasible
solution candidates is the number of low-level checks that
is performed until finding the first feasible plan, and until
finding all feasible plans.

B. Planning Efficiency

We quantify planning efficiency by measuring the time
required to obtain the first feasible plan, and the time to
enumerate all feasible plans. (Note that this includes proving
that no further plan exists.)

Independent from the number of low-level checks, the
duration of these external computations can dominate the
overall planning cost, or it can be negligible. Therefore we
measure not only the number of computations of low-level
modules but also the time spent in these computations.

IV. DOMAINS AND EXPERIMENTAL SETUP

For our empirical evaluation we use the Robotic Manip-
ulation and the Legged Locomotion domains. Both require
hybrid planning. We next give an overview of the domains,
their characteristics, and scenarios we used.

A. Robotic Manipulation

We consider a cooperative robotic manipulation problem,
as in [9], where two robots arrange elongated objects in a
space that contains obstacles. The manipulated objects can
only be carried cooperatively by both robots, objects must not
collide with each other or the environment, similarly robots
must not collide with each other.

A large part of collision checks between objects can
already be realized in the high-level representation, however
certain checks require usage of geometric models. Collision-
freeness between robots for particular collaborative actions
can only be determined using low-level geometric reasoning
and is not represented in the world model.

Therefore we use two low-level reasoning components
to check collision-freeness: given end effector positions of
both arms, the Lrob module checks whether this combination
of positions is collision-free, similarly Lpay checks whether
an object can be located at a particular pair of coordinates
without a collision with the environment. (Additional motion
planning to check feasibility of movement from one position
to another one can be added as a third check but was omitted
in our experiments.) We experiment with 10 instances (over
a 11×11 grid) that require plans of upto 20 (average 9.2)
steps, and involving up to 58 (average 25.1) actions.

B. Legged Locomotion

In the Legged Locomotion domain, a robot with high
degrees of freedom must find a plan for placing its legs and
moving its center of mass (CM) in order to move from one
location to another one.

For the purpose of studying integration of geometric rea-
soning with high-level task planning, we created a planning
formulation for a four-legged robot that moves on a 10× 10

83

grid. Some grid locations are occupied and must not be used
by the robot. Starting from a given initial configuration, the
robot must reach a specified goal location where all legs are
in contact with the ground.

As legged robots have high degrees of freedom, legged lo-
comotion planning deals with planning in a high-dimensional
space. We use a planning problem that is of similar complex-
ity as has been investigated in climbing [21] and walking [22]
robots. We also require a feasibility check of leg placement
actions. We allow concurrent actions, i.e., moving the center
of mass while detaching a leg from the ground, if this does
not cause the robot to lose its balance.

We use a low-level reasoning component that determines
whether the robot is in a balanced stable equilibrium (Lbal),
given its leg positions and the position of its CM. We realize
this check by computing the support polygon of legs that
are currently connected to the ground, and by checking if
CM is within that polygon. For these checks we use the
boost::geometry library to compute a convex hull of all
leg positions, and then check whether CM is located within
that convex hull.

A second low-level module determines if leg positions are
realistic wrt. the position of CM, i.e., if every leg can reach
the position where it is supposed to touch to the ground. This
check (Lleg) is realized as a distance computation between
coordinates of legs and CM.

C. Domain Characteristics and Notable Differences

The domains we experiment with exhibit various differ-
ences in their characteristics, and such a variety allows us
to get practically more relevant results. The most important
differences between these two domains are as follows.

Complexity of low-level reasoning. In Legged Locomotion
we use a C++ geometric library to perform basic geometric
operations which are sufficient for computing check results.

In Robotic Manipulation, object collision checking Lpay

operates on 3D models of objects and environments addition-
ally Lrob requires inverse kinematics to determine the joint
configuration of each robot reaching a certain point before
performing collision checks between arms.

Hence, in Legged Locomotion, each low-level check re-
quires less time and memory than in Robotic Manipulation.
Note that in both domains, we transform discrete 2D grid
points to continuous 3D coordinates for low-level reasoning.

Information relevant for low-level reasoning. In Legged
Locomotion, we consider problem instances over a 10×10
grid. Lleg is a check over two coordinates, therefore there
are 104 possible Lleg checks. The balance check Lbal is
a totally different situation: we have an input of four leg
coordinates and one CM coordinate, therefore, there are 1010

possible Lbal checks. Such a large number of checks makes
precomputation infeasible.

In Robotic Manipulation, both low-level checks are over
coordinate pairs on a 11×11 grid; therefore, there are 114 ·
2=29282 low-level checks.

TABLE I
EFFICIENCY COMPARISON

Integration Overall Time Low-Level Reasoning
Method FIRST ALL time ALL count ALL

sec sec sec #
Robotic Manipulation (10 instances)

FILT 1716 [2] 1877 [2] 39 724
REPL 2007 [2] 3242 [3] 7 139
PRE 888 974 238 29282
INT 1007 1086 0 467

Legged Locomotion (averages over 20 instances)
FILT 2434 [5] 3091 [8] 1139 35888
REPL 1345 4192 [9] 12 458
INT 80 133 21 171109

Lleg : Lbal :
PRE FILT
PRE REPL
PRE INT

2395 [6] 3046 [8] 1272 39354
1160 4142 [9] 9 324

65 107 23 50677
Numbers in square brackets count timeouts for FIRST resp. ALL.

Based on the number of low-level checks, precomputation
for Legged Locomotion seems feasible for only one of the
two low-level modules (Lleg), while for Robotic Manipula-
tion we can apply precomputation for both low-level compu-
tations. Indeed, precomputation for Legged Locomotion can
be done in less than 1 second, and for Robotic Manipulation
in 238 seconds.1

V. EXPERIMENTAL RESULTS

We applied different integration methods to 20 Legged Lo-
comotion and 10 Robotic Manipulation instances of varying
size and difficulty.

Tables I and II present results for
• FIRST: obtaining the first feasible plan, and for
• ALL: obtaining all (maximum 10000) feasible plans.
In our experiments, we use a timeout of 2 hours (7200

seconds) after which we stop computation and take mea-
surements until that moment.

We also limit the number of enumerated plans to 10000
plans. The measurements for enumerating up to 10000 plans
reveal information about solution quality and provides a more
complete picture of the behavior of each method: one method
might find a feasible solutions very fast by chance, whereas
finding many or all solutions fast by chance is unlikely.

A. Time Measurements

Table I shows measurements regarding planning efficiency
and effort spent in low-level reasoning.

Firstly, it is clear that PRE and INT— the direct integration
methods — outperform FILT and REPL— the post-checking
methods: for Robotic Manipulation, only PRE and INT
are able to enumerate all solutions within the given time
limit; for Legged Locomotion, only INT and the PRE/INT
combination enumerates all solutions.

1All experiments were performed on a Linux server with 32 2.4GHz
Intel R© E5-2665 CPU cores and 64GB memory.

84

Comparing the times required by PRE and INT, we see that
PRE is more efficient for Robotic Manipulation (888 sec vs
1007 sec on average), which is mainly due to an efficient
precomputation technique (see Section V-E).

Even though PRE performs better than INT, it spends more
time in low-level reasoning, hence high-level reasoning is
faster there; we can explain this by a more constrained search
space (low-level check results constraint the search).

After PRE and INT, the next best choice is REPL: it finds
solutions to 8 out of 10 instances in Robotic Manipulation,
and it finds solutions to all instances for Legged Locomotion,
whereas FILT has the same number of timeouts in the Ma-
nipulation domain and 5 timeouts for Legged Locomotion.
In addition to that, we can see that REPL spends little time
in low-level checks compared to other approaches. This
is because REPL performs many restarts of the high-level
planner which causes it to spend a disproportionate amount
of time in high-level planning. Nevertheless, REPL shows its
robustness by finding solutions to all but 2 instances.

Finally, FILT fails to find solutions for 7 instances in total
which clearly makes it the worst-performing method. The
time results for Robotic Manipulation suggest that FILT may
be a bit faster than REPL; this may be an effect of some easy
instances in that domain where replanning spends more time
by reinitialization, than FILT spends by iterating over many
similar infeasible solutions. Therefore, even in that domain,
we would not suggest to use FILT, as it might — by chance,
as low-level reasoning cannot give feedback to high-level
reasoning — fail to find a feasible solution for a long time.

B. Effort of Low-Level Reasoning

In Robotic Manipulation, while attempting to enumerate
all solutions, FILT performs only 724 low-level checks com-
pared to 29282 checks of PRE. Similarly, in Legged Loco-
motion, FILT performs 35888 checks and fails to enumerate
all solutions for 8 of 20 instances, while INT enumerates all
solutions while performing more (171109) low-level checks.
Note that these numbers (the last column of Table I) indicate
distinct low-level reasoning tasks as we cache low-level
check results. These numbers show that FILT encounters a
small fraction of the low-level checks that are needed to
verify all solutions in INT. Caching in fact allows FILT to
verify much more actions than INT (numbers not shown),
however the number of distinct checks (numbers shown) is
higher in INT. We conclude that INT traverses the solution
space much more efficiently.

In Legged Locomotion, low-level checks depend on a large
part of the candidate plan, so caching is not as effective as
in Robotic Manipulation. This, together with the fact that in
FILT the high-level is not guided by low-level checks, causes
the FILT approach to spend more time in low-level reasoning
than other approaches.

Note that, to obtain a reasonable comparison between PRE
and the other approaches, we include times and counts of
precomputed low-level checks in Table I (which explains the
large values for low-level computations in these rows).

TABLE II
SOLUTION QUALITY COMPARISON

Integration Infeasible Candidates Plans found Feasible Plans
Method FIRST ALL ALL ALL

%
Robotic Manipulation (averages over 10 instances)

FILT 586 11787 622 <0.1
REPL 11 38 621 94.2
PRE 0 0 652 100.0
INT 0 0 652 100.0

Legged Locomotion (averages over 20 instances)
FILT 11282 35487 360 1.0
REPL 28 68 250 78.6
INT 0 0 1394 100.0

Lleg : Lbal :
PRE FILT
PRE REPL
PRE INT

10938 39116 340 0.9
31 69 255 78.7
0 0 1394 100.0

C. Solution Quality

Methods PRE and INT do not generate infeasible solution
candidates, as they use all low-level checks already in search.

If we compare the number of infeasible solution candidates
of FILT and REPL in Robotic Manipulation, we observe
that FILT generates mainly infeasible solution candidates
compared to the number of feasible solutions (11787 vs
622) while REPL creates only 38 infeasible candidates while
enumerating 621 feasible plans.

In Legged Locomotion, the results for FILT are similar,
however REPL performs a bit worse than in Robotic Manipu-
lation with 250 infeasible candidates compared to 68 feasible
solutions. A possible reason for this difference could be the
same reason why PRE is not feasible in that domain: there
is a large amount of possible inputs to Lbal compared to the
other low-level checks we used. Due to the large input space,
each failed Lbal check constrains the search space only by a
small amount, so REPL produces more infeasible solutions
than in Robotic Manipulation.

D. Memory Usage

We measured peak memory usage over the whole runtime
of each instance. Interleaved computation with the dlvhex
solver (columns with INT) requires an average of around
2000MB, the maximum stays below 4000MB. For non-
interleaved computations, GRINGO and CLASP were con-
nected with low-level checks using Python scripts. These
approaches require around 400MB of memory with a maxi-
mum below 1000MB.

E. Combination of PRE with other methods

As shown in the Legged Locomotion experiments, PRE
can be combined with other approaches. In our experiments
we observe that adding PRE increases efficiency.

However, PRE adds a fixed cost to solving because it
needs to precompute many points. Depending on efficiency
of low-level computations, even if there are few possible

85

input combinations to low-level modules, precomputation
might be infeasible.

It can be feasible to precompute a large set of related
low-level checks more efficiently than performing a check
for each possible input combination. In our experiments
we implemented such a dedicated precomputation method:
for Robotic Manipulation it requires 238 seconds in total,
while calling individual checks requires 1361 seconds in
total. Hence without dedicated efficient precomputation, PRE
performs much worse than INT.

VI. DISCUSSION AND CONCLUSION

Our experiments suggest the following conclusions. If
robust and highly complex reasoning is required, and if this
reasoning is done frequently (so that performance gains will
become relevant) then using full interleaved reasoning (INT)
is the only good option. INT has the best performance with
respect to run times, and it can enumerate most solutions
compared to other approaches. The reason is that INT uses
only those low-level checks which are necessary (they are
computed on demand) and therefore does not overload the
solver with redundant information (as PRE does). Further-
more, INT considers failed checks in the search process and
thereby never picks an action where it is known that the
action will violate a low-level check. This is similar as in the
REPL approach, but much more efficient as the integration is
much tighter compared to REPL. However, the performance
of INT comes at a price: (a) it requires more memory than
generating solution candidates and checking them afterwards,
and (b) it requires a solver that allows for interacting with
the search process in a tight way, usually through an API that
has to be used in a sophisticated way if it shall be efficient.

If reasoning operates on a manageable amount of inputs,
such that precomputation is a feasible option, then PRE is
a good choice. In our Robotic Manipulation experiments,
PRE outperforms all other methods, which is partially due
to our using a dedicated efficient precomputation tool (see
Section V-E). In Legged Locomotion, combining PRE with
other methods also increased efficiency.

The FILT approach performs the worst, because nothing
guides the search into the direction of a feasible solution;
FILT is not robust and enumerates many infeasible solutions.

If both PRE and INT are not possible2 then REPL should
be used; this approach does not have the same performance
as INT and PRE, however it is a very robust approach as
it is guided by its wrong choices — we can think of the
constraints that are added for failed low-level checks as
the approach ‘learning from its mistakes’. The benchmark
results for Legged Locomotion clearly show the robustness
of REPL compared to FILT: the former finds solutions for
all problems, the latter only for 15 out of 20 instances.

A possible improvement to REPL could be to let it enumer-
ate a certain amount of solutions to gather more constraints,
then add all these constraints and restart the search. This is

2This can be the case if the state of inputs is large, and additionally we
need to use a certain planner software that does not support interleaved
computation.

a hybrid approach between FILT and REPL. Selecting the
right moment to abort enumeration and restart the solver is
crucial to the performance of such a hybrid approach, and we
consider this a worthwhile subject for future investigations.

REFERENCES

[1] F. Gravot, S. Cambon, and R. Alami, Robotics Research The Eleventh
International Symposium, ser. Springer Tracts in Advanced Robotics.
Springer, 2005, vol. 15, ch. aSyMov:A Planner That Deals with
Intricate Symbolic and Geometric Problems, pp. 100–110.

[2] K. Hauser and J.-C. Latombe, “Integrating task and PRM motion
planning: Dealing with many infeasible motion planning queries,” in
Workshop on Bridging the Gap between Task and Motion Planning at
ICAPS, 2009.

[3] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical task and motion
planning in the now,” in Proc. of ICRA, 2011, pp. 1470–1477.

[4] E. Plaku and G. D. Hager, “Sampling-based motion and symbolic
action planning with geometric and differential constraints,” in Proc.
of ICRA, 2010, pp. 5002–5008.

[5] J. Wolfe, B. Marthi, and S. Russell, “Combined task and motion
planning for mobile manipulation,” in International Conference on
Automated Planning and Scheduling, 2010.

[6] E. Plaku, “Planning in discrete and continuous spaces: From LTL tasks
to robot motions,” in Proc. of TAROS, 2012, pp. 331–342.

[7] O. Caldiran, K. Haspalamutgil, A. Ok, C. Palaz, E. Erdem, and
V. Patoglu, “Bridging the gap between high-level reasoning and low-
level control,” in Proc. of LPNMR, 2009.

[8] A. Hertle, C. Dornhege, T. Keller, and B. Nebel, “Planning with
semantic attachments: An object-oriented view,” in Proc. of ECAI,
2012, pp. 402–407.

[9] E. Erdem, K. Haspalamutgil, C. Palaz, V. Patoglu, and T. Uras,
“Combining high-level causal reasoning with low-level geometric rea-
soning and motion planning for robotic manipulation,” in International
Conference on Robotics and Automation, 2011, pp. 4575–4581.

[10] E. Erdem, E. Aker, and V. Patoglu, “Answer set programming for
collaborative housekeeping robotics: representation, reasoning, and
execution,” Intelligent Service Robotics, vol. 5, pp. 275–291, 2012.

[11] E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain, and H. Turner,
“Nonmonotonic causal theories,” AIJ, vol. 153, p. 2004, 2004.

[12] N. McCain and H. Turner, “Causal theories of action and change,” in
Proc. of AAAI/IAAI, 1997, pp. 460–465.

[13] V. Lifschitz, “What is answer set programming?” in Proc. of AAAI.
MIT Press, 2008, pp. 1594–1597.

[14] G. Brewka, T. Eiter, and M. Truszczynski, “Answer set programming
at a glance,” Commun. ACM, vol. 54, no. 12, pp. 92–103, 2011.

[15] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub, “clasp: A
conflict-driven answer set solver,” in Proc. of LPNMR, 2007, pp. 260–
265.

[16] M. Fox and D. Long, “Pddl2.1: An extension to pddl for expressing
temporal planning domains,” J. Artif. Intell. Res. (JAIR), vol. 20, pp.
61–124, 2003.

[17] J. Hoffmann and B. Nebel, “The ff planning system: Fast plan
generation through heuristic search,” J. Artif. Intell. Res., vol. 14, pp.
253–302, 2001.

[18] T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits, “A Uniform Integra-
tion of Higher-Order Reasoning and External Evaluations in Answer-
Set Programming,” in International Joint Conference on Artificial
Intelligence (IJCAI), 2005, pp. 90–96.

[19] T. Eiter, G.Ianni, R.Schindlauer, and H.Tompits, “Effective integra-
tion of declarative rules with external evaluations for Semantic-Web
reasoning,” in Proc. of ESWC, 2006.

[20] T. Bretl, S. Lall, J.-C. Latombe, and S. M. Rock, “Multi-step motion
planning for free-climbing robots,” in Algorithmic Foundations of
Robotics VI, ser. Springer Tracts in Advanced Robotics, vol. 17.
Springer, 2005, pp. 59–74.

[21] T. Bretl, S. M. Rock, J.-C. Latombe, B. Kennedy, and H. Aghazarian,
“Free-climbing with a multi-use robot,” in ISER, ser. Springer Tracts
in Advanced Robotics, M. H. A. Jr. and O. Khatib, Eds., vol. 21.
Springer, 2004, pp. 449–458.

[22] K. K. Hauser, T. Bretl, J.-C. Latombe, K. Harada, and B. Wilcox,
“Motion planning for legged robots on varied terrain,” I. J. Robotic
Res, vol. 27, no. 11-12, pp. 1325–1349, 2008.

86

From tendrils to robots: kinematic study for a bio-inspired grasping
system

Renato Vidoni1, Tanja Mimmo1 and Camilla Pandolfi2

Abstract— In this work, the robotic grasping problem is
addressed with a bio-mimetic approach.

Looking at the capabilities of some special climbing plants,
the tendril behavior has been focused, modeled and simulated
from a kinematic point of view.

First of all, the three main tendril movements, i.e. circum-
nutation, coiling and free-coiling, have been evaluated; after
that, a modular kinematic model able to take into account the
main tendril features has been defined; then, the kinematics of
the system has been solved and a tendril-kinematic simulator
implemented.

I. INTRODUCTION

In robotics, the grasping ability and the design and control
of effective systems such as mechanical hands have been
studied since the eighties [18], [17].

Tactile sensing, restraining (fixturing) and manipulating
with fingers (dexterous manipulation) are usually addressed
and studied. Robotic grasping systems often obtain rel-
evant objects information through vision systems and/or
assume as known most or all the information needed for
the grasping [19], [4]. Robot mechanical hands are usually
simple, without anthropomorphic intent (i.e. grippers, jaws,
compliance devices), and developed to perform specific tasks
(i.e. suction cups for keeping glass, compressed air-driven
tongs). Broad reviews on these topics can be found in [1],
[20], [24]. From the mechatronic point of view, a lot of
work has been made to create, optimize and miniaturize
tactile sensors solutions [24]. If nature is considered as a
source of inspiration, many systems that show a sort of
reflex-like behavior for mediating with the objects to grasp
can be found. Thus, from the bio-mimetic point of view, in
particular for coiling robotics systems, some work has been
done to replicate the capabilities of some special animals,
i.e. robotic snakes. The Hirose’s group developed a class
of rigid-link hyper redundant dexterous manipulators called
“active cord mechanism” (ACM) or serpentine robots; the
“Continuum manipulators” [16] show a backbone structure
system with a high number of joints and a very short
length of links to tend to an ideal continuum condition that
can bend and contract/extend in any point (e.g. [2], [11]).
Tendons and artificial muscle technologies are among the
most effective hardware realizations. Successful works on

*This work was supported by the ESA-Advanced Concepts Team (ARI-
ADNA study ID 12/6402).

1R. Vidoni and T. Mimmo are with the Faculty of Science
and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
renato.vidoni, tanja.mimmo at unibz.it

2 C. Pandolfi is with the ESA-Advanced Concepts Team, European
Space Research and Technology Centre, Noordwijk, The Netherlands
camilla.pandolfi@unifi.it

backbone manipulators are also the octopus and the arms and
tentacles of squid - inspired robots [22], e.g. the OCTARM
robot and the tentacles-inspired robot [12], [23], e.g. Air-
Octor. Recently, the Octopus project (EU-FP7) has studied
novel technologies for high dexterity robots inspired by
the octopus [25]. Indeed, the octopus tentacles are able to
carry out an effective grasping by contracting and elongating
muscles and fibers and bending in the desired direction [3],
[14], [9], [13].

In nature other systems show effective grasping capabil-
ities. Indeed, some climbing plants, at today not yet well
studied both from a physiological and bio-mimetic purposes,
are able to find, recognize and grasp supports by means of
specialized filiform organs called tendrils. This work aims
at focusing the tendril behavior for a bio-mimetic purpose
in particular by studying the main plant behaviors from a
kinematic perspective.

II. TENDRILS

Tendrils are long, slender, filiform, irritable organs, derived
from stems, leaves, or flower peduncles [5] which may
occur either as un-branched or multi-branched organs with a
variable length.

Tendrils usually show three main movements [10]:
• circumnutation, an endogenous movement increasing

the probability of contact with supports,
• contact coiling, in which the stimulated tendril coils

around a support, and
• free-coiling, in which the tendril develops helical coils

along its axis, not necessarily as a result of stimulation.

A. Circumnutation

Circumnutation is an oscillating growth pattern in rapidly
elongating plant organs, such as roots, shoots, branches and
flower stalks. Circumnutational oscillations are manifesta-
tions of the radially asymmetric growth rate, typical of
elongating plant organs [7], [15] . Although circumnutatory
movements appear to have no useful purpose in the majority
of the cases, in climbing plants, they have a crucial function
in seeking mechanical supports. In fact, the circumnutational
movement sweeps the tendril in the space, e.g. circular path,
increasing the possibility to contact with a support.

B. Coiling and Grasping

Contact coiling or simply coiling initiates as a response
to a local mechanical stimulus of the tendrils which start
curling around a support and tightening up [21].

87

Fig. 1. Coiling and free-Coiling

Since tendrils are often modified leaves or stems, the
contact coiling allows the plant to gain height or to turn
the leaves maximizing sun exposure for the photosynthetic
activity. If no suitable contact or support is found, the tendril
might even uncoil indicating that the process is reversible.
The tendril seems to perceive the stimulus/touch locally in
the epidermal cells activating chemical signaling within the
whole plant organ; the response is very fast leading to a
coiling within seconds.

C. Free-coiling

Once the tendril has grasped around an object or support,
the plant organ undergoes a secondary coiling, free-coiling,
which brings the plant closer to the support by creating
an elastic spring-like connection. This spiral structure has
very often been compared to a telephone cord and might be
described by an ideal helical spring. Darwin [6] observed
that there are the same numbers of spirals in both directions
in order to compensate the twisting of the axis. If there is
no grasp, the tendril curves and creates a sort of spiral.

Fig.1 shows a tendril after the coiling and free-coiling
phases.

III. KEY FEATURES

Concerning the grasping and free-coiling phases of the
plant tendrils, to our knowledge, no bio-mimetic results or
attempts can be found in literature.

Indeed, if the grasping and free-coiling phases are consid-
ered, important differences or not yet discovered similarities
between the plant and animal behavior can be appreciated:

• Tendrils motion and contact recognition
Tendrils, in particular Passiflora tendrils, are able to
recognize supports and obstacles on the overall surface
thanks to the presence of specialized fibers. Indeed,
tendrils bend in different directions and not only on one
side, especially in the second half of the length.

• Multiple coils
This capability can be viewed looking at a winch-
capstan system. Multiple coils allow to have a small and
negligible tension in the tendril apex, to have a tension
that increases from the apex to the most inner touching

point and to avoid the slippage due to the increased
touching surface and the related friction.

• Reflex - modular distributed behavior
The most sensitive part of the tendril is its second half.
When it touches or is touched in this zone, it shows
a reflex behavior, i.e. it bends. The signal transmission
shows a sort of modular behavior. This means that the
zone that senses a support induces a contraction phase
to the near fibers; after that, if the contact increases, i.e.
the touched nearest zones sense a contact, the bending
signal is transmitted creating the overall tendril motion
and grasping. Thanks to this, a distributed reflex control
is made, allowing the activation of the motion locally
and only when necessary.

• Object searching
The circumnutation phase, in which all the tendril
moves, is a manifestation of the radially asymmetric
growth rate and results in a sweep “seeking” movement
that can, for our bio-mimetic purposes, be simplified
in a movement created by a proper active joint at the
tendrils base.

• Spring actuator
The free-coiling phase allows to pull the stem to-
wards the grasped support. By coming back to the
original/intrinsic helical shape, the tendril shortens the
distance between the fixed end-points. Moreover, the
helical-spring shape is perfectly tuned to resist to exter-
nal loads and disturbances.

These features, together with the strengths related to the
adoption of flexible manipulator systems, strongly support
the study and design of a plant-inspired robotic tendril.

IV. KINEMATIC MODELING

To design a bio-robotic tendril, the overall structure has
been considered from a kinematic point of view. The model
has been conceptualized and simplified dividing the tendril
in two main parts taking into account the different stimulus
sensitivity along the tendril length: the first, Free-Coiling
(FC), mainly devoted to the free-coiling and pulling phase,
and the second, Grasping-Coiling (GC), devoted to the
coiling and grasping phase (Fig. 2).

Thanks to this, the GC part can be subdivided in indepen-
dent modules able to react when in touch or hit by something,
and bend; the FC part, devoted to the pulling, can be viewed
as a single actuator (eventually made of multiple sections)
that changes its shape from a linear wire to a helical spring.

To model the GC part, the approach followed by Jones
and Walker [11] and Hannah and Walker [8] has been
chosen. They worked on the kinematics of multi-section
continuous robots. In this way, at each sub-section can be
associated a kinematic description by means of elementary
pairs/joints, the Denavit-Hartenberg (DH) notation can be
exploited, and a reflex modular motion simulated. Moreover,
a direct relation between a “DH” robotic section and a wire
driven module can be defined allowing to compute the cable
tensions for a particular sub-section motion.

88

(a)

(b)

Fig. 2. GC and FC modules of the bio-mimetic tendril model

The idea is to fully model the kinematics of the tendril
GC part using closed-form equations. This is carried out by
dividing it in sections/modules which can at least bend in
two dimensions.

A. Grasping Part

The GC part has been considered as subdivided in n-
sections. The main assumption is that the tendril section
has a constant curvature. A tendril-based continuous system
lacks joints and each tendril section can be modeled through
an arc of constant curvature, i.e. by means of parameters
such as length, curvature and/or angle of curvature. To shift
between this formulation and a conventional DH formulation,
an equivalent rigid-link-joint section and the transformation
relations have to be defined; thus, to fit a conventional rigid-
link manipulator to the tendril section, the relationship [θ,d]T

= f (l,κ, ϕ), where θ and d are the DH parameters, l the length
section, κ the curvature and ϕ the angle of curvature, has to
be found.

For each section, a simplified robotic system made of rigid
links and joints is defined. Fig. 3 shows the “equivalence”
between the real wire/tendril section and the robotic-tendril.

The section is modeled with a first universal joint, i.e.
two revolute pairs with orthogonal and intersecting axis of
rotation, a prismatic joint, and a second universal joint; this
last joint and the related variables are coupled with those of
the first joint of the following section. The first joint allows to
rotate the local frame axis to be oriented to the section tip, the
prismatic joint allows the translation to the last point of the
section, i.e. the final coordinate frame origin, and the last pair
allows to correctly rotate and orient the local frame with the
following section. Since the last pair of a section and the first
pair of the following are coupled, the independent variables
result in three per section. If the number of sections is
sufficiently high, the prismatic joint can be constrained, since

Fig. 3. Tendril kinematic section

the error made becomes negligible. A fixed rotation on the
x-axis at the beginning of the DH table is added to have the
section extension along the z-axis; moreover, a fixed rotation
at the end of the DH table allows to correctly orient the
tip. The equivalent robotic-tendril independent variables are
chosen in order to properly simulate the real plant behavior.
Tab.I shows the DH parameters related to a tendril section
shown in Fig. 3.

TABLE I
DH TABLE FOR A TENDRIL SECTION

Link a α d θ
- 0 π/2 0 0
1 0 π/2 0 θ1
2 0 π/2 0 θ2 +π/2
3 0 -π/2 d3 0
4 0 -π/2 0 θ4 +π/2
5 0 0 0 θ5
- 0 -π/2 0 0

The resulting homogeneous transformation matrix for each
section of the GC part is:

A = [

−c1s2s4c5 + c1c2c4c5 − s1s5 c1s2s4c5 + c1c2c4s5 − s1c5
−s1s2s4c5 + s1c2c4c5 − c1s5 s1s2s4s5 + s1c2c4s5 − c1c5

(c2s4 + s2c4)s5 −(c2s4 + s2c4)s5
0 0

−c2s4c1 + s2c4 c1c2d3

−s1c2s4 + s2c4 s1c2d3

c2c4 + s2s4 s2d3

0 1

]

where ci = cos(θi) and si = sin(θi).
By simplifying the system and supposing a planar 2-D

motion, the curve becomes planar with a constant curvature.
It can be associated to a planar robotic system made of
two revolute joints with axis of rotation perpendicular to the
plane, linked with a prismatic joint. In such a case, the DH
table results as in Tab. II.

The model is thus highly flexible. This means that it can
both be exploited to simulate the real tendril behavior by

89

increasing the number of sections, and a modular robotic
system made of independent reflexive sections. In the latter
case, the robotic tendril is seen as a chain of independent
embedded modules that can be realized by means of mo-
torized actuators or wire-spring driven systems. Hence, the
kinematic model can represent the base for the evaluation
and control of the real system prototype.

TABLE II
DH TABLE FOR A TENDRIL PLANAR SECTION

Link a α d θ
1 0 -π/2 0 θ1
2 0 π/2 d3 0
3 0 0 0 θ5

B. Free-Coiling Part

The FC part can be adequately modeled by a unique
kinematic section. Indeed, on one hand it is constrained
by the stem/fixed base and, on the other hand, to the
contact/grasping point.

The chosen section has the same characteristics of the
previous defined ones, both for the 3D and 2D motion.
Indeed, thanks to the first universal joint the tendril can be
properly oriented; the prismatic joint allows to consider the
free-coiling main effect, and the second universal joint to
take into account the correct final orientation for connecting
the two bio-mimetic tendril parts. Since the two extreme
points are constrained and no torsion has to be allowed for
both the base and the connection with the GC part, the two
universal joints are passive joints; this means that the related
angular values are defined once ended the grasping phase.
The unique active joint is the prismatic pair; its length value
is the distance between the base and the origin of the first
local coordinate frame of the GC section.

From the kinematic point of view, the problem consists
in a shift of point of view: the end-effector of the section
becomes the base, the stem, and the movement has to be
described with respect to the local reference frame of the
last pair of the section, i.e. the one that now is constrained
and fixed.

V. KINEMATIC SIMULATOR

The derived formulas have been implemented in a Matlab
simulator to simulate the kinematics of a bio-inspired tendril.

The FC section has been defined with a greater length with
respect to the GC sections, e.g. half of the overall length, and
considered in the searching and grasping phase constrained
in its origin point. The GC section has been divided in n
sections of equal length. The circumnutation phase has been
simplified in a centralized motion: only the first universal
joint of the chain is driven; this means that the overall tendril
spans a cone in a 3D motion (or an angle in 2D) searching
a support to be grasped.

The grasping phase has been conceived as a reflex be-
havior considering, for this purpose, each GC section as an
independent module. The prismatic joint has been considered

as fixed in length since a large number of sections are
simulated. This means that, if a GC section touches an
obstacle, it stops the main circumnutation motion; after
that, it reacts by actuating the last joint of the section in
the direction of the stimulus. This results in bending the
remaining tendril in the stimulus direction until when either
another section recognizes a stimulus, i.e. is in touch with the
support, or the minimum curvature angle is reached. In the
former case the bending motion continues and the grasping
by coiling goes on; in the latter case the motion stops and
the tendril motion has to be zeroed/restarted (Fig.s4,4(f)).

The contact has been implemented by searching for each
module if there is intersection between the segment that con-
nects the two universal/revolute joints, i.e. d3, and the surface
to be find, e.g. a cylinder (Fig. 4). Two particular conditions
have been implemented: the minimum and maximum radius.
The former is related to the intrinsic curvature of the tendril
that represents the minimum radius of the object that can be
coiled, the latter is related to the slippage limit, i.e. the limit
over which the tendril slips on the surface and curls. The
DH independent variables are chosen to simulate a smooth
and slow motion, i.e. a small angular step.

The FC behavior has been implemented as a pulling
motion driven by the prismatic joint. In such a case, the
base of the section becomes the connection point between
the GC and FC parts, while the end-effector becomes the
coordinate frame of the stem (Fig.5).

The model can then serve for both replicating the tendril
motion with the aim to better understand its behaviors, and
designing a robotic system made of independent reflexive
sections. These can be conceptualized and realized in a
standard way by means of motorized actuators and, with a
light and simple system purpose, by means of wires and/or
smart materials. In particular, smart material such as Smart
Memory Alloys (SMA) could serve as the technological
base for developing independent modules while miniaturized
touching and force sensors can be exploited for the contact
recognition phase.

VI. CONCLUSIONS

In this work, the tendril capabilities of finding and coiling
around a support, together with the ability to pull the stem
towards the grasped object have been evaluated in a bio-
robotic perspective. The three main tendril behaviors have
been investigated, simplified and modeled from a kinematic
perspective by dividing the system in two main sections:
one devoted to the grasping and the other to the free-coiling
(pulling). A robotic formulation has been defined and the
kinematics, by means of the DH formulation, solved and
simulated. With this bio-inspired model, a first evaluation of
the tendril modular reflex behavior can be done and possible
realization ideas of a tendril-robot can be evaluated.

REFERENCES

[1] A Bicchi and V Kumar, Robotic grasping and contact: a review,
Proceedings of IEEE International Conference on Robotics and Au-
tomation, 2000, ICRA ’00, 1, 348 - 353, San Francisco, CA , USA ,
2000

90

(a) (b)

(c) (d)

(e) (f)

Fig. 4. Bio-mimetic tendril kinematics: grasping

91

(a)

(b)

Fig. 5. Bio-mimetic tendril kinematics: free-coiling

[2] R Buckingham, Snake arm robots, Ind. Robot Int. J. 29(3), 242-245,
2002.

[3] M Calisti, M Giorelli, G Levy, B Mazzolai, B Hochner, C Laschi and P
Dario, An octopus-bioinspired solution to movement and manipulation
for soft robots, Bioinsp. Biomim. 6, 036002, 2011

[4] G Cannata and M Maggiali, An embedded tactile and force sensor for
robotic manipulation and grasping, Humanoid Robots, 5th IEEE-RAS
International Conference, 2005.

[5] C Darwin, On The Movements and Habits of Climbing Plants, London:
John Murray, 1865.

[6] C Darwin, The movements and habits of climbing plants, Appleton,
New York, New York, 1876.

[7] C Darwin and F Darwin, The power of movements in plants, Appleton,
New York, New York, 1880.

[8] MW Hannan and ID Walker, Kinematics and the Implementation of
an Elephant’s Trunk Manipulator and other Continuum Style Robots,
Journal of Robotic Systems, 20: 45-63, 2003

[9] JP Hou, RHC Bonser and G Jeronimidis, Design of a Biomimetic skin
for an octopus- inspired robot- Part I: Characterising octopus skin,
Journal of Bionic Engineering, 8: 288-296, 2011

[10] MJ Jaffe and AW Galston, The physiology of tendrils, Annu. Rev.
Plant. Physiol. 19:417-434, 1968.

[11] BA Jones, ID Walker, Kinematics for Multisection Continuum Robots,
IEEE Transaction on Robotics, 22:1, Feb 2006

[12] BA Jones, ID Walker, Practical Kinematics for Real-Time Implemen-
tation of Continuum Robots, IEEE Transaction on Robotics, 22:6, Dec
2006

[13] R Kang, DT Branson, E Guglielmino and DG Caldwell, Dynamic
Model and Control of a Multiple Continuum Arm Robot Inspired by
Octopus, In Computers and Mathematics with Applications, 2012

[14] C Laschi, B Mazzolai, M Cianchetti, L Margheri, M Follador and P
Dario, A Soft Robot Arm Inspired by the Octopus, Adv. Robotics 26
709-726, 2011

[15] S Mugnai, E Azzarello, E Masi, C Pandolfi, S Mancuso, Nutation
in plants. In: Mancuso S, Shabala S, editors. Rhythms in plants:
phenomenology, mechanisms and adaptative significance. Springer;
2007. pp. 7790.

[16] G Robinson and JBC Davies, Continuum robots - a state of the art,
IEEE Int. Conf. Robot. Automation, 2849-2854, Detroit (USA), 1999

[17] JK Salisbury, Kinematic and Force Analysis of Articulated Hands.
Ph.D. Thesis (Stanford University, Stanford 1982)

[18] B Siciliano, O Khatib, Handbook of Robotics, Springer, 2008.
[19] T Takahashi T, T Tsuboi, T Kishida, Y Kawanami, S Shimizu, M

Iribe, T Fukushima and M Fujita, Adaptive Grasping by Multi Fin-
gered Hand with Tactile Sensor Based on Robust Force and Position
Control, IEEE International Conference on Robotics and Automation
Pasadena,CA, USA, May 19-23, 2008

[20] J Tegin and J Wikander, Tactile sensing in intelligent robotic manipu-
lation - a review, Industrial Robot: An International Journal, Volume
32, Number 1, 2005 , pp. 64-70(7)

[21] KC Vaughn and AJ Bowling, Biology and Physiology of Vines,
Horticultural Reviews, Volume 38, 2011.

[22] I Walker, D Dawson, T Flash, F Grasso, R Hanlon, B Hochner, W
Kier, M Pagano, C Rahn and Q Zhang, Continuum robot arms inspired
by cephalopods, Proc. SPIE, Vol. 5804 (2005) pp. 303-314

[23] I Walker, C Carreras, R McDonnell and G Grimes, Extension versus
bending for continuum robots, Int. J. Adv. Robot. Syst. 3(2), 171-178,
2006

[24] H Yousef, M Boukallel and K Althoefer, Review-Tactile sensing for
dexterous in-hand manipulation in robotics - A review, Sensors and
Actuators A 167 (2011) 171-187

[25] EU Octopus FP7 project, http://www.octopus-project.eu/ accessed on
December 2012

92

Ambient Assitive Technologies: The mobile robot P3AAT

Richard Wagner, Peter Wolff, Klaus Schäffer and Friedrich Praus
University of Applied Sciences Technikum Wien, Department of Embedded Systems

Höchstädtplatz 6, 1220 Vienna
{wagnerr, es11m010, es11m009, friedrich.praus}@technikum-wien.at

Abstract— This paper reports preliminary results on a stu-
dent project dealing with the development of an autonomous
mobile service robot. The robot is able to navigate au-
tonomously, detect bottles in different shapes and grasp them.
The paper describe the hardware components used by the robot
and the software architecture based on the Robot Operation
System.

I. INTRODUCTION AND MOTIVATION

The demographic trend in industrial nations towards an
aged population and a decline in birth rates requires new
strategies to cope with the upcoming social and economic
challenges. Mobile service robotics can provide support to
elderly or disabled persons, foster their autonomy and quality
of life and lower the cost of medical care.
This paper describes the hardware and software architecture
of a mobile service robot called P3AAT, shown in Figure 1.
The robot is named after the the Robot Base Platform P3-
AT and Ambient Assistive Technologies (AAT). The P3AAT
should be able to support elderly people in a daily life routine
to detect a bottle on a table, grasp it and bring it back to
them. Anyway, this mobile platform should be the starting
point for further student projects dealing with navigation,
object detection or object grasping. The P3AAT is modular
in design and function, so it can quickly and easily be
customized to possible future projects.
This paper is structured as follows: Section 2 presents the
hardware configuration and Section 3 describes the software
architecture of the robot P3AAT. Section 4 evaluates the
results and the experiences gained during the software in-
tegration and testing phase. Finally Section 5 concludes the
paper.

II. HARDWARE

This Section describes the hardware-architecture of the
robot P3AAT. As Figure 2, shows the architecture consists
of two separate PCs: A Main-PC on the mobile service
robot and an Remote-PC to access the robot. A joystick is
connected via USB with the remote PC for manual control
of the robot. The depth sensors Microsoft Kinect and Asus
Xtion, the laser scanner and the robotic arm are connected
to the Main-PC on the mobile robot via USB or Ethernet.
The two PCs are connected to each other via a WLAN.

*The work presented in this paper was funded by the City of Vienna,
department MA23, under grant number MA23-Projekt 10-04.

**The authors wish to thank the Department of Computer Science for
providing the hardware used in this project.

Fig. 1. The Robot P3AAT at the attempt to grasp the bootle.

The base platform Pioneer P3AT, which is described in
detail in the next Chapter, contains a microcontroller. The
sonar sensors and the bumpers are directly connected to this
micro-controller. In the beginning of the project a tilting
Hokuyo URG-04LX laser scanner was used to perceive the
environment. The laser scanner was replaced by two depth
sensor because of higher costs. In the current configuration
the robot P3AAT is equipped with three depth sensors: Two
depth sensors are used for navigation purposes and one depth
sensor is used to detect the bottle.

Pioneer P3-AT
Microcontroller

16x Sonar

4x Wheel Encoder

10x Bumper

Emergency Button

PC Platform

Hokuyo 2D Laserscanner

Microsoft Kinect

Asus Xtion PRO

Asus Xtion PRO

USB

USB

USB

USB

Katana Robot Arm

Ethernet

Remote PCJoystick

4 Wheels

Remote

P3AAT

USB

RS232

IO

IO

IO

IO

IO

WLAN

Fig. 2. Hardware Architecture.

93

A. Base Plattform Pioneer P3-AT

The robot, as seen on Figure 1, is based on the platform
Pioneer P3-AT. The Pioneer 3-AT is a cost effective skid-
steer four-wheel drive robot platform for research. The P3-
AT carries 3 swappable batteries to supply the the entire
system with power. The P3-AT reaches speeds of up to 0.8
meters per second and is able to carry a payload up to 12 kg.
P3-AT comes with 8 sonar sensors and 5 bumpers on the back
and on the front of the vehicle. It uses 100 tick encoders with
inertial correction recommended for dead reckoning to com-
pensate skid steering. The P3-AT has a user control-panel to
access its micro-controller (Renesas SH2). The user control-
panel has several buttons, LED’s and interfaces: a motor
enable pushbutton, a system reset, 2 AUX power switches, a
battery charge indicator, a main power indicator and a MIDI
programmable piezo buzzer. The micro-controller Renesas
SH2 runs the ARCOS operating system for low level control
of the engines, the sensor data readings and the battery level.
The micro-controler operates at 44 MHz and features 32KB
of RAM memory and 128KB of flash memory. It has a RS-
232 serial port to communicate with the PC-platform. The
PC-platform consists of a powerful 2.5GHz Intel i5 quad core
CPU, 4GB of RAM, a 120GB SSD drive and an additional
PCI-E FireWire card.

B. Robotic Arm: Neuronics Katana 450 6M90B

In order to manipulate the bottle position a robotic arm is
used. The Neuronics Katana 450 6M90B is a five axis robotic
arm capable of lifting a payload of 400g. The robotic arm
is equipped with a mechanical angled gripper, without any
additional sensors. The Katana 450 provides an Ethernet,
USB and an IO interface [15]. The P3AAT communicates
with the robotic arm via the Ethernet interface.

C. Sensor System

Hokuyo lidar scanner
Range: 0.02 - 5.6 m

Angle: 240°

8x2 Sonar Senors
Range: 0.15 - 7.0 m

Microsoft Kinect
Range: 0.8 - 4.0 m

Angle: 60°

4 x wheel encoders

2x5 bumpers

Fig. 3. Coverage of different sensor systems.

As shown in Figure 3 the robot is equipped with different
kinds of sensors. The advantage of using multiple kinds
of sensors is a more reliable environment measurement by
fusing different sensors or selecting a sensor that matches
in certain situations best. The red rectangle represents the

P3AAT robot. The 16 green circle segments are representing
the sonar sensors. The sonar sensors have a field of view of
360◦ and can be used for driving backwards.
The Hokuyo URG-04LX laserscanner has in theory a view
range about 240◦, due to the hardware construction the
laserscanner has a field of view of 180◦.
The Asus depth sensor consists of an IR camera and IR
projector. It is using a structured light approach called light
coding to generate respective 3D point clouds. The Microsoft
Kinect has additionally a RGB camera and a multi-array
microphone.

As mentioned before, the laserscanner is replaced by two
depth sensors. One depth sensor is mounted slightly above
the floor in the front area of the robot. The range of the depth
sensors are about 0.8 to 4.0 meters. The consequence of this
range is that near obstacles cannot be detected by the depth
sensor. To solve this problem a second depth sensor was
installed. This depth sensor is mounted on the upper frame
of the robot, the view of this sensor is directed downwards
in front of the robot. So near obstacles- in the region less
then 0.8 meters can also be detected, because the navigation
stack is able to manage different input streams.

The third depth sensor is used to detect the bottle. There-
fore it is mounted on the upper frame of the robot and the
view of the sensor is directed to the area in front of the robot.

III. SOFTWARE

The P3AAT uses the Robot Operating System (ROS) as its
operating system. ROS provides libraries and tools to help
software developers to create robot applications. It provides
hardware abstraction, device drivers, visualizers, message-
passing and package management. ROS is licensed under an
open source, BSD license [3].

Pioneer Katana Asus Asus Kinect

Main

Navigation Manipulation Detection

Driver
P2OS

Driver
Katana open_niDriver

Joystick

RVIZ

Remote

GUI

Joystick

ROS

P3AAT

Driver Lidar

LidarHardware

Hardware-
Driver

Core Nodes

Main Node

Fig. 4. Software Archidecture.

Figure 4 shows the distributed software architecture of
the robot P3AAT. The communication between the nodes
is handled by the Robot Operating System. Therefore the
architecture is modular and scaleable. Most of the nodes
are designed to run on the mobile robot platform. Only the
nodes required for visualization purposes and remote control
are launched on the remote PC. The Graphic User Interface

94

is designed to control the robot P3AAT. It is possible to
start the autonomous operation mode, navigate to a specific
point, start the bottle detection sequence or move the robot
arm. Furthermore sensor readings and logging-messages are
displayed in separate tabs. This sensor readings and other
data is also displayed in the visualization tool RVIZ. Also
the joystick driver is running on the remote PC, where the
joystick is mounted.

On the remote PC the architecture is divided in three
software layers. The lowest layer is the hardware driver.
This nodes handle the communication with the hardware
components. These components are provided by different
communities. The driver-node P2OS is provided by the
manufacturer Pioneer. The driver-node KNI is provided by
the University of Osnabrueck. The other driver nodes are
developed by the open source community.
The two other layers (main-node, navigation-node,
manipulation-node and detection-node) are described in
detail in the following Chapters.

A. Main-Node

The main-node represents a finite state-machine. Depend-
ing on the actual step the main-node invokes remote methods
on the navigation, manipulation or detection-nodes.
The standard process is as follows: After the initial state the
main-node invokes a method on the navigation-node to drive
to a specific point - for example in front of the desk, where
the bottle is located. After reaching this position a method
on the detection-stack is invoked to detect the position of
the bottle. Then the robot drives to the close vicinity of the
bottle. Then a method on the manipulation-node is called to
grip the bottle.

B. Navigation-Node

The navigation node is responsible for navigation. To
navigate reliably in indoor environments the robot has to
know its exact location. So for position estimation the
P3AAT follows two approaches:

• The SLAM-Algorithm (Simultaneous Localization and
Mapping) or GMapping, is a highly efficient Rao-
Blackwellized particle filer to learn grid maps from laser
range data [4], [5], [6], [7].

• The AMCL-Algorithm (Monte Carlo Localization),
which uses a particle filter to track the current position
of the robot against a known grid map [8], [9].

The navigation-node provides two interfaces for the main-
node and the GUI. It is possible to navigate the P3AAT to a
specific position in a known environment. This position can
be in front of a desk, where the bottle is located.
Furthermore the P3AAT is able to look for the bottle. For this
operation mode a basic search function was implemented.
The robot is able drive to a random and unknown posi-
tion. When the robot has reached this random position, the
detection-node will be activated to find the bottle. If the
bottle cannot be found, the robot drives to the next unknown
position. In order to compute the random goal position a

costmap grid is used. The costmap takes the sensor data
from the robot and builds a 2D occupancy grid. The lower
the value of a grid cell, the lower is the probability of a
collision with an obstacle in the environment. The obstacles
and its costs are marked with a high value in the costmap
[10]. The path planning is carried out from the move-base
node, which is developed by Eitan Marder-Eppstein. The
move-base node links together a global and local planner
to accomplish its global navigation task. The global planner
provides a fast interpolated navigation function on a costmap
to find a minimum cost plan from a start point to an end point
in a grid. The local planner provides implementations of the
Trajectory Rollout and Dynamic Window approaches to local
robot navigation on a known map. Given a plan to follow
and a costmap, the controller produces velocity commands
to send to a P2OS-node, which sends commands directly to
the P3AAT [11].

move_baseNavigation
Node

Main
Node

GUI

Drive Pos

Random Pos

Drive Pos

Random Pos

Target Pos

Fig. 5. Navigation Software Architecture.

C. Detection-Node

The detection node is designed to detect predefined bottles
on a kind of table scene. The algorithm for detection is
based on the functionalities of the Point Cloud Library (PCL)
[12]. PCL provides a rich tool set for processing large 3D
point clouds. The sensor used for object detection is the
Asus Xtion Pro camera mounted on the upper frame of the
robot. The object detection is responsible for the detection
of possible objects within a scene, checking for matching
objects, calculating the position and pose of matching objects
and forwarding the result to the next processing step.

The detection itself consists of two different stages. A
so called Training-stage and a Detection-stage. In the first
stage a set of descriptors from objects will be created, which
are used in the second stage for recognition. As descrip-
tor/signature for recognition, Viewpoint Feature Histograms
(VFH) are used. VFH is a descriptor for 3D point cloud data
that encodes geometry and viewpoint [13]. Furthermore it is
also supported by the PCL. During the Training stage these
VFH descriptors are created for the respective bottle from
different angles and distances.

95

The architecture of the Detection Service is illustrated in
Figure 6 and consists of the following three nodes:

• Detection Node
• Segmentation Node
• Recognition Node

The Detection Node is responsible to coordinate detection
callups from the P3AAT Main Node or the User Interface.
First the segmentation service is called and after receiving
possible objects the recognition service is started. Therefore
it is also easy to change/replace the segmentation or recog-
nition services by other approaches if needed. Finally, the
Detection Node returns the position of a matching object.
The Segmentation pipeline fetches first a point cloud from
the camera and starts to detect the largest plane model within
the cloud. From the convex hull of the plane the points lying
on the plane are extracted and clustered. If no cluster objects
are found the next largest plane is determined and processed.
Furthermore segmentation calculates the center points of the
detected cluster surfaces.

The Recognition Node receives possible cluster objects
for further processing. First the VFH descriptor is computed
for each cluster and is used in order to match between
previously recorded VFH descriptors, which are loaded into
the Recognition Node during startup.

openni
driver

Interface
Asus

Detection
Node

Main
Node

GUI

Start
Detection

Training
Mode

Start
Detection

Recognition
Node

Segmention
Node

Start
Segmention

Start
Recognition

fetch
Pointcloud

Fig. 6. Detection Software Architecture.

D. Manipulation-Node

The Katana 450 provides a KNI (Katana Native Inter-
face) to control the robot arm, using the C++ programming
language. This interface is used for the ROS integration
of this robotic arm. The software module responsible for
object manipulation is using ROS to move the robotic arm.
The manipulation-node is designed in a service oriented
approach, by using ROS Services [14]. The software archi-
tecture of the manipulation-node is shown in Figure 7 and
provides following services:

• Pickup bottle: This is the main use case of the
manipulation-node. The node receives the position of
the bottle, calculates the trajectory, performs the inverse
kinematic and moves the Katana robotic arm, by using

the Katana stack, towards the bottle position. Afterwards
the gripper is closed and the robotic arm is moved back
to the home position. The service response contains
information if a bottle was gripped or if any error
occurred.

• Operating Mode: This service is used to switch the
operating mode. The service Pickup bottle can only be
used in automatic mode and all other services only in
manual mode. This prevents some manual intervention
during automatic mode.

• Move: The move service provides the ability to drive
the Katana robotic arm by using joint positions as well
as the position of the end-effector.

• Gripper: The gripper service can be used to open or
close the gripper mounted on the robotic arm. The
mentioned services are mainly used by the main-node,
but they can be called by any other ROS nodes such as
a test node or the remote GUI as well.

katana_stackManipulation
Node

Main
Node

GUI

Pick up
bottle

Operating
Mode

Move

Gripper

Move

IK/FK

Gripper

Fig. 7. Manipulation Software Architecture.

To be able to pick up the bottle, the main-node receives
the target position of the detected bottle and calculates a
trajectory from the robots home position to the position of the
bottle. Two different trajectory modes have been evaluated
which are demonstrated in Figure 8. The black trajectory
mode is first adjusting the height of the robots tool point
to the height of the bottle grasping point. Afterwards the
robot is moving its open gripper towards the bottle. The red
trajectory follows a much simple approach by calculating a
direct three dimensional line from the robot’s current position
to the bottle position. The first trajectory mode is more
capable if the bottle position is on a table and higher than
the robot’s current position.

96

Fig. 8. Trajectory modes of the robot arm.

IV. EVALUATION

During the software integration and testing phase some
structural weaknesses has been discovered.

Due to its mechanical construction, the P3AAT is only
able to detect a bottle in a distance of about 1,5 meters. The
room coordinates of the bottle position are transformed into
world coordinates. After that the robot drives towards the
bottle. At this step the Asus camera is not able to detect the
bottle any more, since it is out of focus. This means that
the Katana robotic arm tries to grasp the bottle at a position,
which was calculated from a distance of about 1,5 meters.
Any unknown deviation while navigating towards the bottle
position or before starting the grasping therefore leads to
an unsuccessful or imprecise grab of the bottle. Additional
sensors mounted directly on the robotic arm or a movable
camera are able to detect the bottle within the grab area of the
arm. This will increase the accuracy of detecting the bottle
position.

During the testing phase we tried to optimize the cycle
time. A performance optimization in the detection process
has been carried out by restricting the view of the camera
to a smaller field of interest. The result was a reduction of
cycle time by three seconds.

V. CONCLUSION

The mobile robot P3AAT project successfully demon-
strated the integration of autonomous navigation, bottle de-
tection and grasping into a mobile platform. The chosen
service and node oriented software architecture based on the
Robotic Operating System clearly showed the advantages of
a modular system. So the software- and the hardware-system
can easily be customized or extended by future student
projects.

REFERENCES

[1] G. van den Broek et al., Ambient Assisted Living Roadmap,
VDI/VDE-IT, 2009.

[2] J.C. Augusto et al., Handbook of Ambient Assisted Living - Technol-
ogy for Healthcare, Rehabilitation and Well-being, IOS press, 2012.

[3] Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust, Tully Foote,
Jeremy Leibs, Eric Berger, Rob Wheeler, Andrew Ng. ”ROS: an open-
source Robot Operating System”, Retrieved 3 April 2010

[4] T. Bailey and H. Durrant-Whyte. Simultaneous localization and
mapping (SLAM): Part II. Robotics and Automation Magazine,
13(3):108117, 2006.

[5] H. Durrant-Whyte and T. Bailey. Simultaneous localisation and
mapping (SLAM): Part I the essential algorithms. Robotics and
Automation Magazine, 13(2):99110, 2006.

[6] S. Thrun. Robotic mapping: a survey, Exploring artificial intelligence
in the new millennium, 2003.

[7] R. Patrick Goebel, ROS By Example - Volume 1: A Do-It-Yourself
Guide to the Robot Operating System, Pi Robot Production, pp. 90 -
94, 2012.

[8] D. Fox, W. Burgard, H. Kruppa, and S. Thrun. Markov localization
for mobile robots in dynamic environments. Journal of Artificial
Intelligence. 11, 1999.

[9] R. Patrick Goebel, ROS By Example - Volume 1: A Do-It-Yourself
Guide to the Robot Operating System, Pi Robot Production, pp. 95 -
106, 2012.

[10] Joon-Hong Seok, Joon-Yong Lee, Changmok Oh, Ju-Jang Lee and Ho
Joo Lee. Diverse Multi-Path Planning with a Path-Set Costmap, 2011.

[11] R. Patrick Goebel, ROS By Example - Volume 1: A Do-It-Yourself
Guide to the Robot Operating System, Pi Robot Production, pp. 29 -
46, 2012.

[12] Radu B. Rusu. and Steve Cousins. 3d is here: Point cloud library (pcl).
In 2011 IEEE International Conference on Robotics and Automation
(ICRA), pages 14 -, May 2011.

[13] Radu B.Rusu, Gary Bradski, Romain Thiboux, John Hsu. Fast 3D
Recognition and Pose Using the Viewpoint Feature Histogram. In
2010 IEEE International Conference on Intelligent Robots and System
(IROS), pages 1-4, 2010

[14] Sebastian Thrun, Wolfram Burgard, and Dieter Fox, Probabilistic
Robotics (Intelligent Robotics and Autonomous Agents). The MIT
Press, 2005.

[15] Neutronics AG. Katana 450 User Manual, 2001-2008, Document
Number 233493, Version 2.0.4, page 7, 12

[16] Stanford University, Willow Garage, Univerity of Southern California
ROS: an open-source Robot Operating System, page 3

97

Automatic Modelling and Observers Generation for Model-Based
Diagnosis System for ROS-Based Robotic Systems

Safdar Zaman, Gerald Steinbauer

Abstract— Fault detection and repair are necessary actions
for a robotic system that claims to be fully autonomous. Model
based diagnosis system compares diagnosis model with the
observed model in order to detect faults at runtime. Diagnosis
model is a set of rules describing correct behavior of the
robotic system while the observed model is the output of the
monitoring system carried out by several observers with differ-
ent parameters. In the contribution we present a methodology
for automatic generation of the diagnosis model and diagnosis
observers. The methodology gets the running system as input
and extracts required entities like nodes and topics. The work
also presents the calculation of the node related properties like
cpu and memory usage, and also calculation of properties like
frequency and deviation related to each topic. For testing
purpose we used Mapping scenario with Pioneer-3DX robot.
Methodology successfully generates diagnosis model and ob-
servers with required parameters. the presented work offers two
major contributions: automatic generation of diagnosis model,
and generation of observers with required system parameters.

Key–Words: Model-Based Diagnosis, Modelling, Observers, and
Learning.

I. INTRODUCTION

For achieving a given specific task automatically, every
robotic system uses a number of sensors like Laser sensor,
Camera, Gps, Imu, .etc. During accomplishing its task, it
is likely that robotic system gets faults if a sensor leaves
functioning or starts publishing wrong data because of mal-
functioning of some other component. To cope with this
problem it is necessary to have a monitoring system that
can not only detect such faults but also can repair them at
run time. In order to acquire the model of the behavior of the
robotic system one has to have some mechanism to analyse
the the data coming from its sensors. This data describes the
behavior of that robotic system at runtime and can be used to
model that behavior. The model of the correct behavior can
be obtained from robotic system when it does not generate
any faults at runtime. A model of observed behavior of the
robotic system is one which is obtained by monitoring the
data from its sensors at runtime. These both models can
then be used for fault detection. For a robotic system to
have a self-monitoring capability at runtime, it is important
for it to know its correct behavior besides having obtained
observed behavior. A fault can be detected if there is a
significant deviation between correct and observed behavior
of the robotic system. The Model-Based Diagnosis (MBD)
system uses diagnosis model in order to diagnose and detect

S. Zaman and G. Steinbauer are from the Institute for Soft-
ware Technology, Graz University of Technology, Graz, Austria.
{szaman,steinbauer}@ist.tugraz.at

faults. This diagnosis model is a set of rules representing
the correct behavior of the robotic system. A more carefully
built diagnosis model leads to more correct and effective fault
detection process. Previously diagnosis model was prepared
by the user and MBD system used it for fault detection.
For writing diagnosis model user had to closely look into
the structure of the robotic system and communication
between its executing components. Generating diagnosis
model by hand may lead to incorrect, less saturated, and
incomplete model. Moreover, manually generating process
of the diagnosis model is more time consuming, hard, and
more attention requiring especially when robotic system is
more complex and contains a lot of communicating nodes.
In order to overcome all of these problems an automatic
generation of diagnosis model has become vital because it is
flexible, less time consuming, more correct, easily repeatable,
and finally machine oriented. Automatic generation of the
observers is as important as generation of diagnosis model
for the reason that observers need parameters like CPU
and Memory usage for nodes, and frequency and deviation
parameters for publishing topics, .etc. All these parameters
can be easily calculated automatically during generation of
diagnosis model parallely. In the contribution we present a
methodology that basically performs three important tasks:
automatic generation of diagnosis model, calculation of the
parameters, and finally generation of the observers. Gener-
ated diagnosis model and observers are used by MBD system
to find out root cause of the faults if any. The presented
work is ROS(Robot Operating System)-based that means it
revolves around the concepts of nodes, topics, messages
and services [1].
The presented work is organized as follows: Related work on
software, and hardware fault detection and repair is reviewed
in Section II, it also includes learning of fault detection
models from communication data in robotic systems. Section
III explains our MBD system and its modules like observers,
diagnosis model server, diagnosis engine, and diagnosis
repair engine. MBD system is in fact the prerequisite of
the presented work. MBD system uses diagnosis model
and observers for fault detection and afterwards repairs the
detected faults using diagnosis repair engine. In section IV
the methodology of the presented work is explained in detail.
Section V describes the experiment for mapping scenario
where we use Pioneer DX-3 robot with SICK laser and IMU
sensors as shown Figure 4. Section VI briefly summarizes
the presented contribution and provides future challenges.

98

II. RELATED WORK

Research on fault detection and repair has been under
consideration of the researchers in the direction of both soft-
ware and hardware. Early research works like [2] presented
mechanism for fault detection for robot control software
based on MIRO framework [3]. Our approach uses the ROS
framework [1] which is new, rapidly growing and mostly
used by the robotic laboratories. Automated learning of
the communication models for robot navigation software is
presented by [4], this work describes an approach that de-
rives a model of the communication behavior within control
software. Some works presented approaches for repairing the
faults after detecting them [5]. It also provides mechanisms
for reconfiguration of the mobile robot at runtime. It provides
a control framework which is capable of reconfiguring the
functionality of hardware drive units and handles their ge-
ometries. The work [6] provides a ROS-based architecture
for the fault detection and repair in both software and
hardware. Faults dealt in this work includes getting down
a running software component, not providing sensor data
with required frequency and so on. On-line diagnosis system
for fault detection in current measurements in a distributed
embedded hybrid system like Xerox DC265 printer has
been presented in previous works [7], [8], which provide
means towards hardware fault detection. Works like [9],
and [10] presented some learning techniques for the model
of communication data in robotic systems. These provides
techniques for creating a statistical model out of internal data
exchange and communication in the robotic system.

III. PREREQUISITE SYSTEM

Presented work is an extension of our Model Base Diagno-
sis (MBD) system [11]. It is Robot Operating System (ROS)
based architecture. MBD system has different components: a
set of observers, one diagnosis model server, one diagnosis
engine, and one diagnosis repair engine. Observers include
general observer (GObs) for observing the topic’s frequency,
node observer (NObs) for monitoring the node if it is running
or not, diagnostic observer (DObs) for integrating existing
ROS /diagnostics topic, hardware observer (HObs) for ob-
serving the diagnostic board, qualitative observer (QObs)
for measuring the qualitative trend of a value inside the
message coming on a topic, multiple observer (MObs) is to
observe the conditional communication between the topics,
and finally property observer (PObs) for checking the prop-
erties like cpu and memory usage for a node. An observer
is an executable software entity functioning as ROS node
to publish information related to the system components on
ROS topic /observations. This information is in the form of
First Order Logic (FOL) sentences like ok(topic name) or
¬running(node name) describing that topic topic name
is working properly and node node name is functioning
abnormally. Diagnosis model server is a ROS action server
that reads diagnosis model of the robotic system from a
YAML file and whenever required it publishes this diagnosis
model in a required form for the diagnosis engine. Figure 1
describes the MBD system with its all modules:

Diagnosis
Engine

Repair
Engine

Diagnosis
Model
Server

Operating
System

Repair
Model

Hardware
Diagnosis

Board

HDB
Node

Diagnosis
Model

PObs

ROS
Master

DObs
Hardware

Node

ROS
Diagnostics

Tools

GObsNode GObsNode GObsNode

QObsNode

Node Node MObs

O
bservations

D
iagnosis

Node Actions

Power Actions

OS-related
Actions

NObs

BiQObs Node Node

Fig. 1. Architecture of the Model Based Diagnosis System showing its
modules and communication between them.

Diagnosis engine follows the diagnosis principles pre-
sented in [12] and finds the diagnosis at runtime by using di-
agnosis model and observations coming from the observers.
Diagnosis engine publishes diagnosis on ROS topic /diag-
nosis in the form of set bad(m) for faulty components m,
and good(m) for the working components m. After having
computed diagnosis MBD system activates Diagnosis Repair
Engine which is in fact a planner based repair engine using
well known Planning Domain Definition Language (PDDL)
[13] for finding set of action plans for repair. Diagnosis repair
engine takes diagnosis and observations, and invokes the
planner to get the action plans for the repairing. After getting
action plans diagnosis repair engine invokes action servers
like start node(node) or stop node(node) to start or stop
a software node, and action servers power up(device) , and
shutdown(device) in order to switch off or on a hardware
device. During this whole process of fault detection and
repairing MBD system is always active and continuously
observes the robotic system at runtime. Our MBD system
can be downloaded from the ROS Wiki1.
The Model-based diagnosis system revolves around the diag-
nosis model and observers. Diagnosis model provides prede-
fined model while observers provide the currently observed
model, on the basis of these both models MBD system
detects the faults, therefore it is very much important to
generate these both entities correctly.

IV. PRESENTED METHODOLOGY

In the contribution we present a methodology for auto-
matic generation of diagnosis model and observers for the
MBD system. A special software entity called Generator
has been written to accomplish these tasks. Diagnosis model
is used by the diagnosis engine for detecting the faults
whereas observers are used for monitoring the robotics sys-
tem at runtime. Following subsections describes the modules
of presented methodology:

A. Diagnosis Model

Diagnosis model is a central concept in the Model based
diagnosis system. Diagnosis model not only describes the
correct behavior of the running robotic system but it also

1http://www.ros.org/wiki/tug ist model based diagnosis

99

plays vital role in detecting the root cause of the failure. The
precisely and more carefully created diagnosis model is very
much important for the fault detection process of diagnosis
system. Process of creating model manually can lead to less
precise and less system describing model because user needs
to carefully describe the components of the system and asso-
ciation between them which is liable to error. Therefore this
work presents automatic generation of the diagnosis model
instead of creating it manually. Following two subsections
describe the structure and automatic generation the diagnosis
model.

B. Diagnosis Model Structure

Diagnosis model is a structure that defines five compo-
nents: (1) a string denoting the proposition that represents
the AB (abnormal) predicate, (2) string representing ¬AB
(normal), (3) a string for a prefix denoting a negative
literal, (4) set of propositions, (5) set of clauses defining
diagnosis model. Following is a simple diagnosis model
structure showing a scenario of running node ”node” which
publishes data on a topic named ”node topic”. This structure
defines three strings ”AB”, ”NAB”, and ”not ” , set of
propositions for the correct status of nodes and topics, and
finally set of rules defining behavior of the communicational
nodes. The rules describe that a node is fine if it is running
and its topic publishes data with the right frequency. This
is described with a simple structure of diagnosis model as
below:
ab: "AB"
nab: "NAB"
neg_prefix: "not_"
props:

- running(node)
- ok(node_topic)

rules:
- NAB(node) -> running(node)
- NAB(node) -> ok(node_topic)

C. Automatic Generation of Model

The process of automatic generation of the model assumes
that robotic system during the training runs correctly and
no fault occurs during this training. This process is carried
out by a software entity called Generator which is now a
part of MBD system, and is described in the Figure 2. In
order to keep this model generation process flexible and less
complex it is divided into different modules. Each module
has a specific task where it takes some input and produces
the output which is further input for the next module. Overall
input of the generation process is currently executing robotic
system, and its output is automatically generated observers
and diagnosis model. Following subsections describe each of
the modules in detail:

1) Get System State: This sub phase takes internal
representation of the currently running robotic system
from the ROS master. This internal representation is the
system state of the currently running robotic system. It
includes all subscribers, publishers, topics, services, .etc. At
runtime, this phase is executed repeatedly and concurrently
to find out if a new new node is started running. Topic
is the means on which nodes share information among
them and it provides an interface between the nodes for

Get System State

Extract Nodes Extract Topics

topicsnodes

Calculate

 frq, dev

Calculate

Cpu, Mem

Keep and Update

 Information

<node,cpu,mem> <topic,frq,dev>

Sys

Reached

yes

no

Model &

Observers

Generation
Diagnosis Observers

Diagnosis Model

?
 Goal

Running System

Fig. 2. Generator: Overview of the process of automatic modeling and
observers generations.

communication. System status may also be considered as a
graph representation of the nodes and topics where nodes
make the ”nodes” of the graph and topics are on the ”links”
between the nodes. The system state looks like list of lists
of components of the system. Basically three lists; 1) list
of publishers giving nodes which publish on topics, 2) list
of subscribers that receive information from the topics, and
3) the list of services that provide some functionality when
requested. System state can be described in terms of set S
as follows:

S = {Pb, Sb, Sr}
Where Pb, Sb and Sr are the sets ROS publishers,
subscribers, and services as:

Pb = {Pb1, P b2, P b3,} where Pbi = {ti, P bti}
and Pbti is the set of all publisher nodes for the topic ti.

Sb = {Sb1, Sb2, Sb3,} where Sbi = {ti, Sbti} and
Sbti is the set of all subscriber nodes for the topic ti.

Sr = {Sr1, Sr2, Sr3,} where Sri = {si, P rsi}
and Prsi is the set of all service provider nodes for the
service si.

2) Extract Nodes: Main component of a ROS-based
robotic system is the node. A node is an executable program
inside the system which transmits information, communi-
cates with other system components. A node can be either
publisher due to transmitting information, or subscriber
due to receiving information from other nodes. The node

100

has very important influence over the running system per-
formance, therefore this module takes the system status as
input and finds all executing nodes of the system. One node
could appear more than one time in the system status if
it is publisher of many topics. This sub phase also takes
care of repeating nodes and makes a globe list of the nodes
where one node appears only once and it is updated on each
iteration if a new node comes in. This global list of nodes
can be accessed within whole generator.

3) Extract Topics: The second important component of a
ROS-based robotic system is the topic. Topic is a channel
on which node publishes its information to be further used
by other nodes. This sub phase extracts the topics from the
system status and creates a globe list of the topics where a
topic appears only once. In the system status it could be the
case that more than one node can publish information on the
same topics. The global list of the topic is accessible within
the whole generator.

4) Calculate Frequency and Deviation for Topics: Infor-
mation on a topic appears with some frequency. This sub
phase creates a callback against each publishing topic and
calculates current frequency and deviation of appearing data
on the topic. It is done by calculating the time of arriving
data on a topic. The ∆t is the time difference between two
occurrences, this is also calculated and filled into a circular
queue as shown in the following equations:

∆ti = curr timei − prev timei

T =
1

N

N∑

i=1

(∆ti) (1)

frq =
1

T
(2)

The curr timei and prev timei are the current and pre-

ws

data

time −−>

Fig. 3. Occurrence of data with sliding window for calculations.

vious time at occurrence number i. N is the number of
occurrences occurred within time ws which is time window
size. Equation 1 calculates average time differences between
all successive occurrences happened in the time ws, while
Equation 2 calculates the frequency. Figure 3 gives an idea
of occurrences of data and how window slides along it to get
the calculations for frequency. Each time a new occurrence

comes the frequency is calculated by dividing 1 by average
of all the values in the queue. The average is calculated by
summing up all the delta times in the queue and dividing it
by the number of occurrences obtained during time window
size ws. This module also calculates properties like cpu and
memory usage for each running node. This is calculated by
getting process identification pid of a node from the ROS
Master, and this pid is then used in sub process in Linux shell
to get the cpu and memory usage in percentage for the node
bearing pid. Cpu and memory usage is calculated during
whole run and the maximum usage of cpu and memory is
considered for the observation by the observers.

5) Storing extracted information: The information ex-
tracted and calculated by above sub phases is kept and
repeatedly stored in a two data structures each for node and a
topic. Both node and topic data structures are shown below:
node_data_structure:{

node_name,
node_pid,
max_cpu,
max_mem,
pub_topic_list,
sub_topic_list

}

topic_data_structure:{
topic_name,
publish_frq,
publish_dev

}

Node data structure contains name, process id, maximum
cpu and memory usage, list of published topics, and list
of subscribed topics by each node. Topic data structure
maintains topic name, publishing frequency and deviation
for each topic in the system. All this information is stored
for later usage for automatic generation of the model and
observers.

6) Observers Generations: The above process continues
as long as robotic system task is achieved like during
Mapping moving to a point ’A’ and then coming back. All
the necessary requirements for the observers are calculated
during this whole process. There are different observers with
different requirements like node observer (NObs) needs name
of the node, property observer (PObs) needs name of the
node, name of the property (cpu or mem) and then maximum
value, general observer needs topic name, required frequency,
deviation, window size and slope. All other observers also
have some requirements. This sub phase retrieves all the
collected information during the robotic system run, and
makes a launch file preparing all the observers with their
needed parameters. This launch file can be used to bring all
the observers up.

7) Model Generation: This sub phase is generates diag-
nosis model by taking robotic system as input. It retrieves
all the collected information during the above sub phases
like list of nodes, topics, subscribing topics and publishing
topics. In the current generation of the diagnosis model we
consider only following three clauses to make the rules for
the model:

1) for each n ∈ N add:
¬AB(n)→ running(n)

2) for each n ∈ N and each t ∈ out(n) add:
¬AB(n) ∧∧

i∈in(n) ok(i)→ ok(t)

101

3) for each n ∈ N and each p ∈ property(n) add:
¬AB(n) ∧ running(n)→ ok(n, p)

Where N is the set of all ROS nodes, out(n) is the set of all
publisher (outgoing) topics of node n, likewise in(n) is the
set of all subscribing (incoming) topics to the node n. The
function property(n) is the set of properties utilized by the
node n, e.g. cpu,memory.
Applying the above three rules a diagnosis model is automat-
ically generated for the running system. This automatically
generated diagnosis model is afterwards stored in a YAML
file for subsequent use in MBD system.

V. EVALUATION

For evaluating Generator we carried out experiment for
the scenario of mapping with Pioneer DX-3 robot equipped
with SICK laser sensor as shown in Figure 4.

Fig. 4. Pioneer DX-3 robot with SICK laser sensor for mapping.

Presented teleoperated mapping scenario needs ROS nodes
namely aria for the pose estimation and movement of the
robot, sicklms node for Sick laser sensor and gmapping
for generating the map, telop node for teleoperating the
robot, and joy node for the joystick. Node aria publishes
robot odometry on topic /pose, sicklms node publishes laser
scans on topic /scan, and gmapping constructs the map and
publishes it on the topic /map, telop node node provides
command velocity to the robot base on topic /cmd vel,
and joy node provides connection to joystick and publishes
signals on topic /joy. Both nodes aria and sicklms need
no subscribing topic while gmapping subscribes two topics
/pose and /scan. Basically we have two sets for nodes N =
{aria, sicklms, gmapping, telop node, joy node} and for
topics T = {pose, scan,map, cmd vel, joy} This scenario
is shown in the Figure 5.

The automatically generated diagnosis model by the
Generator for this mapping scenario is described below:
ab: "AB"
nab: "NAB"
neg_prefix: "not_"
props:

- running(aria)
- running(sicklms)
- running(joy_node)
- running(telop_node)
- running(gmapping)
- ok(pose)
- ok(scan)
- ok(map)

sicklms

/pose

aria
/cmd_vel

/joy

joy_node

gmapping
/map

telop_node

/scan

Fig. 5. Teleoperated mapping scenario.

- ok(joy)
- ok(cmd_vel)
- ok(aria,cpu)
- ok(aria,mem)
- ok(sicklms,mem)
- ok(sicklms,cpu)
- ok(joy_node,mem)
- ok(joy_node,cpu)
- ok(telop_node,mem)
- ok(telop_node,cpu)
- ok(gmapping,mem)
- ok(gmapping,cpu)

rules:
- NAB(aria)->running(aria)
- NAB(aria),ok(cmd_vel)->ok(pose)
- NAB(aria),running(aria)->ok(aria,cpu)
- NAB(aria),running(aria)->ok(aria,mem)
- NAB(laser)->running(laser)
- NAB(sicklms)->ok(scan)
- NAB(sicklms),running(sicklms)->ok(sicklms,cpu)
- NAB(sicklms),running(sicklms)->ok(sicklms,mem)
- NAB(gmapping)->running(gmapping)
- NAB(gmapping),ok(pose),ok(scan)->ok(map)
- NAB(gmapping),running(gmapping)->ok(gmapping,cpu)
- NAB(gmapping),running(gmapping)->ok(gmapping,mem)
- NAB(joy_node)->running(joy_node)
- NAB(joy_node)->ok(joy)
- NAB(joy_node),running(joy_node)->ok(joy_node,cpu)
- NAB(joy_node),running(joy_node)->ok(joy_node,mem)
- NAB(telop_node)->running(telop_node)
- NAB(telop_node),ok(joy)->ok(cmd_vel)
- NAB(telop_node),running(telop_node)->ok(telop_node,cpu)
- NAB(telop_node),running(telop_node)->ok(telop_node,mem)

The diagnosis model shown above comprises of twenty
propositions and twenty rules. Propositions are for the
correct status of all five nodes and their five topics. Rules
regarding node aria describe that the node is ok if it is
running, its input topic is publishing properly, it is running
under cpu and memory limits. The same rules are for all
five nodes.
Generation of the observers is also carried out at the
end. All the acquired information from the running
system is used to make the parameters for the relevant
observers. Each topic gets one GObs, each node gets three
observers NObs, PObs for cpu, and PObs for memory usage
observation. The launch file for observers was automatically
generated, three observers namely NObs, PObs, and GObs
for node aria, sicklms, and topic map with extracted system
parameters are shown below:

<node pkg="tug_ist_diagnosis_observers" type="NObs.py" name="ariaNObs" >
<param name="node" value="aria" />
</node>

<node pkg="tug_ist_diagnosis_observers" type="PObs.py" name="sicklmsCpuPObs" >
<param name="node" value="sicklms" />
<param name="property" value="cpu" />
<param name="max_val" value="2" />
<param name="mismatch_th" value="5" />
<param name="ws" value="150" />
</node>

<node pkg="tug_ist_diagnosis_observers" type="GObs.py" name="mapGObs" >
<param name="topic" value="map" />
<param name="frq" value="19.8117276201" />
<param name="dev" value="0.0298082886436" />
<param name="ws" value="100" />
</node>

The values of the parameters like max val, frq, dev, are cal-
culated automatically while some values like mismatch th

102

and ws are taken from the user. An observer issues an alarm
when observed value mismatches the given property value
continuously for times more than mismatch th. Alarm is
also issued when the frequency of a topic goes beyond the
given frequency frq with dev within window size ws. Such
observers for all system nodes and topics are automatically
generated. The current model contains five nodes and five
topics so there are as many as twenty observers are generated
among them five NObs observers, five GObs observers and
two PObs observers for each node for cpu and memory
usage.

VI. CONCLUSION AND FUTURE WORK

In the contribution the presented work presents automatic
modeling for the ROS based Model-Based Diagnosis (MBD)
system. Diagnosis model is a structure that describes the
correct behavior of the robotic system. MBD system uses di-
agnosis model for the fault detection. Carefully and correctly
created diagnosis model is necessary for precise, effective
and efficient fault detection process. This work offers a
Generator that has been created as part of MBD system
for the automatic generation of the diagnosis model. At
runtime the Generator takes the robotic system as input
and finds system components, association between them,
which component sends message to which component, what
properties like cpu and memory usage for each component;
all this information is automatically extracted from the
system. Some rules have been defined which are applied
to automatically generate the diagnosis model. Besides gen-
eration of the diagnosis model, Generator also generates
observers namely Node observer (NObs) for each node,
General observer (GObs) for each topic, Property observers
(PObs) to monitor cpu and memory for each node, are also
automatically generated.
For future work we intend to consider more practical and
complex robotic system for automatic modelling. It will also
be needed to investigate how robust the model generation is.
More rules for conditional communication need to be added
to deal with triggering nature of communication between the
topics. Future work is also to add more rules and put more
intelligence for automatic modelling. It is also intended for
future work to use automatically generated model along with
diagnosis engine of MBD system to validate the generated
model. Also future work includes applying some learning
techniques to learn the correct behavior of the system.

VII. ACKNOWLEDGMENT

Safdar Zaman gratefully acknowledges the support from
Higher Education Commission (HEC) of the government
of Pakistan funding his PhD studies at Graz University of
Technology in Austria.

REFERENCES

[1] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng. Ros: an open-source robot operating system.
In ICRA Workshop on Open Source Software in Robotics, 2009.

[2] Gerald Steinbauer, Martin Mörth, and Franz Wotawa. Real-time diag-
nosis and repair of faults of robot control software. In International
RoboCup Symposium, volume 4020 of Lecture Notes in Computer
Science, Osaka, Japan, 2006. Springer.

[3] Hans Utz, Stefan Sablatng, Stefan Enderle, and Gerhard K. Kraet-
zschmar. Miro middleware for mobile robot applications. IEEE Trans-
actions on Robotics and Automation, Special Issue on Object-Oriented
Distributed Control Architectures, page 18(4): 493497, August 2002.

[4] Alexander Kleiner, Gerald Steinbauer, and Franz Wotawa. Towards
Automated Online Diagnosis of Robot Navigation Software. In First
International Conference on Simulation, Modeling, and Programming
for Autonomous Robots (SIMPAR 2008), volume 5325 of Lecture
Notes in Computer Science, pages 159–170. Springer, 2008.

[5] Mathias Brandstötter, Michael Hofbaur, Gerald Steinbauer, and Franz
Wotawa. Model-based fault diagnosis and reconfiguration of robot
drives. In 2007 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), San Diego, CA, USA, 2007.

[6] P. Lepej, J. Maurer, G. Steinbauer, S. Uran, and S. Zaman. An inte-
grated diagnosis and repair architecture for ros-based robot systems. In
International Workshop on Principles of Diagnosis (DX 2012), Great
Malvern, UK, 2012.

[7] F. Zhao, X. Koutsoukos, H.Haussecker, J. Reich, and P. Cheung.
Distributed monitoring of hybrid systems: A model-directed approach.
International Joint Conf on Artificial Intelligence (IJCAI01), page
Seattle, August 2001.

[8] X. Koutsoukos, F. Zhao, H.Haussecker, J. Reich, and P. Cheung.
Fault modeling for monitoring and diagnosis of sensor-rich hybrid
systems. Proceedings of IEEE Conference on Decision and Control
(CDC 2001), pages Orlando, FL, Dec, 2001.

[9] R. Golombek, S. Wrede, M. Hanheide, and M. Heckmann. Learning
a probabilistic self-awareness model for robotic systems. In 2010
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2010.

[10] R. Golombek, S. Wrede, M. Hanheide, and M. Heckmann. A method
for learning a fault detection model from component communication
data in robotic systems. In Seventh IARP Workshop on Technical
Challenges for Dependable Robots in Human Environments, Toulouse,
France, 2010.

[11] S. Zaman, G. Steinbauer, J. Maurer, P. Lepej, and S. Uran. An
integrated model-based diagnosis and repair architecture for ros-based
robot systems. In IEEE International Conference on Robotics and
Automation (ICRA-2013), Karlsruhe, Germany, 2013.

[12] Raymond Reiter. A theory of diagnosis from first principles. Artificial
Intelligence, 32(1):57 – 95, 1987.

[13] Craig Knoblock, Anthony Barrett, Dave Christianson, Marc Friedman,
Chung Kwok, Keith Golden, Scott Penberthy, David E Smith, Ying
Sun, and Daniel Weld. Pddl the planning domain definition language.
AIPS-98 Competition Committee, 78(4):1–27, 1998.

103

Making Service Robots Safer - Affordable Tactile Sensing for Large
Surface Areas

Michael Zillich, Walter Wohlkinger and Wendelin Feiten

Abstract— Most of today’s robots, while being equipped with
arrays of ever more impressive sensors, still lack a fundamental
ability so readily available to biological systems: a sense of
touch. With the exception of a few humanoid platforms tactile
sensing is typically limited to small areas such as palms or
finger tips. In this paper we present a tactile sensing system
designed specifically to meet the needs of safe service robotics
for covering large, possibly curved surfaces of the robot. The
sensors are at the same time highly sensitive and robust, cheap
to manufacture and can be made to have almost any size and
shape. As such the presented system can ideally complement
existing systems and their high spatial resolution required in
finger tips with a system providing highly sensitive and impact
resistant coverage for the rest of the body.

I. INTRODUCTION

Service robots operating in real world environments such
as offices or home environments often need to navigate in
tight spaces or in close vicinity to humans. And while sensing
(especially 3D vision) is improving at a rapid pace, there will
always be some obstacles that are hard to detect (tables with
a glass surface, thin metal table legs) or are actually moving
in unpredictable ways (such as pets or children). Think for
example of a robot struggling a bit to navigate a doorway, and
the impatient user tries to squeeze past the robot through the
door, when the robot suddenly makes a corrective manoeuvre
and pins the user against the door frame. Sonar and IR rings
for close range collision detection have a very limited field
of view (typically in one plane) and thus can not provide full
coverage. Therefore we believe that safe operation of service
robots requires tactile sensing for collision detection across
large parts of the robot body.

Tactile sensing, however, is one of the big open areas
in robotics. Many solutions target sensitive high resolution
sensors for use in robotic fingers to support tasks such as
grasp stability assessment [1] or tactile servoing [2]. These
solutions typically use piezo-resistive or piezo-capacitive
elements in a regular array on a printed circuit board. They
are thus by design limited to small areas and tend to be
rather fragile. A problem when covering larger areas beyond
fingers is the amount of cabling required to get the large
number of signals off the sensors. Multiplexing and serial
bus systems can alleviate this problem to some degree, but
the underlying problem remains, which is that not all parts
of a robot body require the same high resolution and fidelity
in tactile sensing. As a consequence comparatively little

Michael Zillich and Walter Wohlkinger are with the Automa-
tion and Control Institute, Vienna University of Technology, Aus-
tria [zillich,wohlkinger]@acin.tuwien.ac.at, Wen-
delin Feiten is with Siemens Corporate Research, Munich

attention has been paid to covering large and possibly curved,
oddly shaped areas with rugged sensors that are robust to
impact and wear.

In this paper we propose to revisit an old principle for
usage in a sensing system specifically addressing the need
to cover large areas of a robot, possibly the whole chassis.
The basic principle is used in a coarser version in crude push
buttons where a pressure sensor inside an airtight rubber
tube detects the increase in pressure as the user hits the
device. In the presented system a core of soft foam rubber
with an embedded pressure sensor is covered in an airtight
sleeve. Deformation of the foam rubber core again results in
a measurable increase in pressure.

The presented sensor system offers
• high sensitivity in the order of tens of milliNewtons
• flexible size and shape of the sensing elements
• accordingly variable spatial resolution down to around

1 cm square
• inexpensive and rugged design

It is thus intended to complement rather than replace cur-
rently employed systems with spatial resolutions in the mm
range. These fine sensing devices are optimally suited for
the fingers of robotic manipulators where the high resolution
pressure “image” delivered by taxel fields supports tasks
such as dexterous manipulation. The presented coarse sensor
system is suited to cover large parts of the robot’s body,
where spatial resolution is less of an issue but collisions
need to be detected reliably and with high sensitivity.

The contribution of this paper thus lies in demonstrating
the viability of a seemingly overlooked inexpensive and
robust sensing technology to provide complementary capa-
bilities to those already widely in use.

II. RELATED WORK

A variety of different tactile sensing methodologies have
been proposed in the literature. Neither an early survey on
robot tactile sensing technology by Nicholls and Lee [3]
however, nor the more recent survey on tactile human-robot
interaction by Argall and Billard [4], or the Springer Hand-
book of robotics [5] mention this specific sensor principle.

Among the many different approaches mentioned in the
above surveys, we will look at those closely related to the
presented method.

One possibility to provide tactile sensing over large areas
of the robot body is the use of segments of hard shell
attached via several sensing elements, as exemplified in Iwata
et al. [6] and Frigola et al. [7]. These hard shells however

104

have limitations in covering e.g. articulated body parts such
as arms.

A similar approach to the one presented here is followed
by Syntouch1. This fingertip sensor uses a combination of
tactile electrodes and a liquid inside a rubber enclosure
(instead of air as in our case). It can measure force, vibration
and temperature, allowing to estimate tri-axial forces, dis-
criminate various curvatures, textures and object compliance.
The sensor is however explicitly designed for fingertips,
being available for the Barrett and Shadow hands.

The system employed by Wösch and Feiten [8] used a
number of sensor segments in the order of 10× 10 cm size,
each consisting of a sandwich of two conductive foam layers
separated by an insulating net. When a force is applied to
the package the conductive foams get into contact, with the
resistance at the point of contact depending on the amount
of pressure. Electrodes are attached to both ends of the top
layer, creating a voltage gradient inside the conductive foam.
The voltage at the point of contact thus depends on the
position along the gradient. Using two such packages with
perpendicular gradients thus allows to detect the point of
contact on the surface of the sensor. This system allows
sensor segments of various sizes and shapes covering large
areas of the robots surface, and is inexpensive and robust. It
is however limited to detection of a single contact point.

Minato’s et al. [9] CB2 child like robot is covered in a
whole-body soft skin consisting of a silicon surface with
197 tactile sensors sandwiched between a urethane form
and a silicone skin. The output of these embedded film-type
piezoelectric sensors (PVDF) is proportional to the rate of
change of bending (deformation rate), and a contact force is
obtained by temporal integration of the sensor output. As
the deformation of the urethane foam spreads somewhat,
deformation can also be measured for forces applied between
two sensors. The Robovie series of robots [10], [11] also uses
this type of sensor, with up to 276 sensing elements.

Mukai et al. [12] use tiles of piezo-resistive semiconductor
pressure sensors to cover the arms and chest of the elastic
body of the robot RI-MAN.

The modular skin of pressure-sensitive elements developed
by Ohmura et al. [13] can be folded and cut, and coverage
modified conveniently by addition/deletion of the modules,
which communicate via a serial bus. A sensor consists of
a photo-reflector covered by urethane foam, and pressure is
detected by the light scattering caused by foam deformation.
In [14] the body of a humanoid robot is covered by a skin
consisting of 1864 of these sensor elements.

Minato et al. [15] present a pressure sensor consisting of
a small hard plastic plate with a spring-like attachment to
the robot body, which covers a photo emitter and interrupter
pair able to detect changes in pressure. 90 if these sensors
are used to cover the body of the humanoid BabyBot.

The system by Yoshikai et al. [16] uses an approach
slightly different from the above for the robot macra, where
the body is studded with 49 3-axis force sensors which are

1http://www.syntouchllc.com

foam core

rubber coating

pressure sensor

Fig. 1. Design of a sensing element

covered by soft urethane foam covering the entire body.
Weiss Robotics2 offers a highly sensitive modular tac-

tile sensing system and provides miniaturised elements for
equipping e.g. robotic finger tips as well as larger modules
(e.g. 24×16 cm). But while small elements are also available
with crooked measurement plates, as for usage in the fingers
of the SCHUNK dexterous hand SDH-2, the rigidity of the
larger plates prevents coverage of curved surfaces. Moreover,
these pads cost beyond 10 ke for a complete hand.

Finally, the RoboSkin project3 [17], [18] aimed at devel-
oping sensors for covering large areas of a robot with robotic
skin Their sensor system consists of flexible printed circuit
boards (PCB), each holding 12 capacitive pressure sensing
elements. These PCBs have a triangular shape with a side
length of 30mm and contain the electronics to communicate
with their three neighbours, allowing to connect up to 16
triangles. Each such assembly is then connected to a micro
controller board, which itself is connected to a CAN bus.
This arrangement allows for flexible coverage of curved
surfaces and minimises the amount of cabling required. The
sensors are finally covered by thin layer of silicone rubber
resulting in a package that is quite robust.

What distinguishes our approach from most of the above
approaches, where many small sensing elements are embed-
ded in a flat soft cushion, is that in our case the cushion itself
is the sensor, and can cover relatively large and arbitrarily
shaped surfaces.

III. APPROACH

The presented sensor system exhibits a simple design, as
shown in Figure 1. A sensor pad is comprised of a soft
foam core which is covered in an airtight rubber coating.
Embedded into the foam core is a barometric pressure sensor.
We manufactured several prototypes from foam rubber pieces
of various sizes and stiffness and covered them with latex
rubber to produce the airtight coating.

The pressure sensor we used is a Bosch BMP 0854 (see
Figure2(a)). This is a high-precision, ultra-low power digital
barometric pressure sensor based on piezo-resistive MEMS
technology, selling for around 4 USD in larger quantities. It
offers a range of 300 . . . 1100hPa, with an absolute accuracy
of 2.5hPa and a noise level of down to 0.03hPa (which

2http://www.weiss-robotics.de
3http://www.roboskin.eu
4http://www.bosch-sensortec.com/content/

language1/html/3477.htm

105

(a) (b)

Fig. 2. The barometric pressure sensor (left) and a small sensor pad (right)

is equivalent to an altitude change of 0.25m). The sensor
is temperature compensated and also provides temperature
besides pressure. The sensor itself measures 5×5×1.2mm,
however the carrier board we used was slightly larger. The
next revision of the sensor, the Bosch BMP180, offers the
same characteristics at an even smaller size of 3.65× 3.6×
0.93mm and slightly lower price.

The sensor operates at a supply voltage of 1.8 . . . 3.6V ,
typically 2.5V , and draws between 3 . . . 12µA. It connects
directly to a standard digital two-wire I2C bus for convenient
and robust data readout. Some additional electronics is
however required as the sensor’s I2C address is fixed, such
as I2C swtiches like the Texas Instruments TCA9548A or
NXP PCA9548A.

The sensor offers 4 sensing modes with different data ac-
quisition times and RMS noise levels: ultra low power mode
(4.5ms, 0.06hPa), standard mode (7.5ms, 0.05hPa), high
resolution mode (13.5ms, 0.04hPa) and ultra high resolu-
tion mode (25.5ms, 0.03hPa).

The foam core with its rubber coating can have any size
and shape in principle. Practically however there are trade
offs between sensitivity and size. Moreover the stiffness of
the foam core as well as the foam’s matrix structure affect
sensitivity and can be used to produce a sensitive skin-like
sensor vs. a tough bumper.

Compensation of atmospheric pressure variations:
Given the high sensitivity of the pressure sensor, it will
not only detect applied forces but also atmospheric pressure
changes. To compensate for these slow changes in the
basic pressure level we implemented an adaptive baseline
filter similar to the thermal drift compensation in [18] by
maintaining a sliding mean of the baseline pressure (see
Algorithm 1). During a short 1 to 2 second calibration phase
T after turning on the sensor we store a number of samples in
a ring buffer and calculate the baseline mean µb and standard
deviation σb. Then during operation, for a given pressure p
we check whether it lies within the σb noise band around µb,
and if yes add it to the ring buffer and update µb and σb. The
function then returns the pressure relative to the baseline.
This simple procedure ensures that the sliding mean only
takes into account pressures near baseline and is not affected
by extended application of an actual force.

Algorithm 1 Adaptive baseline filter
function CALIBRATE BASELINE(T)

while t < T do
add current pressure p to ring buffer

end while
calculate µb and σb from ring buffer

end function
function ADAPTIVE BASELINE FILTER(p)

if |p− µb| ≤ σb then
add p to ring buffer
update µb and σb from ring buffer

end if
return p− µb.

end function

IV. EXPERIMENTAL RESULTS

In our experiments we used the BMP085 sensor in ultra
low power mode, operating at 3V and connected to a PC
with a USB-I2C converter operating at 5V via a logic
level shifter. Ultra low power mode is the fasted mode,
returning a read out after 4.5ms, as the sensor only takes
a single measurement vs. averaging internally over several
measurements before returning a read out in the other modes.
This comes at the cost of a higher noise level. However we
consider speed in reporting a collision more essential than
accuracy for this type of sensor.

Experiments were performed by placing defined weights
in the centre of the sensor pad, with a contact area of
ca. 15mm diameter, and waiting until measurement values
were stationary.

We tested three different sensor pads: a small one (2.5×
2.5 × 1 cm) shown in Figure 2(b), a medium sized (4.0 ×
4.0× 1.5 cm), and a large one (20.0× 14.0× 3.5 cm), using
a soft, medium and rather stiff foam core respectively. Note
that due to current limitations of the manufacturing process
of the prototypes the large sensor pad was not completely
airtight (as can be seen in the pressure curve dipping below
0 in Figure 8 below).

Figures 3 to 5 shows the measured pressure above baseline
vs. applied force for each sensor pad. Shown values are
averages over 10 measurements with corresponding error
bars.

As can be seen the small and medium sensor pads have a
roughly linear characteristic, with the softer small pad being
more sensitive, as was to be expected. Results for the stiff
large sensor pad also indicate a linear characteristic, but
due to the fact that this pad was not completely airtight
as mentioned above, it was difficult to get reliable sensor
readings in this case, as can be seen in the larger error bars.
Note the decreasing sensitivity for increasing stiffness of the
different foam materials.

Note further that force in the above cases was always
applied to the same location on the sensor pad. Depending
on the shape of the sensor pad and the distribution of the
applied load sensitivity varies across the pad surface, with

106

Fig. 3. Measured pressure vs. applied force for the small sensor pad

Fig. 4. Measured pressure vs. applied force for the medium sensor pad

the centre being most sensitive.
Figures 6 to 8 show qualitative results for the typical

dynamic behaviour. Note that one tick on the horizontal axis
represents 50ms. Figure 6 shows the pressure and gradient
for the medium sensor pad when dropping a small weight
of 220 g from a height ca. 1 cm. The elasticity of the sensor
pad can be clearly seen in the small oscillations. Figure 7
shows the same sensor pad for light tapping with a finger
(as in double-clicking on a laptop mouse pad). And Figure 8
shows the large sensor pad when being punched by a fist and
hit by a hammer, after which the sensor continued to work
normally. Note the different scaling of the vertical axis for
each figure.

V. CONCLUSION

We presented a tactile sensing system based on a simple
and robust design. The system exhibits characteristics that
make it particularly suited for service robotics applications
where safe operation in tight spaces requires coverage of
large and also curved areas of the robot body, as the sensing
pads can be made to have any size and shape. They are robust
to wear and also offer mechanical protection by cushioning
against impact. The sensor is cheap, highly sensitive (in the

Fig. 5. Measured pressure vs. applied force for the large sensor pad

Fig. 6. Dropping a small weight on the medium sensor pad (1 tick
represents 50ms)

order of tens of milliNewtons) and at the same time able to
take quite some abuse, such as violent impacts on the sensor
pad. Sensors can be daisy-chained on an I2C bus, limiting
the amount of required cabling.

On the down side the maximal spatial resolution is an
order of magnitude lower than that of systems using arrays
of small tactile fields. And while the sensor pads exhibit a
more or less linear characteristic, the sensitivity varies across
the pad’s surface, subject to the mechanical properties of the
pad (stiffness of the foam core and the rubber coating).

As such the presented system is intended to complement
rather than replace existing technologies, with high resolution
sensors covering those robot parts requiring high fidelity
tactile feedback for manipulation, and the presented system
covering the rest of the robot body.

Future work will concentrate on experimenting with differ-
ent types of foam rubber (more open vs. more closed pores,
integral foams) and coating to maximise sensitivity as well as
uniformity of sensitivity across sensor pads. Finally extended
trials in harsh conditions (humidity, dust, sunlight, repeated
impacts) will be needed to demonstrate the applicability on
a wide range of indoor and outdoor robots.

107

Fig. 7. Tapping the medium sensor pad lightly with a finger (1 tick
represents 50ms)

Fig. 8. Hitting the large sensor pad with a fist and hammer. Note that
the this particular pad was not completely airtight due to limitations in
the manufacturing process, resulting in the pressure temporarily becoming
negative w.r.t. to atmospheric pressure. (1 tick represents 50ms)

ACKNOWLEDGEMENT

The research leading to these results has received fund-
ing from the European Community’s Seventh Framework
Programme [FP7/2007-2013] under grant agreement No.
215181, CogX and by the Austrian Science Foundation under
grant agreement No. I513-N23.

REFERENCES

[1] Y. Bekiroglu, J. Laaksonen, J. A. Jorgensen, V. Kyrki, and D. Kragic,
“Assessing grasp stability based on learning and haptic data,” IEEE
Transactions on Robotics, vol. 27, no. 3, pp. 616–629, 2011.

[2] H. Zhang and N. N. Chen, “Control of contact via tactile sensing,”
in IEEE International Conference on Robotics and Automation, 2000,
pp. 482–495.

[3] H. R. Nicholls and M. H. Lee, “A Survey of Robot Tactile Sensing
Technology,” The International Journal of Robotics Research, vol. 8,
no. 3, pp. 3–30, 1989.

[4] B. D. Argall and A. G. Billard, “A survey of Tactile HumanRobot
Interactions,” Robotics and Autonomous Systems, vol. 58, no. 10, pp.
1159–1176, 2010.

[5] B. Siciliano and O. Khatib, Springer Handbook of Robotics, 2008.
[6] H. Iwata, H. Hoshino, T. Morita, and S. Sugano, “Human-humanoid

physical interaction realizing force following and task fulfillment,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2000.

[7] M. Frigola, A. Casals, and J. Amat, “Humanrobot interaction based
on a sensitive bumper skin,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2006.

[8] T. Wösch and W. Feiten, “Reactive Motion Control for Human-Robot
Tactile Interaction,” in IEEE International Conference on Robotics and
Automation, no. May, 2002, pp. 3807–3812.

[9] T. Minato, Y. Yoshikawa, T. Noda, S. Ikemoto, H. Ishiguro, and
M. Asada, “CB2: a child robot with biomimetic body for cognitive
developmental robotics,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2007.

[10] N. Mitsunaga, T. Miyashita, H. Ishiguro, K. Kogure, and N. Hagita,
“Robovie-IV: a communication robot interacting with people daily in
an office,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2006.

[11] T. Miyashita, T. Tajika, H. Ishiguro, K. Kogure, and N. Hagita, “Haptic
communication between humans and robots,” Robotics Research,
vol. 28, pp. 525–536, 2007.

[12] T. Mukai, M. Onishi, T. Odashima, S. Hirano, and Z. Luo, “Devel-
opment of the tactile sensor system of a human-interactive robot RI-
MAN,” IEEE Transactions on Robotics, vol. 24, no. 2, pp. 505–512,
2008.

[13] Y. Ohmura, Y. Kuniyoshi, and A. Nagakubo, “Conformable and
scalable tactile sensor skin for curved surfaces,” in IEEE International
Conference on Robotics and Automation (ICRA), 2006.

[14] Y. Ohmura and Y. Kuniyoshi, “Humanoid robot which can lift a 30
kg box by whole body contact and tactile feedback,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2007.

[15] T. Minato, F. DallaLibera, S. Yokokawa, Y. Nakamura, H. Ishiguro,
and E. Menegatti, “A baby robot platform for cognitive developmental
robotics,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2009.

[16] T. Yoshikai, M. Hayashi, Y. Ishizaka, T. Sagisaka, and M. Inaba,
“Behavior integration for whole-body close interactions by a humanoid
with soft sensor flesh,” in IEEE-RAS International Conference on
Humanoid Robots (HUMANOIDS’07), 2007.

[17] G. Cannata, M. Maggiali, G. Metta, and G. Sandini, “An Embedded
Artificial Skin for Humanoid Robots,” in IEEE International Confer-
ence on Multisensor Fusion and Integration for Intelligent Systems,
2008, pp. 2–6.

[18] A. Schmitz, P. Maiolino, M. Maggiali, L. Natale, G. Cannata,
and G. Metta, “Methods and Technologies for the Implementation
of Large-Scale Robot Tactile Sensors,” IEEE TRANSACTIONS ON
ROBOTICS, vol. 27, no. 3, pp. 389–400, 2011.

108

	1 Preface
	2 Program Committee
	3 Additional Reviewers
	4 Invited Talks
	5 Industry Talks
	6 Table of Contents
	7 Author Index
	8 Energy Efficiency and smoothness in robotics trajectory planning: numerical simulation and comparison
	9 Workspace Analysis of Cooperating Large Scale Manipulators
	10 Innovative concepts in educational robotics: Robotics projects for kindergartens in Austria
	11 A ROS and Aria based framework for didactical analysis of behavioral control in mobile Robotics
	12 Design, Modeling and Control of a Self-Balancing Two-Wheeled Vehicle
	13 In-pipe Cleaning Mechanical System for DeWaLoP Robot- Developing Water Loss Prevention
	14 Improving the ROS Arm Navigation Stack by Using Stochastic Inverse Kinematics
	15 Generalizing the Control Number for 6-dof UCU Hexapods with classic or eccentric U-joints
	16 A Time Optimal Solution for the Waiter Motion Problem with an Industrial Robot
	17 Optimal Path-Planning in the Special Case of Ball Throwing Using an Industrial Robot
	18 RoboCupJunior Soccer Demo League
	19 Flexible Assistance System for Packaging Electronic Consumer Goods using Industrial Robots
	20 HOTINT - a Free Flexible Multibody System Simulator for Robotics Applications
	21 Levels of Integration between Low-Level Reasoning and Task Planning
	22 From tendrils to robots: kinematic study for a bio-inspired grasping system
	23 Ambient Assitive Technologies: The mobile robot P3AAT
	24 Automatic Modelling and Observers Generation for Model-Based Diagnosis System for ROS-Based Robotic Systems
	25 Making Service Robots Safer - Affordable Tactile Sensing for Large Surface Areas

